# Independent Pathway Model: Genetic Correlation and Multivariate Models 3

Michael D. Hunter

School of Psychology Georgia Institute of Technology

June 2, 2021





#### A Distinction

- ► Earlier: Not so theoretical models
  - Saturated Model
  - ► Fully Correlated Genetic Factors (Cholesky) Model
- ▶ Now: Theoretical models
  - Common Pathway Model
  - Independent Pathway Model

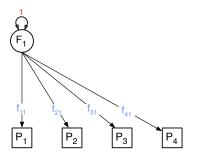




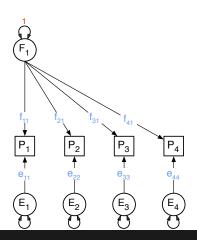
## Scientific questions you can ask

- ▶ In *univariate* analyses: what are the contributions of additive genetic, dominance genetic, shared environmental, and unique environmental factors to the variance?
- ▶ In multivariate analyses: what are these contributions to the **covariance** between two or more traits?

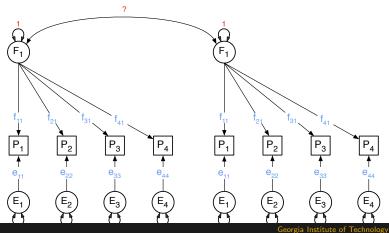


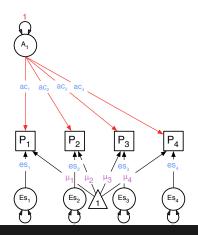



(Martin & Eaves, 1977)


- ► Theoretical model
- Start with a biometric factor model
- Origin is more biometric than psychometric
- ► Allows different covariance structure across A. C. and E
- Create latent factors for A, C, E

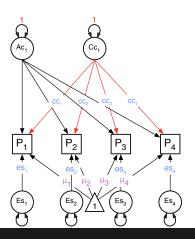




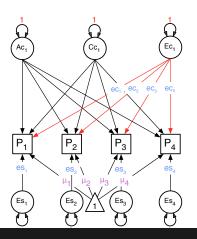

$$egin{array}{c} m{F_1} \\ m{P_2} \\ m{P_3} \\ m{P_4} \\ m{f_{41}} \\ m{f_{41}} \\ \end{bmatrix}$$




| $P_{\scriptscriptstyle 1}$ | $\begin{bmatrix} e_{11} \\ 0 \\ 0 \\ 0 \end{bmatrix}$ | 0        | 0        | 0           | - |
|----------------------------|-------------------------------------------------------|----------|----------|-------------|---|
| $P_{2}$                    | 0                                                     | $e_{22}$ | 0        | 0           |   |
| $P_{3}$                    | 0                                                     | 0        | $e_{33}$ | 0           |   |
| $P_{_4}$                   | 0                                                     | 0        | 0        | $e_{_{44}}$ |   |
|                            | _                                                     |          |          |             | - |






$$egin{aligned} egin{aligned} A_1 \ P_1 \ P_2 \ Ac_{21} \ Ac_{21} \ Ac_{31} \ Ac_{41} \ \end{bmatrix}$$

#### Common C Factor

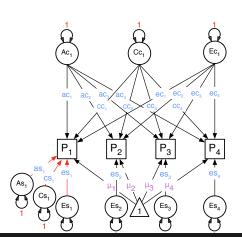


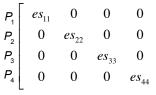
$$\begin{array}{c|c}
C_{1} \\
C_{1} \\
C_{2} \\
C_{3} \\
C_{4} \\
C_{41}
\end{array}$$

#### Common E Factor



$$\begin{array}{c|c}
E_{1} \\
ec_{11} \\
ec_{21} \\
ec_{21} \\
ec_{31} \\
ec_{41}
\end{array}$$


## Independent Pathway Model


- ► Theoretical model
- Start with a biometric factor model
- Origin is more biometric than psychometric
- Allows different covariance structure across A. C. and E
- Create latent factors for *common A*, C, E components
- Decompose the residual variances into *specific* A, C, E components



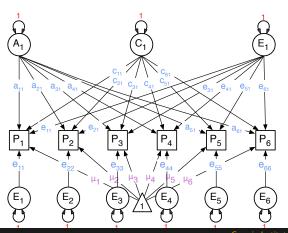


## ACE Specifics





$$\begin{bmatrix} as_{11} & 0 & 0 & 0 \\ 0 & as_{22} & 0 & 0 \\ 0 & 0 & as_{33} & 0 \\ 0 & 0 & 0 & as_{44} \end{bmatrix}$$


$$\begin{bmatrix} cs_{11} & 0 & 0 & 0 \\ 0 & cs_{22} & 0 & 0 \\ 0 & 0 & cs_{33} & 0 \end{bmatrix}$$

Georgia Institute of Technology

Note! For readabilty of the diagrams, we sometimes omit the residual variance decomposition.





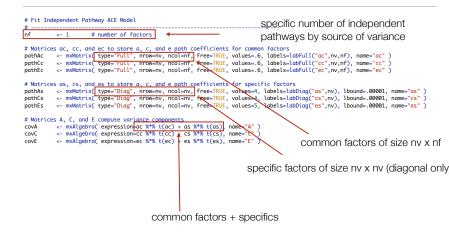


#### Independent Pathway

| Variance<br>Component | a2      | c2      | e2      |
|-----------------------|---------|---------|---------|
| Common                | ac      | cc      | ec      |
| Factors               | nv x 1  | nv x 1  | nv x 1  |
| Residual              | as      | cs      | es      |
| Factors               | nv x nv | nv x nv | nv x nv |

# Independent Pathway Model

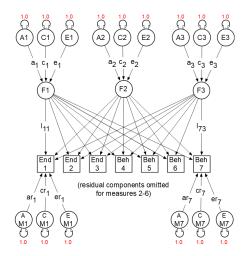
Identification


- ► Be careful when adding common factors
- ► Total parameters per source of variance must be less than nv\*(nv+1)/2 for the number of phenotypes, nv
- ► For a single common factor with only 2 indicators, equate the 2 factor loadings
- ► Alternatively, remove the common factor and add a correlated residual
- ▶ If in doubt, try mxCheckIdentification
- ► When not identified, gives offending parameters





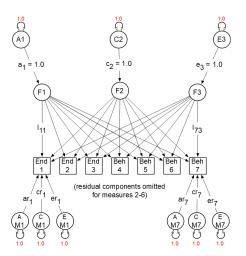



### Independent Pathways



### Fitting IP Model

```
# Create Model Objects for Multiple Groups
          <- list(meanG, matI, invSD,
pars
                  pathAc, pathCc, pathEc, pathAs, pathCs, pathEs, covA, covC, covE, covP, corA, corC, corE)
          <- mxModel( name="MZ", pars, covMZ, expCovMZ, dataMZ, expMZ, funML )
model M7
          <- mxModel( name="DZ", pars, covDZ, expCovDZ, dataDZ, expDZ, funML )
model D7
mul+i
          <- mxFitFunctionMultigroup( c("MZ", "DZ") )
# Build & Run Model
                                                                                           include all relevant matrices
          <- mxModel( "mulIPc", pars, modelMZ, modelDZ, multi )
fi+TP
          <- mxRun( modelIP, intervals=F )
SIImTP
          <- summary( fitIP )
mxCompare( fitACE, fitIP )
fitGofs(fitIP)
# Generate List
matIPpaths <- c("iSD %*% ac","iSD %*% cc","iSD %*% ec","iSD %*% as","iSD %*% cs","iSD %*% es")
labIPpaths <- c("stPathAc", "stPathCc", "stPathEc", "stPathAs", "stPathCs", "stPathEs")
formatOutputMatrices(fitIP, matIPpaths, labIPpaths, vars, 4)
```


fitted model, list of matrices (in quotes), list of labels (also in quotes), list of variable names, rounding value







## Independent Pathway







The independent pathway model is nested within the three factor common pathway model.





## Scientific questions you can ask

- ► In *univariate* analyses: what are the contributions of additive genetic, dominance genetic, shared environmental, and unique environmental factors to the variance?
- ► In *multivariate* analyses: what are these contributions to the **covariance** between two or more traits?







Questions

- ► Common Pathway
  - Can you test for a 1 factor vs a 2 factor vs a 3 factor CP?
  - Can you test for every common factor being A and C?
  - ► Can you test for every specific factor being only E?
  - ► Can you fit an ADE model?
- ► Independent Pathway
  - ► Can you test for a 1 factor vs a 2 factor vs a 3 factor IP?
  - Can you test for every A factor having the same loadings? What does that imply?
  - ► Can you test for every specific factor being only E?
  - Can you fit an ADE model?





mhunter43@gatech.edu





Martin, N. G., & Eaves, L. J. (1977, Feb). The genetical analysis of covariance structure. *Heredity*, *38*(1), 79-95. doi: 10.1038/hdy.1977.9



