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Introduction

A Distinction

» Earlier: Not so theoretical models

» Saturated Model
» Fully Correlated Genetic Factors (Cholesky) Model

» Now: Theoretical models

» Common Pathway Model
» Independent Pathway Model
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Introduction

Scientific questions you can ask

» In univariate analyses: what are the contributions of
additive genetic, dominance genetic, shared
environmental, and unique environmental factors to the
variance?

» In multivariate analyses: what are these contributions to
the covariance between two or more traits?
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Common Pathway Model

Theoretical model

Start with a phenotypic factor model

Origin is more psychometric than biometric

Fixes same covariance structure across A, C, and E

Decompose the factor variance into A, C, E

vVvyvyvyyy

Decompose the residual variances into A, C, E
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Common Pathway Models

Factor Loadings
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Common Pathway Models

Latent Phenotype ACE
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Common Pathway Models

ACE Specifics
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Common Path

Common A Factors
Specific A Factors

object: pathFl
matrix name: fl
A, ]|| cbdect: pathal Sl flufhall fuflall A flaal
1, 1, 1al; 1al} T flyaly,  flflal;
I Mt x| o [ o, ]| ol Ml il ol
T fraflwalyy flyflyalyy  flaaly fly flyal;,
M Maflyaly fufbualy fuflsali,  floaly
| as, 0 0 0 as, 0 0 0 asy 0 0 0
0 as, O 0 0 as, O 0 0 asy O 0
0 0 as, O 0 0 a; O || 0 0 as® 0
0 0 0 as, 0 0 0 as, 0 0 0 as’,
object: pathAs
matrix name: as
pathF1l <- mxMatrix( type="Full", nrow=nv, ncol=nl, free= , values=.2,
labels=1labFull("f1",nv,nl), name="f1" )
pathAl <- mxMatrix( type="Lower", nrow=nl, ncol=nl, free= , values=.6,
labels=labLower("al",nl), lbound=.00001, name="al" )
pathAs mxMatrix( type="Diag", nrow=nv, ncol=nv, free= , values=.5,

labels=labDiag("as".nv), lbound=.00001, name="as" )




Common P,

Total A Covariance

£L %% (al %*% t(al))
fhaly +ast  fl, flyaly, Sl fhuflaali,

Maly,  fluflaly, L flyaly, fiflaals, as; 0 0 0
fouflal}, faly, fluflyall,  flflal . 0 as O 0 _ fLufhaly  flhall +asl,  fl, flyal}, fouflaal,
faflaals,  flyflyaly,  flaaly,  flyflyal;, 0 0 asi; O Sl flal}, flufball,  fhall +asy,  flyflyal;,

0 0 0 asy, | faflal}, faflal, faflyaly,  flial} +asy,

| Aty fofbaly Aofal ek || |

as %*% t(as)

object: CovA
matrix name:A

mxAlgebra( expression=fl %% (al %*% t(al)) + as %*% t(as), name="A" )

CcovA




Common Pathway Model

Theoretical model

Start with a phenotypic factor model

Origin is more psychometric than biometric

Fixes same covariance structure across A, C, and E

Decompose the factor variance into A, C, E

vVvyvyvyyy

Decompose the residual variances into A, C, E
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Common Pathway Models

CP Model
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Common Pathway Models

Note! For readabilty of the diagrams, we sometimes omit the
residual variance decomposition.
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Common Pathway Models

Common Pathway

Variance a2 2 o2

Component
Common al cl el fl
Factors 1x1 1x1 1x1 nvxi
Residual as cs es
Factors nv x nv nv x nv nv x nv

Michael D. Hunter Georgia Institute of Technology

Mul



Common Patt

Constraint on
Variance of Latent Phenotype

# Fit Common Pathway ACE Model
#

latent phenotype nf x nf

nl <1
# Matrices ac, cc, and efTCients for latent phenotype(s)

pathAl <~ mxMatrix([type="Lower", nrow=nl, ncol=nl,| free=TRUE, values=.6, labels=labLower("al”,nl), lbound=.00001, nam

pathCl <~ mxMatrix( type="Lower™, nrow-nl, ncol=nl, free=TRUE, values=.6, labels=labLower("cl",nl), lbound=.00001, nam

pathEl < mxMatrix( type="Lower", nrow=nl, ncol=nl, free=TRUE, values=.6, labels=labLower("el",nl), lbound=.00001, name="el" )

# Matrix and Algebra for constraint_an variance of latent
covarlP <~ mxAlgebra( expressiondal %*% t(al) + cl %*% t(cl) + el %*% t(el),| name="CovarLP" )

varLp <- mxAlgebra( expression= diagZvec(CovarLP), name="varLP" )
unit <- mxMatrix( type="Unit", nrow=nl, ncol=1, name="Unit")
varlP1  <- mxConstraint( expression=VarLP == Unit, name="varLP1") aA2 + CA2 + eA2 =1

# Matrix f for factor in
pathFl < mxMatrix(|type="Full", nrow=nv, ncol=nl] free=TRUE, values=.2, labels=labFull("fl",nv,nl), name="f1" )

# Matrices A, C, and E compute variance components

covA <- mxAlgebra( expression{fl %% (al %*% t(al)) + as %*% t(as)| name=
covC <- mxAlgebra( expressiol (CT 7% T(c)) + Cop % t(cs), name="C" ) factor loadings
covE <- mxAlgebraC expression=fl %% (el %*% t(el)) + es MW t(es), name="E" )

factor loadings x ace on LP
+ specifics

Michael D. Hunter Georgia Institute of Technology

Multivariate 2



Common Patt

Fitting CP Model

# Create Model Objects for Multiple Groups

pars <- list(meanG, matI, invSD
pathAl, pathCl, pathEl, covarlLP, varlLP, unit, pqthFl,l ithAs, pathCs, pathEs, covA, covC, covE, covP)
modelMZ <~ meoLETt‘ﬁEﬁE: MZ™, pars, covMZ, expCovMZ, dataMZ, expMZ, rESEE‘3‘---__\____-~‘-~
modelDZ  <- mxModel( name="DZ", pars, covDZ, expCovDZ, dataDZ, expDZ, funML ) .
multi < mxFitFunctionMultigroup( c("MZ","DZ") ) new objects

# Build & Run Model

modelCP <~ mxModel( "mulCPc", pars
fitCP <- mxRun(modelCP, intervals=F )

sumCP <- summary( fitCP ) ‘\\\\\\\“-~

mxCompare( fitACE, FLECP ) constraint object in combined model only

parameterSpecifications(fitCP)

modelMZ, modelDZ, multi )

# Generate List of Parameter Estimates and Derived Quantities using formatOutputMatrices
matCPpaths <- cl"al","nl”,”el” "1SD %*% f1","iSD %*% as”,"iSD %*% cs","iSD ¥*% es")
LlabCPpaths <- c("S SERathCl", "stPathEl", "stPathFl","stPathAs","stPathCs", "stPathEs")
formatOutputMatrlces(F]tCP matCPraths, labCPpaths, vars, 4)

already standardized
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Common Pathway Models

Can you have multiple latent factors?
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Common Pathway Models

CP 3L Model
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Scientific questions you can ask

» In univariate analyses: what are the contributions of
additive genetic, dominance genetic, shared
environmental, and unique environmental factors to the
variance?

» In multivariate analyses: what are these contributions to
the covariance between two or more traits?
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Questions?
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Questions

» Common Pathway

» Can you test for a 1 factor vs a 2 factor vs a 3 factor CP?
» Can you test for every common factor being A and C?
» Can you test for every specific factor being only E?

» Can you fit an ADE model?

» Independent Pathway
» Can you test for a 1 factor vs a 2 factor vs a 3 factor IP?
» Can you test for every A factor having the same
loadings? What does that imply?
» Can you test for every specific factor being only E?
» Can you fit an ADE model?
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Thank You

mhunter43@gatech.edu
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