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Outline
• Challenges of GWAS in large-scale cohorts/biobanks (mostly for 

binary phenotypes)
• Mixed models to account for sample relatedness in GWAS

• Scalable and Accurate Implementation of GEneralized mixed model 
(SAIGE) 
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What if individuals are inter-related?

• Linear and Logistic regression models assume individuals are 
unrelated.
• Known and unknown family relatives can be included in the GWAS 

studies

In the UK Biobank data,  almost one-third of the 
individuals have a third degree (e.g., first cousin) or 
closer relative in the cohort (Bycroft et al, 2017)



What if individuals are inter-related?

• To accommodate this in GWASs,
• First, we need to quantify unknown relatedness.
• Second, we need to account for the relatedness in the association tests



Genetic Relatedness Matrix (GRM): 
Quantifying relatedness
• First, let’s look at the case when the pedigree is known.

1 0 0.5 0 0.5 0 0.25 0.25 0.25 0.25
0 1 0.5 0 0.5 0 0.25 0.25 0.25 0.25
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0.25 0.25 0.5 0.5 0.25 0 1 0.5 0.125 0.125
0.25 0.25 0.5 0.5 0.25 0 0.5 1 0.125 0.125
0.25 0.25 0.25 0 0.5 0.5 0.125 0.125 1 0.5
0.25 0.25 0.25 0 0.5 0.5 0.125 0.125 0.5 1



Genetic Relatedness Matrix (GRM): 
Quantifying relatedness
• When the pedigrees are unknown, we approximate the relatedness.
• Let 𝐺 be the 𝑛×𝑝 genotype matrix (centered and appropriately 

scaled)
• Then, the empirical GRM is,
• !Ψ = &

'
𝐺𝐺(
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Recall the linear regression model:
𝒀𝒊 = 𝑿𝒊𝜶 + 𝑮𝒊𝜷 +𝝐𝒊

Assume 𝑌"s are independent given 𝑋" , 𝐺".

𝑌): phenotype vector for the ith individual
𝑋): covariates matrix for the ith individual
𝐺): genotype vector for the ith individual



Recall the linear regression model:
𝒀𝒊 = 𝑿𝒊𝜶 + 𝑮𝒊𝜷 +𝝐𝒊

Assume 𝑌"s are independent given 𝑋" , 𝐺".

Linear mixed model:
𝒀𝒊 = 𝑿𝒊𝜶 + 𝑮𝒊𝜷 + 𝒃𝒊 + 𝝐𝒊

Assume 𝑌"s are independent given 𝑋" , 𝐺" , and 𝑏"

Accounting for sample relatedness

• 𝑏: random genetic effect, 𝑏 ~ 𝑁(0, 𝜏 𝜓), 𝝍 is genetic 
relationship matrix (GRM)
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Linear Mixed Model for Binary Phenotypes?
• Assumes homoscedasticity (constant residual variance)
• Violated by binary traits

No disease,  0

With disease, 1

Dosages of the tested SNP
0 1 2

Inflated type I error rates



Linear Mixed Model for Binary Phenotypes?

Chen, H., Wang, C., et. al. (2016)



Logistic mixed model:
𝜇! = Pr 𝑌! = 1 𝑋! , 𝐺! , 𝒃𝒊

𝒍𝒐𝒈𝒊𝒕(𝜇𝒊) = 𝑿𝒊𝜶 + 𝑮𝒊𝜷 + 𝒃𝒊

Linear mixed model:
𝒀𝒊 = 𝑿𝒊𝜶 + 𝑮𝒊𝜷 + 𝒃𝒊 + 𝝐𝒊

Accounting for sample relatedness

• 𝑏: random genetic effect, 𝑏 ~ 𝑁(0, 𝜏 𝜓), 𝝍 is genetic 
relationship matrix
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Binary Traits N Case N Control

Colorectal cancer 4,562 382,756 

It would take GMMAT ~ 669 Gb of memory and  ~ 184 CPU years to run a GWAS 
for one phenotype

Optimization NEEDED!



Strategies to make the algorithm 
computationally practical for large data sets

Saddlepoint
approximation

Unbalanced 
case-control 

ratio

Optimization strategies

Large scale data 

Logistic mixed 
model

Sample 
relatedness

Reduce memory usage
• Store raw genotypes in a binary vector to compute GRM (𝝍) elements when 

needed
v 𝐍×(𝐍 + 𝟏)×𝟒 to 𝐍𝑴𝟏

𝟒
v In the example of UK Biobank: N = 408,961  and M1 = 93,511, memory usage 

drops from 669Gb to 9.56Gb

Reduce Computation time
• Using pre-conditioned conjugate gradient to calculate the product of 𝜮$𝟏𝐛 by 

iteratively solving the linear system 𝜮𝒙 = 𝒃
• Hutchinson’s randomized trace estimator is used to estimate the traces of matrix 

𝑃𝜓 (M. F. Hutchinson, 1989) 
v O(N3) to O(M1N1.5) 

N: number of samples
M1: number of genetic markers used to construct the genetic relationship matrix  

𝑆 𝜏 = !"#! $%(',)) ,+,-,',)
!)

= .
/
( &𝑌0𝑃𝜓𝑃 &𝑌 − 𝑡𝑟 𝑃𝜓 )
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Figure 1. 
Manhattan plots of GWAS results for four binary phenotypes with various case-control 
ratios in the UK Biobank.
GWAS results from SAIGE, SAIGE-NoSPA(asymptotically equivalent to GMMAT) and 
BOLT-LMM are shown for A. coronary artery disease (PheCode 411, case:control = 1:12, N 
= 408,458), B. colorectal cancer (PheCode 153, case:control = 1:84, N = 387,318), C. 
glaucoma (PheCode 365, case: control = 1:89, N = 402,223), and D. thyroid cancer 
(PheCode 193, case:control=1:1138, N = 407,757). N: sample size. Blue: loci with 
association p-value < 5×10−8, which have been previously reported, Green: loci that have 
association p-value < 5×10−8 and have not been reported before. Since results from SAIGE-
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Figure 2. 
Quantile-quantile plots of GWAS results for four binary phenotypes with various case-
control ratios in the UK Biobank.
GWAS results from SAIGE, SAIGE-NoSPA (asymptotically equivalent to GMMAT) and 
BOLT-LMM are shown for A. coronary artery disease (PheCode 411, case: control = 1:12, 
N = 408,458), B. colorectal cancer (PheCode 153, case: control = 1:84, N = 387,318), C. 
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Run Time and Memory Usage

Log-log plots of the estimated run time (A) and memory use (B) as a function of sample size (N) for 
testing for testing 71 million markers with info ≥ 0.3 as in UK Biobank. 
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Step 1: Fit the null logistic mixed model 
𝑙𝑜𝑔𝑖𝑡(𝜋&) = 𝑋&𝛼 + 𝑏&
𝑏~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜏 𝜓)

Phenotype
Non-genetic covariates

(N individuals)

Genotypes to construct 
𝝍

(M1 genetic variants)

8𝛼 , :𝑏 , �̂�

Step 2: Perform association test for each genetic marker 
Apply SPA to score tests

Genotypes/Dosages for genetic 
variants to be tested 
(M genetic variants)

Association Results (p-values…)



Code and Data Availability
• SAIGE is implemented as an open-source R package available at
• https://github.com/weizhouUMICH/SAIGE/

• The GWAS results for 1,403 binary phenotypes with the PheCodes
constructed based on ICD codes in UK Biobank using SAIGE are 
currently available for public download at
• https://www.dropbox.com/sh/wuj4y8wsqjz78om/AAACfAJK54Ktvnz

STAoaZTLma?dl=0

• Michigan PheWeb
• HRC-imputed UKBB https://pheweb.org/UKB-SAIGE/
• TOPmed-imputed UKBB https://pheweb.org/UKB-TOPMed/

• Pan-UKBB has conducted a multi-ancestry analysis of 7,221 
phenotypes, across 6 continental ancestry groups, for a total of 16,119 
genome-wide association studies. https://pan.ukbb.broadinstitute.org/

https://github.com/weizhouUMICH/SAIGE/
https://www.dropbox.com/sh/wuj4y8wsqjz78om/AAACfAJK54KtvnzSTAoaZTLma?dl=0
https://pheweb.org/UKB-SAIGE/
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Mixed model method for other trait types in 
large-scale biobanks

• Time-to-event phenotypes 
• GATE: Genetic Analysis of Time-to-Event phenotypes
• R library: https://github.com/weizhou0/GATE
• Pre-print:  

https://www.biorxiv.org/content/10.1101/2020.10.31.358234v1.full

• Categorical phenotypes
• POLMM: Proportional Odds Logistic Mixed Model
• Bi, Wenjian, Wei Zhou, Rounak Dey, Bhramar Mukherjee, Joshua N. Sampson, 

and Seunggeun Lee. "Efficient mixed model approach for large-scale genome-
wide association studies of ordinal categorical phenotypes." The American 
Journal of Human Genetics 108, no. 5 (2021): 825-839.

https://github.com/weizhou0/GATE
https://www.biorxiv.org/content/10.1101/2020.10.31.358234v1.full


Limitations

• Asymptotic approaches were used to achieve scalability for large data 
sizes, whose performance may be poor when sample sizes are too 
small. 

• Score tests cannot provide accurate effect sizes. 



In summary
• Challenges of GWAS exist in large-scale cohorts/biobanks 

• Mixed models can be used to account for sample relatedness in GWAS

• Methods have been developed for biobank-scale GWAS
• Scalable and Accurate Implementation of GEneralized mixed model 

(SAIGE) 

• SAIGE has been extended for set-based tests to gain more power for rare 
variant associations, called SAIGE-GENE (Zhou* and Zhao* et al, 2020) 
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