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• A regression would show an average increase of 
2cm per copy of the G allele. So the effect size 
of this variant would be approximately 2.



In a new sample we would expect AG individuals to 
be on average 2cm taller than AA and 2cm shorter 
than GG 



Complex traits are highly polygenic!

From above we can see there are many more genetic variants that contribute to the phenotype

Common variants typically have a small effect size (our example is an exaggeration for a common variant!). This would 
cause single-loci based prediction useless

We can combine the information we gain from several genetic variants to estimate an overall score and gain a better 
estimate of the trait. This is essentially what a PRS does
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PRS overview



PRS overview
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Effect size of -1 per T allele
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Effect size of +0.5 per G allele



Effect size of +0.5 per G allele
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Note on ambiguous variants
+

-

A/C

T/G

rsxxy A C
MAF

rsxxy T G
MAF 

+

-

A/T

T/A

rsxxx A T
MAF

rsxxx T A
1-MAF 

This variant is not ambiguous

This variant is ambiguous

Note that one can usually solve ambiguity with information on allele frequency, but it gets tricky if its close to 0.5 
(it is easy to drop them; as non-ambiguous SNPs will still tag variance thanks to LD) 



Repeat including the other variants and sum 
across all loci 

Will give you an estimate of their polygenic risk for the trait of interest

Polygenic risk score – Weighted sum of alleles which quantify the effect 
of several genetic variants on an individual’s phenotype. 



Repeat including the other variants and sum 
across all loci 

Caution! The sample for which PRS will be calculated should 
be independent from that of the discovery GWAS. Sample 
overlap will bias your results.

GWAS PRS



Layout

• Introduction – recapitulating GWAS and allele effect sizes
• PRS overview – graphical summary of what a PRS is
• Which variants to include and accounting for LD

• Traditional ‘clumping and thresholding’

• Applications for PRS
• Other methods for PRS
• Summary 



Repeat including the other variants and sum 
across all loci 

Things to consider:
We know many GWAS are underpowered (there’s many more true associations than those discovered)

Linkage-disequilibrium creates a correlation structure within the variants. Its important to use independent SNPs (or 
account for their correlation somehow)



Clumping

Select all SNPs that are significant at a certain p-value threshold (p1 parameter, set to 1 for traditional approach) 
Form clumps of SNPs within a certain distance (kb param) to the index SNP if they are in LD with the index SNP (r2 param)



Clumping and thresholding approach

The variants left are approximately independent, but there is still the question of how significant the association 
needs to be for inclusion in the PRS calculation



Clumping and thresholding approach

Solution: Calculate many PRS including more and more variants (reducing the p-value threshold used to filter them)
Example 8 p-value thresholds:

Number of independent variants included in PRS calculation

p<5e-8 p<1e-5 p<0.001 p<0.01 p<0.05 p<0.1 p<0.5 p<1

723 2310 10473 30201 73120 110168 285410 393492



PRS – trait association



PRS – trait association

Think about your sample:
> Is it a family based sample? ! Adjust for 
relatedness e.g. LMM 
> Is it homogeneous in terms of ancestry?

-Always a good idea to adjust for genetic PCs
>Does it match the GWAS ancestry?

Think about your trait:
> Is it continuous – linear regression
> Binary – logistic or probit regression 
> Ordinal – cumulative linked mixed models
> Always remember potential confounders of 
the trait and of the discovery GWAS



Power of PRS analysis increases with GWAS 
sample size

PGC-MDD1: N=18k
max variance 
explained = 0.08%, 
p=0.018

PGC-MDD2: N=163k
max variance 
explained =0.46%,
p= 5.01e-08

Colodro-Conde L, Couvy-Duchesne B, et al, (2017)  Molecular Psychiatry



C+T also allows us to explore the pattern of variance explained

Variance explained = partial R2 for quantitative traits. Different ways of estimating it for binary traits 
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• Test for GWAS association and quantify variance explained

• Risk stratification (i.e. identifying people to later test for specific disease)

• Aid in clinical diagnosis

• Test for genetic overlap between traits (e.g. does a Depression PRS predict 
cardiovascular disease?)

• Trait imputation when not measured (obviously imperfect and dependent on 
heritability)

• Personalized treatment (GWAS on treatment response are gaining power)

• Any hypothesis where you rely on a risk or liability (e.g. GxE interactions)
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Beyond clumping and thresholding
C+T (your options):
• PLINK 
• PRSice2 
• bigsnpR (R library)
Other types of PRS:
• LDpred2 – Implemented in bigsnpR
• SBayesR – Implemented in GCTB
• Lassosum (and lassosum2) – Implemented in bigsnpR
• PRS-CS 
• JAMPred



Commonality across these approaches

• If our sample size and computational power was big enough we could run a 
multiple linear regression model, and use the joint effect sizes (also called 
sometimes conditional) for PRS

• Because we can’t, what we do is to run m regressions (one for each SNP) thus 
obtaining their marginal effect sizes. The lack of adjustment for correlation is 
obvious from the Manhattan plot “skyscrapers”

• To solve this problem we need to find a method to approximate the multiple 
linear regression results based on the GWAS summary statistics



Beyond clumping and thresholding
Approaches for fancier PRS:
• LDpred2 – Implemented in bigsnpR
o Gibbs sampler to estimate joint SNP effects (replacing clumping)
• SBayesR – Implemented in GCTB
o Estimates joint SNP effects using Bayesian multiple regression
• Lassosum (and lassosum2) – Implemented in bigsnpR
o Penalized (LASSO) regression (complementary to LDpred2 for MHC)
• PRS-CS 
o Joint SNP effects using Bayesian regression with continuous shrinkage priors
• JAMPred
o Two step Bayesian regression framework



• Combines a likelihood connecting the joint 
effects with GWAS summary statistics and a 
finite mixture of normal distribution priors for 
marker effects.

• Models the SNP effect sizes as a mixture of 
normal distributions with mean zero and 
different variances.

• Requires GWAS summary statistics with FREQ, 
BETA, SE and N; and an LD reference matrix

SBayesR

Typically uses four normal distributions with mean zero 
and variances =                                                                

Then performs a Markov chain Monte Carlo Gibbs 
sampling for the model parameters:



SBayesR

• Combines a likelihood connecting the joint 
effects with GWAS summary statistics and a 
finite mixture of normal distribution priors for 
marker effects.

• Models the SNP effect sizes as a mixture of 
normal distributions with mean zero and 
different variances.

• Requires GWAS summary statistics with FREQ, 
BETA, SE and N; and an LD reference matrix

Lloyd-Jones, Jian Zeng, et al (2019)



LDpred2

Addressed instability issues in LDpred providing a more 
stable workflow. Models long range LD such as that 
found near the HLA region. 

Also derives an expectation of joint effects given 
marginal effects and correlation between SNPs

Assumes:

With p= proportion of causal variants and h2 estimated 
using Ldscore regression. Grid for p:

Estimated effect sizes from a Gibbs sampler (also MCMC)

It also adds two new models to the traditional LDpred:

1. Estimate p and h2 from the model instead of testing 
several values and LD-score regression (LDpred2-auto). 
Thus no intermediate validation dataset is needed to tune 
these parameters.

2. LDpred2-sparse allows for effect sizes to be exactly 0 
(similar to the first mixture component of SBayesR)



LDpred2

Addressed instability issues in LDpred providing a more 
stable workflow. Models long range LD such as that 
found near the HLA region. 

Also derives an expectation of joint effects given 
marginal effects and correlation between SNPs

Assumes:

With p= proportion of causal variants and h2 estimated 
using Ldscore regression. Grid for p: Bioinformatics, Volume 36, Issue 22-23, 

1 December 2020, Pages 5424–5431



Beyond clumping and thresholding

• These approaches usually perform better than (or at least as well 
as) C+T
• When they don’t, maybe raise an eyebrow (sometimes the 

models don’t converge and they might fail silently)

• Still an area of active research and a clear battle between 
complexity and power vs scalability and ease of use

• There’s many publications comparing them, read them and pick the 
one that better fits your needs
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PRS- Weighted sum of alleles. A tool for 
estimating the genetic liability or risk to traits
Essential:
• QC GWAS data (discovery)
• QC Genotype data (target)
• SNP identifiers need to be matched
• Independent discovery and target samples
• Consider statistical power

When using PRS:
• Beware of related individuals in the sample
• Adjust for population stratification
• Ancestry consideration (portability issues)
• Be wary of jumping too fast to conclusions 

consider potential biases in the discovery 
GWAS and the target sample.
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