GWAS Meta-Analysis

Sarah Medland

The 2021 Virtual Workshop on Statistical Genetic Methods for Human Complex Traits

Combining data across studies

- •Aims:
 - •Estimate the overall, or combined effect
 - Explore differences between cohorts heterogeneity
 - Improve power
 - Replicate effects

Joint vs Meta-analysis

For common variants, joint and meta-analysis have similar power (Lin & Zeng, *Genet. Epidemiol.*, 2010)

How we use meta-analysis in GWAS

- •Commissioned analyses rather than MA of previously published findings
 - Analysis protocol
 - Imputation reference
 - Phenotypic definition
 - Covariates to be included
 - Population stratification
 - Analyses to be run
 - Output format

Types of meta-analysis – Fixed Effect

- Each SNP has a "true effect size" on the trait.
- This effect is shared by all cohorts.
- The observed effect sizes in the different cohorts will be distributed around the "true effect size" with a variance that depends on the precision of the different cohorts

Types of meta-analysis – Fixed Effect

- •We weight each cohorts effect size by it's precision
- Error in our estimate is due to random error within studies
- The combined effect = the meta-analytic estimate

Types of meta-analysis – Random Effect

- The true effect for a SNP varies between cohorts.
- The studies included in the meta-analysis are assumed to be a random sample reflecting the distribution of true effects

Types of meta-analysis – Random Effect

- Error in our estimate is due to random error within AND between studies
- Weights reflect these two sources of error and are less dependent on sample size
- The mean effect in this distribution = the meta-analytic estimate

Types of meta-analysis – Random Effect

- Traditionally, null hypothesis for RE model is that the mean of the effects is 0
 - lower power than FE
- Correct null hypothesis for GWAS is that all effects are 0
 - Modification proposed by Han & Eskin 2011 tests the null hypothesis of exactly 0 effect in every study – RE2
 - Implemented in Meta (webpage no longer works)

Types of meta-analysis – Others

•Bayesian partition model

- Cohorts are grouped into clusters. Effect is assumed be the same within but different between clusters.
- MANTRA (Meta-ANalysis of Transethnic Association studies) - Andrew Morris - Genet Epidemiol. 2011; 35(8): 809–822. PMCID: PMC3460225

Types of meta-analysis – Others

- Multivariate GWAS packages
 MTAG and GenomicSEM next week
- •Continuous & Binary meta-analysis
 - Demontis, Walters et al Nat Genet. 2019; 51(1): 63–75. PMCID: PMC6481311 (Sup information)

Setting up a meta-analysis

- •Start with an analysis plan
 - Decide on QC of input and analytic approach
 - Define your primary analyses
 - Define any secondary analyses sensitivity, populations
 - Map out intended follow-ups
 - Define replication
 - Preregistration or public posting is strongly encouraged
 - Allow a lot more time than you think you will need

Software for running meta-analysis

- Important considerations
 - Types of analyses the program can run
 - QC requirements
 - Strand flipping
 - Allele frequency tracking
 - What you want to do your output
 - Genomic control vs LDscore regression
 - Beta & SE vs Z

Software for running meta-analysis

Software

- METAL
- ? GWAMA (Magi & Morris)
- •? Meta(Han & Eskin)
- R & Stata packages

QC of cohort level data

•Variant naming

- •Allele Frequency MAF .5 or 1%
- •Imputation accuracy (r²) Typically .6 (.8 if hard calls were analysed)
- •Plots Manhattan, QQ, P-Z
- •MAF compared to reference Strand
- •Lambda calculation Checking for confounding
- •Packages are available to help with this i.e. EasyQC

Choosing an analytic approach

- •Metal
 - Fixed effect analysis Inverse variance weighted
 - Requires: beta, SE, alleles
 - Outputs: beta, SE, p, N, heterogeneity, MAF

	Inverse variance based
Inputs	β_{i} effect size estimate for study i
	se _i - standard error for study i
Intermediate Statistics	$w_i = 1/SE_i^2$
	$se = \sqrt{1/\sum_{i} w_i}$
	$\beta = \sum_{i} \beta_{i} w_{i} / \sum_{i} w_{i}$
Overall Z-Score	Z=β/SE
Overall P-value	

Choosing an analytic approach

- •Metal
 - Fixed effect analysis Sample size weighted
 - Requires: direction, P, N, alleles
 - Outputs: Z, p, N, heterogeneity, MAF
 - Sample overlap correction

	Sample size based
Inputs	N_i - sample size for study i
	<i>P_i–P</i> -value for study <i>i</i>
	Δ_i - direction of effect for study i
Intermediate Statistics	$Z_i = \Phi^{-1}(P_i/2) * \operatorname{sign}(\Delta_i)$
	$w_i = \sqrt{N_i}$
Overall Z-Score	$Z = \frac{\sum_{i} Z_{i} w_{i}}{\sqrt{\sum_{i} w_{i}^{2}}}$
Overall P-value	<i>P</i> =2Φ(-Z)

Choosing an analytic approach

- Random Metal
 - Requires: beta, SE, p, N, alleles
 - Outputs: Both FE and RE results beta, SE, p, heterogeneity, tau²

Why would you chose N weighted or RE?

- Inverse variance FE meta-analysis are sensitive to deviations in scaling between studies
- •N weighted FE meta-analyses are less sensitive to this
- •RE meta-analyses are more appropriate for situations where the effect size differs between cohorts

Questions?