

Outline of this video:

- How SEM-PGS models can detect and estimate different types of assortative mating
 - Disequilibrium vs. Equilibrium
 - Phenotypic, Social, and Genetic Homogamy
- Using latent genetic factors to capture full additive genetic effects
- Other model extensions
 - Different data types that can be leveraged
 - Different questions that can be addressed

Accounting for Assortative Mating

Importance of Assortative Mating

- Assortment is interesting in its own right!
 - Informs about a given population's culture, priorities, and preferences
- Assortment can impact genetic architecture
 - Assortative mating can lead to increases in:
 - 1. Correlations between trait-increasing alleles
 - AKA "Gametic Phase Disequilibrium"
 - 2. Genetic correlations between traits
 - 3. Homozygosity
 - 4. Genetic correlations between relatives
 - 5. Population phenotypic and genotypic variance

Offspring's Genome

No Assortment

	T _p	NTp	T _m	NT _m
Tp	k	0	0	0
NTp		k	0	0
T _m			k	0
NT _m				k

No Assortment

$$\mu = \frac{\text{Spousal Phenotypic Covariance}}{(\text{Spouse Phenotypic Variance})^2}$$

Offspring's Genome

$$\mu = \frac{\text{Spousal Phenotypic Covariance}}{(\text{Spouse Phenotypic Variance})^2}$$

Offspring's Genome

	T _p	NT _p	T _m	NT _m
Tp	k	0	0	0
NTp		k	0	0
T _m			k	0
NT _m				k

NT_{m} T_m

g : Increase in PGS covariances due to AM

	T _p	NT _p	T _m	NT _m
Tp	k	0	g	g
NTp		k	g	g
T _m			k	0
NT _m				k

T_{m}

g : Increase in PGS covariances due to AM

	T _p	NT _p	T _m	NT _m
Tp	k	0	g	${\cal g}$
NTp		k	g	g
T _m			k	0
NT _m				k

k + g $\int k + g$ NT_p Y_{m}

g : Increase in PGS (co)variances due to AM

	T _p	NTp	T _m	NT _m
Tp	k+g	g	${\cal g}$	${\cal g}$
NTp		k + g	\mathcal{G}	g
T _m			k + g	g
NT _m				k + g

Offspring's Genome

Model 0:

- ✓ Vertical Transmission,
- Assortative Mating

- ✓ Vertical Transmission,
- Assortative Mating

Model 0:

- ✓ Vertical Transmission,
- Assortative Mating

- Vertical Transmission,
- Assortative Mating

$$cov(Y_o, NT_p) = ?$$

$$= f\Omega(1 + V_y\mu) + 2\delta g$$

Model 0:

- Vertical Transmission,
- **Assortative Mating**

- Vertical Transmission,
- **Assortative Mating**

$$NT_p$$
) = ?

$$= f\Omega(1 + V_y\mu) + 2\delta g$$

	T _p	NTp	T _m	NT _m
Tp	k + g	g	g	g
NTp		k + g	g	g
T _m			k + g	\mathcal{G}
NT _m				k + g

- ✓ Vertical Transmission
- Assortative Mating

	T _p	NT _p	T _m	NT _m
T _p	k + g	g	g	g
NΤ _p		k + g	g	${\cal g}$
T _m			k + g	g
NT _m				k + g

Equilibrium

	T _p	NTp	T _m	NT _m
Tp	k + g	g	g	g
NTp		k+g	g	g
T _m			k + g	g
NT _m				k + g

Disequilibrium

	T _p	NT _p	T _m	NT _m
Tp	$k + g_{cis}$	g_{cis}	${g}_{trans}$	${g}_{\sf trans}$
NTp		$k + g_{cis}$	g_{trans}	g_{trans}
T _m			$k + g_{cis}$	g_{cis}
NT _m				$k + g_{cis}$

Disequilibrium

	T _p	NT _p	T _m	NT _m
Tp	$k + g_c$	g_c	g_t	g_t
NTp		$k + g_c$	g_t	g_t
T _m			$k + g_c$	g_c
NT _m				$k + g_c$

Disequilibrium

V_{ϵ}
g_t is a between-spouse estimate, and tells us about AM
in the <i>parental generation</i>

	T _p	NT _p	T _m	NT _m
Tp	$k + g_c$	g_c	g_t	g_t
NTp		$k + g_c$	g_t	g_t
T _m			$k + g_c$	g_c
NT _m				$k + g_c$

 g_c is a within-person estimate, and tells us about AM in the grandparental generation and earlier

	Т _р	NT _p	T _m	NT _m
Tp	$k + g_c$	g_c	g_t	g_t
NΤ _p		$k + g_c$	g_t	g_t
T _m			$k + g_c$	g_c
NT _m				$k + g_c$

 g_t is a between-spouse estimate, and tells us about AM in the parental generation

 g_c is a within-person estimate, and tells us about AM in the grandparental generation and earlier

Types of Assortative Mating

- Phenotypic Homogamy
 - AKA Primary Phenotypic Assortment
 - E.g., Mating based on height
- Social Homogamy
 - E.g., Mating based on geographic location
 - Doesn't impact genetic architecture
- Genetic Homogamy
 - Phenotypic homogamy on a different, genetically correlated trait

Observed g_

	Т _р	NTp	T _m	NT _m
Tp	k + g	g	g	g
NTp		k + g	g	g
T _m			k + g	g
NT _m				k + g

Observed *g*

	Т _р	NTp	T _m	NT _m
Tp	k + g	g	g	g
NTp		k + g	g	g
T _m			k + g	g
NT _m				k + g

Expected *g*

based on spousal phenotypic covariance

$$E(g) = \text{cov}([N]T_p, [N]T_m) = \Omega \mu \Omega = \Omega^2 \mu$$

$$\mu = \frac{\text{Spousal Phenotypic Covariance}}{(\text{Spouse Phenotypic Variance})^2}$$

Observed g_

Expected g

based on spousal phenotypic covariance

- If Observed g = Expected $g \rightarrow$ Phenotypic Homogamy
- If Observed $g < \text{Expected } g \rightarrow \text{Social Homogamy}$
- If Observed g >Expected $g \rightarrow$ Genetic Homogamy

What if the PGS explains a small fraction of total h^2 ?

Thank you!

