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R code is shown in blue bold courier new font 
  
Part 1: Simulated data (dataset dataTw.dat)  (Monday 7/6/21) 
 
Estimating additive genetic variance and dominance variance 
Linear regression of phenotype on SNPs 
The classical twin design ... Falconer's equations 
 
Part 2: Real data (weight in young female adults datasets mzHWB.dat and dzHWB.dat ) 
(Tuesday 8/6/21) 
 
Estimating additive genetic variance and dominance variance 
The classical twin design ... umx and OpenMx 
 
The main question that this practical is meant to answer: 
 
What is the relationship between the variance explained in predicting a phenotype from a 
measured genetic variant (a QTL, e.g., a single nucleotide polymorphism; SNP) and the 
components of genetic variance that we estimate in the classical twin model? 
 
This practical includes 5 backstories (included at the end of this document). These include 
additional information for students who would like some background information about the 
practical. Given time constraints, please do not read the backstories during the practical. The 
answers to the questions posed in this practical are included at the end.    
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In part 1 of this practical we require the dataset in the datafile dataTw.dat  

This data set contains the following variables  
 
"zygosity"   
 
"T1QTL_A1"  "T1QTL_A2"  "T1QTL_A3"  "T1QTL_A4"  "T1QTL_A5"   
"T1QTL_A6"  "T1QTL_A7"  "T1QTL_A8"  "T1QTL_A9"  "T1QTL_A10"  
"T2QTL_A1"  "T2QTL_A2"  "T2QTL_A3"  "T2QTL_A4"  "T2QTL_A5"   
"T2QTL_A6"  "T2QTL_A7"  "T2QTL_A8"  "T2QTL_A9"  "T2QTL_A10"  
 
"T1QTL_D1"  "T1QTL_D2"  "T1QTL_D3"  "T1QTL_D4"  "T1QTL_D5"   
"T1QTL_D6"   "T1QTL_D7"  "T1QTL_D8"  "T1QTL_D9"  "T1QTL_D10"  
"T2QTL_D1"  "T2QTL_D2"  "T2QTL_D3"  "T2QTL_D4"  "T2QTL_D5"  
"T2QTL_D6"  "T2QTL_D7"  "T2QTL_D8"  "T2QTL_D9"  "T2QTL_D10"  
 
"pgsT1"    "pgsT2"     "phenoT1"   "phenoT2"   
 
zygosity is coded 1 (for MZ) and 2 (for DZ). 
T1QTL_A1 to _A10 are 10 additively coded Quantitative Trait Loci (QTLs,  e.g., SNPs) in twin 1 members  
T2QTL_A1 to _A10 are 10 additively coded QTLs (SNPs) in twin 2 members. 
The QTLs are diallelic with alleles A and a. The genotypes aa, Aa or aA, and AA are coded additively as 
follows: 0 (aa), 1 (Aa or aA) and 2 (AA) 
 
T1QTL_D1 to _D10 are the same 10 QTLs (SNPs) in twin 1 members, in dominance coding  
T2QTL_D1 to _D10 are the same 10 QTLs (SNPs) in twin 2 members, in dominance coding 
The genotypes aa, Aa or aA, and AA are coded as follows: 0 (aa), 1 (Aa or aA) and 0 (AA). 
 
"pgsT1"    "pgsT2"  are polygenic risk scores, i.e., sum of T1QTL_A1 to T1QTL_A10, and sum of T2QTL_A1 
to T2QTL_A10, respectively. These are not used here (but see Backstory #4). 
  
"phenoT1"   "phenoT2"  are the phenotypic scores of twin 1 and twin 2 members. 
 
The data were simulated: the QTLs are mutually uncorrelated (in linkage equilibrium) and the allele 
frequency is .5, so the genotype frequencies are .25 (aa), .5 (Aa or aA), and .25 (AA). The QTLs are all 
associated with the phenotype with the same effect size. The gene action is both additive and dominant. 
Together the QTLs explain 50% of the variance of the phenotype.    
 
The first aim of this practical is to demonstrate the estimation of additive and dominance variance 
components using linear regression of the phenotype on the QTLs (i.e., the QTLs are the predictors). 
The second aim is to do the same in the classical twin design.  
 
The practical includes R code (to cut and paste), some questions about the R output. At the end, you will 
find some additional explanation (see BACKSTORY #1 to #5), and the answers to the questions about 
the R output. Please do not read the backstories now: they are provided as additional info for students 
who repeat this practical in their won time. 
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Part 1 (1.1. to  1.14, with 9 questions).  

1.1. Download the data to your working directory. Start the RStudio program and set the working 
directory.  
 
You can find the files in the folder faculty/conor/Boulder2021. 
 
dataTw=read.table(file='dataTw.dat', header=T) 
 
1.2. Check the variable names. You should see the variable names which are given on page 3.   
 
colnames(dataTw) 
 
1.3. Create a table of the zygosity variable and a table of T1QTL_A1, calculate the variance of the 
phenotype, and the conditional phenotypic means (phenotypic mean conditional genotype). If the 
relationship between the SNP and the phenotype is linear, the differences between the conditional 
means should be about equal. See the conditional means (i.e., c_means).   
 
table(dataTw$zygosity)  # shows the number of MZ and DZ twinpairs 
table(dataTw$T1QTL_A1)  # shows the distribution of QTL_A1 
s2ph=var(dataTw$phenoT1)  # the variance of the phenotype 
c_means=rep(0,3)  # a vector for the conditional phenotypic means 
c_means[1]=mean(dataTw$phenoT1[dataTw$T1QTL_A1==0])  
c_means[2]=mean(dataTw$phenoT1[dataTw$T1QTL_A1==1]) 
c_means[3]=mean(dataTw$phenoT1[dataTw$T1QTL_A1==2]) 
print(s2ph)    # show variance  
print(c_means) # show conditional means 
 
Question 1.3. What is the variance of the phenotype, what are the genotype frequencies? 
 
1.4. Regress "phenoT1"  on T1QTL_A1. This involves estimating the parameters of the regression model 
(b0 and b1), and the proportion of variance explained (R2).  We can do this using the R function lm(). 
Model:  phenoT1 = b0 + b1* T1QTL_A1 + e 
 
lin1A = lm(phenoT1~T1QTL_A1, data=dataTw) # T1QTL_A1 predicts 
phenoT1 
summary(lin1A) 
 
If R2 is the propotion of explained variance, the raw explained variance component is R2 times the 
variance of the phenotype (s2ph). 
 
Q.1.4. Is there association? Does the QTL predict the phenotype? Test the hypothesis b1=0 (alpha=0.005). 
The explained variance is additive genetic variance of the phenotype that is attributable to, or explained 
by, T1QTL_A1. The proportion is the additive genetic variance divided by the total genetic phenotypic 
variance.  What is the proportion of explained variance? 
 
 



5 
 

 
 

 
  



6 
 

 
 

1.5. Plot the data with the conditional means and the regression line. We can do this using the R 
functions plot(), abline(), and lines(). 
 
plot(dataTw$phenoT1~dataTw$T1QTL_A1,col='grey') 
abline(lin1A, lwd=3) 
lines(c(0,1,2), c_means, type='p', col=2, lwd=5) 
 
If the relationship between the QTL (or SNP) and the phenotype is perfectly linear, the regression line 
should pass through the conditional means, and the differences between the conditional means should 
be about equal. To test this "linearity" we can use dominant coding of the QTL and add the dominance 
term to the regression model. The coding is such that T1QTL_A1 and T1QTL_D1 are uncorrelated (see 
BACKSTORY #1). In the present case, the additive coding is 0 (aa), 1 (Aa or aA) and 2 (AA). The 
dominance coding is 0 (aa), 1 (Aa or aA), and 0 (AA).  
 
1.6. Create a table of dataTw$T1QTL_D1 and the table of dataTw$T1QTL_A1 and dataTw$T1QTL_D1.  
 
# 
table(dataTw$T1QTL_D1)   # one-way table 
table(dataTw$T1QTL_A1, dataTw$T1QTL_D1)   # 2 way table 
# 
 
In the output you can see that in the present case, the additive coding is 0 (aa), 1 (Aa or aA) and 2 (AA). 
The dominance coding is 0 (aa), 1 (Aa or aA), and 0 (AA).  
 
1.7.  Regress phenoT1 on T1QTL_A1 and T1QTL_D1 to estimate the parameters b0, b1 and b2 and the 
proportion of explained variance attributable to the QTL (additive genetic + dominance  variance) 
Model:  phenoT1 = b0 + b1* T1QTL_A1 + b2* T1QTL_D1 + e 
 
lin1AD=(lm(phenoT1~T1QTL_A1+T1QTL_D1,data=dataTw)) 
summary(lin1A)    # results lm(phenoT1~T1QTL_A1) 
summary(lin1AD) # results lm(phenoT1~T1QTL_A1+T1QTL_D1) 
 
Q.1.7. What is the proportion of variance (R2) explained by additively coded QTL? 
What is the proportion of variance (R2) explained by additively coded QTL and dominance coded QTL? 
What is the difference in R2?  
Is contribution of T1QTL_D1 to the explained variance statistically significant (alpha=0.005)? 
 
1.8. Plot the regression results (plot included in BACKSTORY #1).  
 
lines(sort(dataTw$T1QTL_A1),sort(lin1AD$fitted.values), 
type='b', col=6, lwd=3) 
# closer look ... change the scale of Y 
plot(dataTw$phenoT1~dataTw$T1QTL_A1,col='grey', ylim=c(3,7)) 
abline(lin1A, lwd=3) 
lines(c(0,1,2), c_means, type='p', col=6, lwd=8) 
lines(sort(dataTw$T1QTL_A1),sort(lin1AD$fitted.values), 
type='b', col=3, lwd=3) 
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In the plot you can see the linear regression line (phenoT1~T1QTL_A1) and – in green the regression line 
associated with phenoT1~T1QTL_A1 + D1. The latter runs through the conditional means (purple cicles) 
exactly; the former does not: gene action is not perfectly additive.  
 
The proportion of explained variance are 0.02732 (additive) and 0.03658 (additive + dominance). 
Because the predictors are uncorrelated, and given the phenotypic variance of 15.102 
(print(s2ph)), we have the following variance components (note: 0.03658 - 0.02732 = .00926), as 
you can check for yourself (at your leisure, not necessarily during the practical).  
 
Source  Proportion R2   (raw) variance component 
Total pheno    15.102 
Total genetic  0.03658 (~3.65%) 0.03658*15.102 = ~0.552   
Add genetic  0.02732 (~2.73%) 0.02732*15.102 = ~0.412 
Dom genetic  0.00926 (0.926%) 0.00926*15.102 = ~0.139 
 
Q 1.8. How much of the phenotypic variance is not explained? 
 
We can relate the variance components to the biometric model associated with the QTL. This is 
important as it makes the connection between the biometric definition of additive genetic and 
dominance variance, and the explained variance components that we estimate in the regression (see 
BACKSTORY #2).  
 
1.9. In GWAS, the phenotype is regressed on one additively coded SNP at a time (where the number of 
SNP is in the millions, so millions of regression analyses are carried out). Here, we have all the QTLs that 
are relevant to the phenotype. There are only 10, so this really is a toy example: in practice a polygenic 
phenotype is expected to be subject to hundreds, if not thousands, of QTLs. To make the link with the 
classical twin design, let's regress the phenotype on all 10 additively coded QTLs. 

Model:  phenoT1 = b0 + b1* T1QTL_A1 + b2* T1QTL_A2 + ... + b10* T1QTL_A10 + e 
 
lin10A=(lm( 
phenoT1~T1QTL_A1+T1QTL_A2+T1QTL_A3+T1QTL_A4+T1QTL_A5+ 
        T1QTL_A6+T1QTL_A7+T1QTL_A8+T1QTL_A9+T1QTL_A10, 
         data=dataTw)) 
summary(lin10A) 
 
Q. 1.9. What is the proportion of explained variance R2? Given that the phenotypic variance is 15.102, 
how large is the additive genetic variance, i.e., R2 times the phenotypic variance. 
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1.10. To make the link with the classical twin design (where it is possible to estimate both additive 
genetic variance and dominance variance), let's regress the phenotype on the dominantly coded QTLS. 
 
Model:  phenoT1 = b0 + b1* T1QTL_D1 + b2* T1QTL_D2 + ... + b10* T1QTL_D10 + e 
 
lin10D=(lm( 
phenoT1~T1QTL_D1+T1QTL_D2+T1QTL_D3+T1QTL_D4+T1QTL_D5+ 
        T1QTL_D6+T1QTL_D7+T1QTL_D8+T1QTL_D9+T1QTL_D10, 
         data=dataTw)) 
summary(lin10D) 
 
Q.1.10. What is the proportion of explained variance R2? Given that the phenotypic variance is 15.102, 
how large is the dominance genetic variance? 
 
1.11. The coding of the QTL is such that the additively coded QTLs and dominance coded QTLs are 
uncorrelated. Let's regress the phenotype on the QTLs coded additively and dominantly, to estimate the 
total genetic variance (should equal the additive genetic variance + the dominance variance) 
 
Model:  phenoT1 = b0 + b1* T1QTL_A1 + b2* T1QTL_A2 + ... + b10* T1QTL_A10 +  
b11* T1QTL_D1 + b12* T1QTL_D2 + ... + b20* T1QTL_D10 + e 
 
lin10AD=(lm( 
phenoT1~T1QTL_A1+T1QTL_A2+T1QTL_A3+T1QTL_A4+T1QTL_A5+ 
        T1QTL_A6+T1QTL_A7+T1QTL_A8+T1QTL_A9+T1QTL_A10+ 
        T1QTL_D1+T1QTL_D2+T1QTL_D3+T1QTL_D4+T1QTL_D5+ 
        T1QTL_D6+T1QTL_D7+T1QTL_D8+T1QTL_D9+T1QTL_D10, 
         data=dataTw)) 
summary(lin10AD) 
 
Q 1.11. What is the proportion of explained variance R2? Given that the phenotypic variance is 15.102, 
how large is the total genetic variance (i.e., additive variance + dominance variance) and how large is the 
dominance variance? 
 

Let's estimate the A (additive genetic) and D (dominance) variance in the classical twin design using 
Falconer's equations. Based on our regression results we have estimates of the total genetic variance 
and the A and D components. In practice, this is impossible because we do not know all the genes (their 
location, etc.) relevant to the (highly polygenic) phenotypes. How can we obtain estimates of A and D 
variance if we have not measured any QTLs at all? This is where the classical twin design comes in. 
 
1.12 Based on the zygosity info, create MZ and DZ dataframe of the phenotypic data as follows. 
 
dataMZ = dataTw[dataTw$zygosity==1, c('phenoT1', 'phenoT2')]  # 
MZ data frame 
dataDZ = dataTw[dataTw$zygosity==2, c('phenoT1', 'phenoT2')]  # 
DZ data frame 
 
1.13. Calculate the covariance matrices and the correlations using the R functions cov() and cor() 
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SMZ=cov(dataMZ) # MZ covariance matrix 
rMZ=cor(dataMZ)[2,1]  # element 2,1 in the MZ correlation matrix 
SDZ=cov(dataDZ) # DZ covariance matrix 
rDZ=cor(dataDZ)[2,1]# element 2,1 in the DZ correlation matrix 
 
Q.1.13. Based on the correlations, we see that MZ twins are phenotypically more alike than the DZ twins. 
What are the MZ and DZ correlations? 
 
1.14. Use Faclconer's equations to obtain the standardized variance components based on the ADE 
model, based on the model var(pheno) = var(A) + var(D) + var(E), (A = additive genetic, D = dominance, 
E= unshared environmental). (see BACKSTORY #3). 
 
Model for standardized phenotype:   
var(pheno) = var(A) + var(D) + var(E) = s2

A + s2
D + s2

E    
cor(MZs) = rMZ= var(A) + var(D) = s2

A + s2
D 

cor(DZs) = rDZ =.5*var(A) + .25*var(D) = .5*s2
A + .25*s2

D 
 
solve for the unknowns:  
var(A) = s2

A = 4*rDZ - rMZ 
var(D) = s2

D = 2*rMZ – 4*rDZ 
var(E) = s2

E = 1- var(A) – var(D)  
 
sA2 = 4*rDZ - rMZ 
sD2 = 2*rMZ - 4*rDZ 
sE2 = 1 - sA2 - sD2 
print(c(sA2, sD2, sE2)) 
 

Q 1.14 We know the proportion of A, D, and A+D variance from the regression analyses (1.9 – 1.11). Do 
these agree with the values based on the classical twin design? (NOTE: if you think that the answer is 
"NO, THEY DO NOT AGREE" then that is a good answer. To understand what is going on here please take 
the time – later on, at your leisure – to see the answer to the question provided below). 

In practical, we estimate variance components in the classical twin design using genetic covariance 
structure modeling, not Falconer's equations. We do this in part 2 of this practical using the OpenMx 
library and the umx library. Before we continue with Part 2 of the practical, you might ask: so if we have 
measured all the relevant QTLs and can estimate their combined effect on the phenotype (additive 
genetic and dominance effects), how do polygenic risk scores fit in to this? See – at your leisure, not 
during the practical - BACKSTORY #4 for the answer to this.  
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Part 2 {2.1 to 2.7, with about 5 questions).  

In part 1, we ended with estimating variance components using Falconer's equations (Backstory #3). In 
use umx and OpenMx to estimaet variance components using maximum likelihood estimates.  To this 
end, we require the umx and the OpenMx R libraries. We first fit the ADE model to the simulated data 
using umx.  

In practical one, we read a data frame called dataTw from the file dataTw.dat, and we created the data 
frames called  dataMZ and dataDZ. Lets' start with reading and creating the data frames. Open RStudio, 
set the working memory to the folder containing the data files (faculty/conor/Boulder2021), and start 
the practical: 

# start  
dataTw=read.table(file='dataTw.dat', header=T) 
dataMZ = dataTw[dataTw$zygosity==1, c('phenoT1', 'phenoT2')]  # 
MZ data frame 
dataDZ = dataTw[dataTw$zygosity==2, c('phenoT1', 'phenoT2')]  # 
DZ data frame 
 
At this point, you should have the data as data frames in R "ready to go".  

The library umx is an OpenMx interface. The umx library is convenient as it allows one to fit a ACE or 
ADE model in a single umx function call (i.e., a single line of R code). We fit the ADE model using the umx 
function umxACEv(), which provide maximum likelihood estimates of the variance components.  

2.1.  
library(umx)  # load the umx library 
selDVs=c("phenoT")  # the name of the phenotype phenoT1, phenoT2 
ADEmodel_1=umxACEv( 
name='ADE', 
selDVs=selDVs,     # the phenotype 
selCovs=NULL,       # fixed covariates ... none here 
dzData=dataDZ,     # the DZ data frame 
mzData=dataMZ,   # the MZ data frame 
sep='',   # phenoT""1 = phenoT1, phenoT""2 = phenoT2 
dzCr=.25 )  # in the ACE model dzCr=1, in the ADE model dzCr=.25 
summary(ADEmodel_1)  # show the results.  
 
Above you see some annotation. You can get more information about this R function by entering 
?umxACEv in R, and reading the help page associated with this function. 
The umx function umxACEv() fits an ACE model by default. By setting dzCr=.25, the ADE model is 
fitted.  
 
NOTE: in the umx output the notation C is still used, even though in with dzCr=.25 the ADE model is 
fitted. So in the umx output you will see reference to the parameters "C_r1c1" but actually this is 
refers to dominance variance. That is confusing. So remember dzCR=1 implies a ACE model, dzCR=.25 



11 
 

 
 

implies a ADE model, even if the umx output still refers to C (i.e., "C_r1c1" , where "D_r1c1" 
would be more approriate).    
 
How dzCR=1 vs dzCr=.25 works: 
 

 
 
A: Additive genetic variable (s2

A is the additive genetic variance; rA=1 in MZs and rA =.5 in DZ);  
E: Unshared environmental variance (s2

E unshared environmental variance). 
X: Shared environmental variable (s2

X = s2
C, shared environmental variance) if rX=1 in MZs and rX=1 in DZ 

X: Dominance variable (s2
X = s2

D, dominance variance) if rX=1 in MZs and rX=.25 in DZ, so the dzCr in the 
umx function call is the rX in the DZ group: given dzCr=1, X=C (shared environment); given dzCr=.25, X=D 
(dominance).   
 
Q.2.1. Check the summary(ADEmodel_1) output. What are the parameters in this model? What are 
the values of the variance components? 
 
Q.2.2. The observed phenotypic covariance matrices are  
 
MZ        phenoT1   phenoT2 
phenoT1 15.004166  8.187556 
phenoT2  8.187556 15.130558 
 
DZ        phenoT1   phenoT2 
phenoT1 15.216090  2.833538 
phenoT2  2.833538 14.558097 
 
What are the expected covariance matrices based on the estimates of the variance components (see 
1.14)? 
  
2.2. The model includes three variance components, s2

A, s2
D , and  s2

E. Suppose that we want to test the 
hypothesis that s2

D = 0, i.e., that the gene action is additive, the genetic variance is additive.  We can do 
this by fixing the variance component to zero, i.e. imposing the constraint s2

D = 0 and refitting the model. 
We can revise the model using the umx function umxModify(). Remember that guiven dzCr=.25, the 
variance component denoted "C_r1c1"  is a dominance variance component. 
 

# the umxModify function 
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AEmodel_1=umxModify( 
ADEmodel_1,  # the model that we want to modify 
regex = c("C_r1c1"), # the parameter that we want to modify  
    # (given dzCr=.25, C is actually D, s2D) 
free = FALSE,  # we want to fix this parameter,  
  # so in the new model, it is not free (to be estimated) 
value = 0, # the value that we fix the parameter to zero  
  # i.e., s2D = 0 (fixed) 
name='A_noD_E')  # a sensible name for the new AE model  
summary(AEmodel_1)  # see the results 
 
Q. 2.2. What are the values of s2

A, s2
D , and  s2

E in the revised model?  

2.3. At this point, you might think: "OK, we fitted the ADE model and then the AE model, but how do I 
know whether we should drop the s2

D  = 0, can we test the hypothesis s2
D  = 0?". We can test this by 

means of the likelihood ratio test, LRT. In the output summary(AEmodel_1)you can see a number 
called "Fit (-2lnL units)", which equals 21794.14.   
 
Model Statistics:  
               |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units) 
       Model:              3                   3997              21794.14  
 
In the output summary(ADEmodel_1), the value is 21787.55 
 
Model Statistics:  
               |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units) 
       Model:              4                   3996              21787.55 
 
The likelihood ratio test of s2

D  = 0 is based on this information. Specifically the difference in these values 
is a test statistic, which we'll call LRT. If, in truth, s2

D  = 0, LRT follows a chi-square distribution with 
degrees of freedom equal to the difference in the number of parameter, i.e., 4 – 3 = 1. Here is the R 
code for the LRT: 
      
LRT=21794.14-21787.55 
df=1 
pval=pchisq(LRT,df,lower=F) 
print(c(LRT, df, pval)) 
 
So LRT=6.59, df=1, and pval=.0102. What conclusion? Given alpha=0.05, we would conclude that we 
cannot set s2

D  = 0 (i.e, pvalue < alpha, or .0102 < .05). As this is an important test, umx library includes a 
dedicated function to carry it out, umxCompare(): 
 
umxCompare(ADEmodel_1, AEmodel_1) 
 
The output, which includes some additional information, is  

|Model   | EP|Δ -2LL    |Δ df |p     |      AIC|    Δ AIC|Compare with Model | 
|:-------|--:|:---------|:----|:-----|--------:|--------:|:------------------| 
|ADE     |  4|          |     |      | 13795.55| 0.000000|                   | 
|A_noD_E |  3|6.5915688 |1    |0.010 | 13800.14| 4.591569|ADE                | 
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2.4. Real data: weight in young females. In the final part of this practical, we'll fit the ADE model to 
weight measured in young adult female twins. The sample sizes N=569 MZ pairs and N=351 DZ pairs. 
This dataset is part of a dataset included in the OpenMx library (the dataset is called twinData). The 
datafames are called mzHWB.dat and dzHWB.dat. These include height in centimeters (ht), weight in 
kilograms (wt), and body mass index (bmi; i.e., weight / height^2, where height is expressed in meters, 
rather than centimeters). Read the dataframes, and look at the first 6 lines of data.  

mzHWB=read.table(file='mzHWB.dat', header=T) 
dzHWB=read.table(file='dzHWB.dat', header=T)  
head(mzHWB)  # first 6 rows of data 
head(dzHWB) # first 6 rows of data 
 
As you can see the variable names are ht1, wt1,  bmi1,  ht2, wt2,  bmi2. To ease this presentation, let's 
create dataframes for weight only, and calculate some descriptives, and make some graphs. 
 
mzW=mzHWB[,c('wt1', 'wt2')]  # only weight 
dzW=dzHWB[,c('wt1', 'wt2')] # only weight 
dim(mzW) # dimension ... N=569 
dim(dzW) # dimension ... N=351 
apply(mzW,2,mean, na.rm=T)  # phenotypic means 
apply(dzW,2,mean, na.rm=T)  # phenotypic means  
cov(mzW, use="pairwise.complete.obs") # covariance 
cor(mzW, use="pairwise.complete.obs") # correlation 
cov(dzW, use="pairwise.complete.obs") 
cor(dzW, use="pairwise.complete.obs") 
#x11() – this is not necessary in R Studio 
plot(mzW[,1], mzW[,2], type='p', col=1, lwd=3)  
lines(dzW[,1], dzW[,2], type='p', col=2, lwd=3) 
#x11() 
hist(c(mzW[,1],mzW[,2]),20) 
#x11() 
hist(c(dzW[,1],dzW[,2]),20) 
 

   
 
The phenotypic correlations are  rMZ = .843 (N=569, MZs) and rDZ = .334 (N=351, DZs). Given 2*rDZ < 
rMZ, we suspect an ADE model (see BACKSTORY #4).  We could apply Falconer's equations to obtain 
estimates of the standardized variance components (as in 1.14). 
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rMZ = cor(mzW, use="pairwise.complete.obs")[2,1] 
rDZ = cor(dzW, use="pairwise.complete.obs")[2,1] 
# 
#rMZ = .843 
#rDZ = .334 
sA2 = 4*rDZ - rMZ 
sD2 = 2*rMZ - 4*rDZ 
sE2 = 1 - sA2 - sD2 
print(c(sA2, sD2, sE2)) 
 
2.5. Using umx.  We can use umx to obtain maximum likelihood estimates of the A, D, and E variance 
components. The R code is almost the same as above (2.1). We have already loaded the umx library in 
2.1. 

selDVs=c("wt")  # the name of the phenotype wt1, wt2 
ADEmodel_1=umxACEv( 
name='ADE', 
selDVs=selDVs,     # the phenotype 
selCovs=NULL,       # fixed covariates ... none here 
dzData=dzW,     # the DZ data frame 
mzData=mzW,   # the MZ data frame 
sep='',   # wt""1 = wt1, wt""2 = wt2 
dzCr=.25)    # in the ACE model dzCr=1, in the ADE model 
dzCr=.25 
summary(ADEmodel_1) 
 
Q.2.5. Check the summary(ADEmodel_1) output. What are the parameters in this model? What are 
the values of the variance components? What are the standardized variance components? (i.e., s2

Ph  = s2
A 

+ s2
D  +  s2

E; s2
A/ s2

Ph, etc.) 
 
2.6. We can test the hypothesis that s2

D = 0, in the same way as in 2.3, using the same R code 
 
# the umxModify function 
AEmodel_1=umxModify( 
ADEmodel_1,  # the model that we want to modify 
regex = c("C_r1c1"),  # the parameter that we want to modify  
    # (given dzCr=.25, C is actually D, s2D) 
free = FALSE,   # we want to fix this parameter,  
  # so in the new model, it is not free (to be estimated) 
value = 0,  # the value that we fix the parameter to zero  
  # i.e., s2D = 0 (fixed) 
name='A_noD_E')  # a sensible name for the new AE model  
summary(AEmodel_1)   # see the results 
umxCompare(ADEmodel_1, AEmodel_1) # LRT  
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Q 2.6. Given alpha = 0.05, what would you conclude concerning the hypothesis s2
D = 0? Given alpha = 

0.01, what would you conclude concerning the hypothesis s2
D = 0? 

2.7. The umx library provides an interface to OpenMx. Here finally is the OpenMx script to carry out the 
same analysis (ADE model). See BACKSTORY #5 for some annotation. Hermine Maes has a practical on 
OpenMx syntax. You can run this at your leisure in your own time. At this point in the practical, this code 
should run "as-is", and produce the same results as we just obtained using umx. 

library(OpenMx) 

nv <- 1 
ntv <- nv*2 
svVA=35   # starting values of var(A), a guess 
svVC=.0   # starting values of var(C), zero: this is an ADE model 
svVD=30   # starting values of var(D) 
svVE=10  # starting value of var(E) 
svMe=60  # starting value phenotypic mean 
selVars=c('wt1','wt2') 
# Create matrix for expected Mean Matrices 
meanPh     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=svMe,  
                                      labels=c("mean","mean"), name="meanPh" ) 
#ACDE model 
# Create Matrices for Variance Components  
covA      <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=TRUE,  
                       values=svVA, label=" VA11", name="VA" )  
covC      <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=FALSE,  
                       values=svVC, label="VC11", name="VC" ) 
covD      <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=TRUE,  
                       values=svVD, label="VD11", name="VD" ) 
covE      <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=TRUE,  
                       values=svVE, label="VE11", name="VE" ) 
#ACDE model 
# Create Algebra for expected Variance/Covariance Matrices in MZ & DZ twins 
covP      <- mxAlgebra( expression= VA+VC+VD+VE, name="V" )  
covMZ     <- mxAlgebra( expression= VA+VC+VD, name="cMZ" ) 
covDZ     <- mxAlgebra( expression= 0.5%x%VA +0.25%x%VD+ VC, name="cDZ" ) 
expCovMZ  <- mxAlgebra( expression= rbind( cbind(V, cMZ), cbind(t(cMZ), V)),  
                                                          name="expCovMZ" ) 
expCovDZ  <- mxAlgebra( expression= rbind( cbind(V, cDZ), cbind(t(cDZ), V)),  
                                                          name="expCovDZ" ) 
#ACDE model 
# Create Data Objects for Multiple Groups 
#ACDE model 
dataMZ    <- mxData( observed=mzW, type="raw" ) 
dataDZ    <- mxData( observed=dzW, type="raw" ) 
#ACDE model 
# Create Expectation Objects for Multiple Groups 
expMZ     <- mxExpectationNormal( covariance="expCovMZ", means="meanPh",  
                                                      dimnames=selVars ) 
expDZ     <- mxExpectationNormal( covariance="expCovDZ", means="meanPh",  
                                                      dimnames=selVars ) 
funML     <- mxFitFunctionML() 
#ACDE model 
# Create Model Objects for Multiple Groups 
pars      <- list( meanPh, covA, covC, covD, covE, covP ) 
modelMZ   <- mxModel( pars, covMZ, expCovMZ, dataMZ, expMZ, funML, name="MZ" ) 
modelDZ   <- mxModel( pars, covDZ, expCovDZ, dataDZ, expDZ, funML, name="DZ" )  
multi     <- mxFitFunctionMultigroup( c("MZ","DZ") ) 
# Build Model with Confidence Intervals 
modelACDE  <- mxModel( "oneACDEvc", pars, modelMZ, modelDZ, multi) 
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#ACDE model run 
fitACDE    <- mxRun( modelACDE) 
sumACDE    <- summary( fitACDE) 
# Run AE model 
modelAE   <- mxModel( fitACDE, name="oneAEvc" ) 
modelAE   <- omxSetParameters( modelAE, labels="VD11", free=FALSE, values=0 ) 
fitAE     <- mxRun( modelAE) 
sumAE = summary(fitAE) 
mxCompare(fitACDE, fitAE) 
sumACDE 
#   
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BACKSTORY #1.  

In GWAS of a continuous variable, the phenotype is regressed on the additively coded QTL (quantitative 
trait locus, e.g., a SNP). Given a diallelic locus, with alleles A and a, there are three possible genotypes, 
AA, Aa (same as aA) and aa. The genotypes are typicaly coded as shown in the table: 
  

Table : coding the QTL 
 additive dominance 

genotype GVA GVD 
AA 2 4p-2 

Aa or  aA 1 2p 
aa 0 0 

 
The basic model is (note that in practice other covariates may be included, such as sex, age, etc.  
 
phenotypei = b0 + b1*GVAi + ei, 
 
This model is an additive model, because the effect of allele A on the phenotype is additive. You can see 
this if you consider the predicted values (or equivalently the conditional means): 
 
Mean(phenotype | GVA = 0) = b0 + b1*0 = b0 
Mean(phenotype | GVA = 1) = b0 + b1*1 = b0 + b1 

Mean(phenotype | GVA = 2) = b0 + b1*2 = b0 + b1 + b1 = b0 + 2*b1    
 
This implies that the predicted values fall on a straight line, i.e., on the regression line. Whether this 
model "fits the data", depends on the relationship between the genotypes and the phenotype. If in truth 
the observed conditional means (the phenotypic means calculated within each genotype group) fall on a 
straight line, the gene action is called additive. If that is not the case, the model does not "fit the data" 
perfectly, and the gene action is called dominant. That does NOT mean that the linear regression is 
useless: given association, the predictor GVA will still account for phenotypic variance, but the linear 
model will not provide a 100% accurate account of the genotype – phenotype relationship.  We can 
extend the model as follows to include the QTL in additive coding (GVA) and in dominance coding (GVD). 
 
phenotypei = b0 + b1*GVAi + b2*GVDi + ei, 
 
Note that the coding of the GVD involves the allele frequency. Coding in this way ensures that the GVA 

and GVD are not correlated, so that the decomposition of variance is ph
2 = b1

2*GVA
2 + b1

2*GVD
2 + e

2. 
The path diagram of the extended model is shown in the Figure below. 
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Figure 1.1. Given the dominance coding shown in Table above, cov(GVA, GVD) = 0. 

 
Figure 1.2. Purple points: the observed conditional phenotypic means (conditional on the genotype) 
Black regression line phenotypei = b0 + b1*GVAi + ei, 
Green regression line phenotypei = b0 + b1*GVAi + b2*GVDi + ei, 
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BACKSTORY #2. A bit of biometrical genetics 
 

 
Figure 2.1 (sorry about the bad notation: green a is an allele, orange a is a genotype effect). In this 
Figure dominance is present as d, the effect of the heterozygote Aa, is not equal to zero (i.e., not 
intermediate in effect to the effects of the two homozygotes) d>0. Note that d=0 implies dominance, 
where either d<0 or d>0 are possible. 
 
Let p denote the frequency of allele A and q=1-p the frequency of allele a (in a well defined population), 
where A and a are the alleles at a given autosomal locus. Given Hardy-Weinberg Equilibrium (HWE), the 
genotype frequencies are p2 (AA), 2*p*q (Aa or aA), and q2 (aa). Associated with the genotypes are the 
effects -a (aa), d (Aa or aA) and +a (AA). The total genetic variance attributable to this locus equals  
 
2*p*q*[(a+(q-p)*d)]2 + [2*p*q*d]2,  
 
where  2*p*q*[(a+(q-p)*d)]2 the additive variance and [2*p*q*d]2 is dominance variance.  
 
In our data simulation, we have 10 QTLs in linkage equilibrium. For each QTL we set – in the simulation -   
p=.5 (q=.5), a=1 and d=1.  
 
source  raw variance component expected 
Add genetic  0.02732*15.102 = ~0.412 2*p*q*[(a+(q-p)*d)]2 = 2*.5*.5*12 = .5 
Dom genetic  0.00926*15.102 = ~0.139 [2*p*q*d]2= (2*.5*.5*1)^2 = .25 
Total genetic  0.03658*15.102 = ~0.552  2*p*q*[(a+(q-p)*d)]2 + [2*p*q*d]2 = .75 
 
The discrepancy between the estimated variance components and the expected variance components 
(e.g. observed .412 vs expected .5) is simply due to sampling fluctuation.  



21 
 

 
 

BACKSTORY #3. Falconer's equations. 

 
A simple estimation method based on standardized phenotypes. .... Falconer's equations for the ACE 
model and ADE model. Given the ACE model, we assume that the phenotypic variance equals  
 
s2

Ph = s2
A + s2

C + s2
E, where 

 
s2

A is additive genetic variance, s2
C is shared environmental variance, and s2

E is unshared environmental 
variance. According to the classical twin design, we have the expected twin covariance matrices shown 
in the Figure below 
 

 
Figure 3.1: ACE model path diagram and expected covariance matrices 
 
Given standardization of the phenotype, we have  
 
s2

Ph = s2
A + s2

C + s2
E =1 

cov(MZ) = cor(MZ) = rMZ = s2
A + s2

C 
cov(DZ) = cor(DZ) = rDZ = .5*s2

A + s2
C 

 
which implies (solving for the unknowns) the following, i.e., Falconer's equations for the ACE model 
 
s2

A    = 2*(rMZ-rDZ)   
s2

C    = 2*rDZ-rMZ  
s2

E    =1- s2
A - s2

C   
   
Given the ADE model, we assume that the phenotypic variance equals  
 
s2

Ph = s2
A + s2

D + s2
E, where 

 
s2

A is additive genetic variance, s2
D is dominance variance, and s2

E is unshared environmental variance. 
According to the classical twin design, we have the expected twin covariance matrices shown below in 
Figure 4 
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Figure 3.2: ADE model path diagram and expected covariance matrices 
 
Given standardization of the phenotype, we have  
 
s2

Ph = s2
A + s2

D + s2
E =1 

cov(MZ) = cor(MZ) = rMZ = s2
A + s2

D 
cov(DZ) = cor(DZ) = rDZ = .5*s2

A + .25*s2
D 

 
which implies (solving for the unknowns) the following, i.e., Falconer's equations for the ACE model 
 
s2

A    = 4*rDZ-rMZ   
s2

D    = 2*rMZ-4*rDZ  
s2

E    =1- s2
A - s2

D 
 
How to decide between an ACE and ADE model? The rule of thumb is 
 
ADE model, if (2*rDZ)<rMZ 
ACE model, if (2*rDZ)>rMZ 

 
Note that (2*rDZ) = rMZ suggests an AE model, i.e., a special case of the ACE model (drop C variance, i.e., 
s2

C  = 0) and the AE model (drop D variance, i.e., s2
D    = 0).  
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BACKSTORY #4: polygenic risk scores. 

In 1.9. we fitted the following regression model: 

Model:  phenoT1 = b0 + b1* T1QTL_A1 + b2* T1QTL_A2 + ... + b10* T1QTL_A10 + e 
 
That is, the regression of the phenotype on the measured QTLs (10 QTLs, all relevant to the phenotype). 
So what are polygenic scores and how – in this toy example – do they relate to additive genetic variance 
in the classical twin design? The following is relatively simple because the QTLs are uncorrelated (in 
linkage equilibrium). We have measured the QTLs and have coded them additively (0,1,2). Note that the 
"predictor part" of the linear regression model is  

b1* T1QTL_A1 + b2* T1QTL_A2 + ... + b10* T1QTL_A10 

This part of the model includes observed variables T1QTL_A1 to T1QTL_A10 and unknown parameters 
b1 to b10. If we know the values of b1 to b10, we simplify the model as follows: 

Model:  phenoT1 = b0 + A + e  
 
where A = b1* T1QTL_A1 + b2* T1QTL_A2 + ... + b10* T1QTL_A10. We actually know the values of b1 to 
b10 (simulated data...), so we really can calculate the variable A.  This A variable is the same as the A 
variable in the classical twin design. So in the context of our toy dataset, we expect the regression of the 
phenotype of the 10 QTLs (additively coded) to produce the same R2 as obtained in the regression of the 
phenotype of the A, i.e., the polygenic risk score as defined above.  
 
It is important to understand that the polygenic risk scores are based on 1) a subset of relevant QTLs 
(SNPs), 2) the QTLs (SNPs) may be correlated due to linkage disequilibrium (LD) – so that call for some 
correction to take the LD into account, 3) in practice the regression weights are estimated, not known, 
so that the variation in the score A is a function of both variation in the QTLs and the variation in the 
regression coefficients. In the case of our toy data set we can regress the phenotype on the 10 QTLs or 
on our polygenic risk score and obtain about the same proportion of explained variance R2. Is that so? 
Yes: 33.44% vs. 33.95%. See below.  
 
> summary(linPGSA)  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) -15.00235    0.63775  -23.52   <2e-16 *** 
pgsT1         1.00105    0.03159   31.68   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.171 on 1998 degrees of freedom 
Multiple R-squared:  0.3344,    Adjusted R-squared:  0.3341  
F-statistic:  1004 on 1 and 1998 DF,  p-value: < 2.2e-16 
 
> summary(lin10A) 
  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -4.98016    0.32547 -15.301   <2e-16 *** 
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T1QTL_A1     0.86835    0.10136   8.567   <2e-16 *** 
T1QTL_A2     0.96957    0.10139   9.563   <2e-16 *** 
T1QTL_A3     0.93857    0.09918   9.464   <2e-16 *** 
T1QTL_A4     0.96458    0.09929   9.715   <2e-16 *** 
T1QTL_A5     0.84703    0.10211   8.296   <2e-16 *** 
T1QTL_A6     1.15908    0.10013  11.576   <2e-16 *** 
T1QTL_A7     0.91373    0.10076   9.068   <2e-16 *** 
T1QTL_A8     1.16146    0.09896  11.737   <2e-16 *** 
T1QTL_A9     1.21302    0.10060  12.058   <2e-16 *** 
T1QTL_A10    0.97548    0.10247   9.519   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 3.166 on 1989 degrees of freedom 
Multiple R-squared:  0.3395,    Adjusted R-squared:  0.3362  
F-statistic: 102.2 on 10 and 1989 DF,  p-value: < 2.2e-16. 
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BACKSTORY #5: Annotation of the OpenMx script 
 
library(OpenMx) 
# 
svVA=35   # starting values of var(A), a guess 
svVC=.0   # starting values of var(C), zero: this is an ADE model 
svVD=30   # starting values of var(D) 
svVE=10  # starting value of var(E) 
svMe=60  # starting value phenotypic mean 
 
Annotation: svVA etc. are starting value. Maximum liklihood estimation is an iterative 
process that requires starting values for the parameters. The start values chosen here 
are good starting values as they were based on the umx output.  
 
selVars=c('wt1','wt2') 
 
Annotation: the variable that we want to analyze (weight) 
 
# Create matrix for expected Mean Matrices 
meanPh     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=svMe, labels=c("mean","mean"), 
name="meanPh" ) 
 
Annotation: This OpenMx matrix contains the mean of the phenotype 
 
#ACDE model 
# Create Matrices for Variance Components  
covA      <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=TRUE, values=svVA, label="VA11", name="VA" )  
covC      <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=FALSE, values=svVC, label="VC11", name="VC" ) 
covD      <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=TRUE, values=svVD, label="VD11", name="VD" ) 
covE      <- mxMatrix( type="Symm", nrow=nv, ncol=nv, free=TRUE, values=svVE, label="VE11", name="VE" ) 
#ACDE model 
 
Annotation: covA to covE are the covariance matrices of A, C, D, and E. In the present 
case, we have 1 phenotype (weight), so that these are actually 1x1 covariance 
matrices, or simple variances. Note that the C variance component is fixed to zero 
(values=svVC, where scVC=0, and free=FALSE, i.e., not estimated), so this is actually 
an ADE model. Note that VA is the 1x1 covariance matrix, which contains one parameter 
(the additive genetic variance). This variance is a parameter in the model, which is 
called "VA11". So here there is a one-to-one correspondence between VA11 and VA, 
because there is only one phenotype. In a multivariate analysis, say p phenotype, the 
matrix VA would be pxp, and would include p*(p+1)/2 parameters (p variance and p*(p-
1)/2 covariances).  
 
# Create Algebra for expected Variance/Covariance Matrices in MZ & DZ twins 
covP      <- mxAlgebra( expression= VA+VC+VD+VE, name="V" )  
 
Annotation: the phenotypic variance is the some of the variance components.  
 
covMZ     <- mxAlgebra( expression= VA+VC+VD, name="cMZ" ) 
covDZ     <- mxAlgebra( expression= 0.5%x%VA +0.25%x%VD+ VC, name="cDZ" ) 
expCovMZ  <- mxAlgebra( expression= rbind( cbind(V, cMZ), cbind(t(cMZ), V)), name="expCovMZ" ) 
expCovDZ  <- mxAlgebra( expression= rbind( cbind(V, cDZ), cbind(t(cDZ), V)), name="expCovDZ" ) 
#ACDE model 
 

Annotation: create the MZ and DZ covariance matrices, there are 2x2 matrices. 
 
# Create Data Objects for Multiple Groups 
#ACDE model 
dataMZ    <- mxData( observed=mzW, type="raw" ) 
dataDZ    <- mxData( observed=dzW, type="raw" ) 
#ACDE model 
 
Annotation: define the datasets as OpenMX data object 
 
#ACDE model 
# Create Expectation Objects for Multiple Groups 
expMZ     <- mxExpectationNormal( covariance="expCovMZ", means="meanPh", dimnames=selVars ) 
expDZ     <- mxExpectationNormal( covariance="expCovDZ", means="meanPh", dimnames=selVars ) 
funML     <- mxFitFunctionML() 
#ACDE model 
# Create Model Objects for Multiple Groups 
pars      <- list( meanPh, covA, covC, covD, covE, covP ) 
modelMZ   <- mxModel( pars, covMZ, expCovMZ, dataMZ, expMZ, funML, name="MZ" ) 
modelDZ   <- mxModel( pars, covDZ, expCovDZ, dataDZ, expDZ, funML, name="DZ" )  
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multi     <- mxFitFunctionMultigroup( c("MZ","DZ") ) 
# Build Model with Confidence Intervals 
modelACDE  <- mxModel( "oneACDEvc", pars, modelMZ, modelDZ, multi) 
#ACDE model run 
fitACDE    <- mxRun( modelACDE) 
sumACDE    <- summary( fitACDE) 
 
Annotation: run the model 
 
# Run AE model 
modelAE   <- mxModel( fitACDE, name="oneAEvc" ) 
modelAE   <- omxSetParameters( modelAE, labels="VD11", free=FALSE, values=0 ) 
 
Annotation: drop the parameter VD11 (dominance variance), i.e. VD11 =0, reducing the 
model from ADE to AE. 
 
fitAE     <- mxRun( modelAE) 
sumAE = summary(fitAE) 
mxCompare(fitACDE, fitAE) 
 
Annotation: Run the model, and do the likelihood ratio test (is VD11 = 0?) 

 
The model fitted is shown below 
 

 
Figure 5.1 ADE model path diagram and covariance matrices 
 
In terms of the OpenMx specification, the covariance matrices are specified as follows: 
 
covMZ     <- mxAlgebra( expression= VA+VC+VD, name="cMZ" ) 
covDZ     <- mxAlgebra( expression= 0.5%x%VA +0.25%x%VD+ VC, name="cDZ" ) 
expCovMZ  <- mxAlgebra( expression= rbind( cbind(V, cMZ), cbind(t(cMZ), V)), name="expCovMZ" ) 
expCovDZ  <- mxAlgebra( expression= rbind( cbind(V, cDZ), cbind(t(cDZ), V)), name="expCovDZ" ) 
#ACDE model 
 
that is: 
 
 MZ1   MZ2 
MZ1 VA+VC+VD+VE  VA+VC+VD 
MZ2 VA + VC + VD  VA+VC+VD+VE 
  
 DZ1   DZ2 
DZ1 VA+VC+VD+VE  .5*VA+VC+.25*VD 
DZ2 .5*VA + VC + .25*VD VA+VC+VD+VE 



27 
 

 
 

 

where VA=[VA11], VD=[VD11], VC=[VC11], VE=[VE11]. However, we are fitting an ADE model, so VC11 = 
0, meaning that VC=0, so that the variances are effectively VA+VD+VE and the covariances are VA+VD 
(MZ), and .5*VA+.25*VD (DZ). Finally let's take the means and covariance matrices involved in this 
analysis: 

MZ observed mean  
56.65468 56.50090  
DZ observed means 
58.18182 57.73469  
 
MZ covariance matrix 
         wt1      wt2 
wt1 73.44090 63.35853 
wt2 63.35853 77.66200 
MZ correlation = 63.358 / sqrt(73.440*77.662) = 0.8437 
 
DZ covariance matrix 
         wt1      wt2 
wt1 74.63155 26.77257 
wt2 26.77257 84.56391 
DZ correlation = 26.772 / sqrt(74.631*84.564) = 0.3344 
 
MZ model expected phenotypic mean 
meanPh meanPh 
DZ model expected phenotypic mean 
meanPh meanPh 
  
MZ expected covariance matrix  
 MZ1   MZ2 
MZ1 VA + VD + VE VA + VD 
MZ2 VA + VD  VA + VD+VE 

DZ expected covariance matrix  
 DZ1    DZ2 
DZ1 VA + VD + VE  .5*VA + .25*VD 
DZ2 .5*VA + .25*VD  VA + VD+VE 

Given the maximum likelihood estimates: VA=36.53555, VD=29.65004, VE=11.7815, m=57.20859. 

MZ model phenotypic mean 
57.20859 57.20859 
DZ model phenotypic mean 
57.20859 57.20859 
  
MZ covariance matrix  
> fitACDE$MZ$expCovMZ$result 
         [,1]     [,2] 
[1,] 77.96709 66.18559 
[2,] 66.18559 77.96709 
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cor = 66.185 / 77.967  = .8488 
 
DZ covariance matrix  
> fitACDE$DZ$expCovDZ$result 
         [,1]     [,2] 
[1,] 77.96709 25.68029 
[2,] 25.68029 77.96709 
cor = 25.680 / 77.967  = .329  
 
Based on the results we obtain the following standardized variance components 

36.53555/77.96709 = 0.468 (narrow-sense heritability; 46.8% additive genetic)   

(36.53555+29.65004)/77.96709 = 0.848 (broad-sense heritability; 84.8% additive genetic and 
dominance) 

11.7815/77.96709 = 0.151 (15.1% unshared environmental + measurement error).    
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Anwers to the questions Part 1. 

 Q.1.3. What is the variance of the phenotype, what are the genotype frequencies? 
 
The genotype counts are  
   0    1    2  
 474 1021  505  
 
So the genotype freqs are  
> 474/2000  
[1] 0.237 (aa) 
> 1021/2000 
[1] 0.5105 (Aa, aA) 
> 505/2000 
[1] 0.2525 (AA) 
 
The phenotypic variance equals 15.10257. 
 
Q.1.4. Is there association? Does the QTL predict the phenotype? Test the hypothesis b1=0 
(alpha=0.005). The explained variance is additive genetic variance of the phenotype that is 
attributable to, or explained by T1QTL_A1. The proportion is the additive genetic variance divided by 
the total genetic variance.  What is the proportion of explained variance? 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   4.1464     0.1511  27.438  < 2e-16 *** 
T1QTL_A1      0.9180     0.1226   7.491 1.02e-13 *** 
 
Multiple R-squared:  0.02732 
 
Given alpha=0.005, we reject the null hypothesis b1=0, as p < alpha. We conclude that there is 
association. The proportion of explained variance equal .02732, so the additive coded QTL explain 
2.732% of the phenotypic variance (the variance component equals .02732*15.10257 = 0.412).  
 
Q.1.7. Proportion of variance (R2) explained by additively coded QTL? 
Proportion of variance (R2) explained by additively coded QTL and dominance coded QTL? 
Difference in R2?  
Is contribution of T1QTL_D1 to the explained variance statistically significant (alpha=0.005)? 
 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   4.1464     0.1511  27.438  < 2e-16 *** 
T1QTL_A1      0.9180     0.1226   7.491 1.02e-13 *** 
Multiple R-squared:  0.02732 
 
The proportion of explained variance is .02732, i.e., 2.732% 
 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   3.7522     0.1753  21.405  < 2e-16 *** 
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T1QTL_A1      0.9301     0.1220   7.622 3.83e-14 *** 
T1QTL_D1      0.7483     0.1708   4.382 1.24e-05 *** 
Multiple R-squared:  0.03658 
 
The proportion of explained variance is .03658, i.e., 3.658%. 
 
The total genetic variance (due to the QTL): 3.658% 
The additive genetic variance (due to the additively coded QTL): 2.732% 
The difference is 3.658 – 2.732 = 0.926%, which is dominance variance due to the QTL 
 
The test of whether this 0.926 is statistically significant is the test of the regression coefficient 
associated with the dominance coded QTL: .7483 (st err .1708). Given alpha=0.005, we conclude that 
the dominance variance is not zero (p=1.24E-05, i.w., p < alpha). 
 
 Q 1.8.How much of the phenotypic variance is not explained? 
 
Given the results:  
 
source  proportion R2   raw variance component 
Total pheno    15.102 
Total genetic  0.03658 (~3.65%) 0.03658*15.102 = ~0.552   
Add genetic  0.02732 (~2.73%) 0.02732*15.102 = ~0.412 
Dom genetic  0.00926 (0.926%) 0.00926*15.102 = ~0.139 
 
The total explained proportion is .03658, so that the unexplained proportion is 
1-.03658 = 0.96342 
The unexplained variance is (1-.03658)*15.102 =  14.54957 
 
Q. 1.9. What is the proportion of explained variance R2? Given that the phenotypic variance is 15.102, 
how large is the additive genetic variance? 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -4.98016    0.32547 -15.301   <2e-16 *** 
T1QTL_A1     0.86835    0.10136   8.567   <2e-16 *** 
T1QTL_A2     0.96957    0.10139   9.563   <2e-16 *** 
T1QTL_A3     0.93857    0.09918   9.464   <2e-16 *** 
T1QTL_A4     0.96458    0.09929   9.715   <2e-16 *** 
T1QTL_A5     0.84703    0.10211   8.296   <2e-16 *** 
T1QTL_A6     1.15908    0.10013  11.576   <2e-16 *** 
T1QTL_A7     0.91373    0.10076   9.068   <2e-16 *** 
T1QTL_A8     1.16146    0.09896  11.737   <2e-16 *** 
T1QTL_A9     1.21302    0.10060  12.058   <2e-16 *** 
T1QTL_A10    0.97548    0.10247   9.519   <2e-16 *** 
Multiple R-squared:  0.3395 
 
The proportion is .3395, i.e., 33.95% of the variance. The explained variance equals .3395*15.102 = 
5.127. 
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Q 1.11. What is the proportion of explained variance R2? Given that the phenotypic variance is 15.102, 
how large is the total genetic variance (does this equal additive variance + dominance variance) and 
how large is the dominance variance? 
 
The proportion of explained variance is multiple R-squared:  0.509, so 50.9% is explained by the QTL 
(additive + dominance). The additive part is 33.95% (see previous question). 
 
Total genetic variance:  .509*15.102 = 7.686  
Additive genetic variance:  .3395*15.102 = 5.127  
Dominance variance: (.509 - .3395)*15.102 =0.1695*(15.102) =  2.559 
 
Q.1.13. Based on the correlations, we see that MZ twins are phenotypically more alike than the DZ 
twins. What are the MZ and DZ correlations? 
 
> rMZ 
[1] 0.5434016 
> rDZ 
[1] 0.1903817 
 
Q 1.14 We know the proportion of A, D, and A+D variance from the regression analyses (1.9 – 1.11). 
Do these agree with the values based on the classical twin design? 
 
> sA2 = 4*rDZ - rMZ 
> sD2 = 2*rMZ - 4*rDZ 
> sE2 = 1 - sA2 - sD2 
> print(c(sA2, sD2, sE2)) 
[1] 0.2181251 0.3252764 0.4565984 
 
Note: In Q.1.11, we found .3395 (sA2), .1695 (sD2), so this seems to differ a lot. The values .3395 and 
.1695 are definitely better (closer to the truth) as these are based on the analysis of the actually 
observed QTLs. 
 
The apparent discrepancy is due to the imprecision of the estimates based on the twin design. 
Specifically the standardized variance components with 95% confidence intervals (calculated using 
OpenMx) are 
  
confidence intervals: 
   lbound    estimate    ubound    Based on 1.11 
s2

A  -0.02019899 0.2241315   0.4595139      .3395 
s2

D 0.07307716  0.3170788   0.5697425      .1695 
 

If we take the results of 1.11 to be the true values, we note that the confidence interval includes the 
values which we obtained in section 1.11. 
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Anwers to the questions Part 2. 

Q.2.1. Check the summary(ADEmodel_1) output. What are the parameters in this model? What 
are the values of the variance components? 
 
The parameters in the model are 1) the mean; 2) the three variance components (A, D, E). The variance 
components are given below: 
   
2          A_r1c1       top.A   1   1 3.351658   
3          C_r1c1       top.C   1   1 4.741629    
4          E_r1c1       top.E   1   1 6.860765     
 
Q.2.2. The observed phenotypic covariance matrices are  
 
MZ        phenoT1   phenoT2 
phenoT1 15.004166  8.187556 
phenoT2  8.187556 15.130558 
 
DZ        phenoT1   phenoT2 
phenoT1 15.216090  2.833538 
phenoT2  2.833538 14.558097 
 
What are the expected covariance matrices based on the estimates of the variance components (see 
1.14)? 
 
The variance components are   
2          A_r1c1       top.A   1   1 3.351658   
3          C_r1c1       top.C   1   1 4.741629    
4          E_r1c1       top.E   1   1 6.860765 
The phenotypic variance is 3.351 + 4.741 + 6.860 = 14.95 
The MZ covariance is  3.351 + 4.741 = 8.093 
The DZ covariance is .5*3.351 + .25*4.741 = 2.861 
 
We can extract the expected covariance matrices from the umx output: 
 
> ADEmodel_1$top$expCovMZ$result 
          phenoT1   phenoT2 
phenoT1 14.954052  8.093287 
phenoT2  8.093287 14.954052 
> ADEmodel_1$top$expCovDZ$result 
          phenoT1   phenoT2 
phenoT1 14.954052  2.861236 
phenoT2  2.861236 14.954052 
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Q. 2.2. What are the values of s2
A, s2

D , and  s2
E in the revised model?   

2          A_r1c1       top.A   1   1 7.881474   is the value of  s2
A 

3          E_r1c1       top.E   1   1 7.133863    is the value of s2
E 

 
The variance component s2

D is fixed to zero in this model, so  s2
D = 0. 

 
Q.2.5. Check the summary(ADEmodel_1) output. What are the parameters in this model? What 
are the values of the variance components?  
What are the standardized variance components? (i.e., s2

Ph  = s2
A + s2

D  +  s2
E; s2

A/ s2
Ph, etc.) 

 
The parameters are three variance components and the phenotypic mean. 
The values of the variance components are given below: 
 
2      A_r1c1       top.A   1   1 36.53490  
3      C_r1c1       top.C   1   1 29.65062  
4      E_r1c1       top.E   1   1 11.78150  
 
The phenotypic variance is 36.534 + 29.650 + 11.781 = 77.96 
The standardized variance components are  
 
> 36.534 / 77.96  
s2

A/ s2
Ph = 0.4686249 

> 29.650 / 77.96 
s2

D/ s2
Ph = 0.3803232 

> 11.781/ 77.96 
s2

E/ s2
Ph = 0.151116 

 
Q 2.6. Given alpha = 0.05, what would you conclude concerning the hypothesis s2

D = 0? 
 
> umxCompare(ADEmodel_1, AEmodel_1) # LRT  
 
 
|Model   | EP|Δ -2LL    |Δ df |p     |      AIC|    Δ AIC|Compare with Model | 
|:-------|--:|:---------|:----|:-----|--------:|--------:|:------------------| 
|ADE     |  4|          |     |      | 8599.476| 0.000000|                   | 
|A_noD_E |  3|4.8025856 |1    |0.028 | 8602.278| 2.802586|ADE                | 
 
Given alpha=0.05, we would reject hypothesis s2

D = 0 and conclude that s2
D > 0? 

 
 


