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Abstract  Genome wide complex trait analysis (GCTA) is
extended to include environmental effects of the maternal
genotype on offspring phenotype  (“maternal effects”,
M-GCTA). The model includes parameters for the direct
effects of the offspring genotype, maternal effects and the
covarignce between direct and maternal effects. Analysis of
simulated data, conducted in OpenMx, confirmed that
mode] parameters could be recovensd by full information
maximum likelihood (FIML) and evaluated the biases that
arise in conventional GCTA when indirect genetic effects
are ignomed. Estimates derived from FIML in OpenMx
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showed wvery close agmement to those oblained by
restricted maximum likelihood using the published algo-
rithm for GCTA. The method was also applied 1o illus-
trutive perinatal phenotypes from  ~4,000 mother-
offspring pairs from the Avon Longiudinal Sudy of Par-
ents and Children. The relative merits of extended GCTA
in contrast to quantitative genetic approaches based on
analyzing the phenotypic covariance structure of kinships
am considered.

Keywords  Maternal effects - Genome wide complex trait
amalysis - GCTA - Twins - Heritubility - Bias - Genetic
relatedness - Covariance - Environment - SNPs

Background

The recent history of human quantitative genetics has
witnessed a mmarkable convergence between views of
complex trail genetics emerging from approaches that rely
on comparing phenotypic resemblance between relatives
sharing different degrees of genetic relatedness (see e.g.
Fisher 1918; Mather and Jinks 1982; Falconer and McKay
1996) and those made possible by direct characterization of
genetic variation at the genomic level, notably genome
wide association analysis (GWAS) and genome wide
complex trait analysis (GCTA, Yang et al. 2010, 2011a,
201 1b). Although there are qualifications and nuances that
reflect the relative strength and weaknesses of these two
paradigms, their common heuristic recognizes that the
heritable contribution to individual differences in quanti-
tative traits reflects the cumulative action of varistion at
large numbers of genetic variants of small individual

effect, widely dispersed across the genome. Such aston-
ishing convergence of guite different approaches may
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« GCTA / G-REML
 What is GCTA / G-REML?
* Describing Genetic Relationship Matrices (GRMs)
* Describing the model

* M-GCTA
* Describing the model
* Deriving the expected variance
* Deriving the expected covariance



What is “GCTA” / G-REML?

* Provides an estimate of the amount of
phenotypic variance explained by genetic
markers on a SNP microarray (“SNP
heritability”)

e Uses unrelated individuals

* Originally devised to investigate the
missing heritability conundrum in human
genetics
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Common SNPs explain a large proportion of the heritability
for human height
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GCTA Intuition

70 -

60 4

50 4

Square of z-score difference

L

-0.01 0 0.01

Genetic relationship (adjusted estimate)

Unrelated individuals

If a trait is genetically
influenced, then
individuals who are
more genetically similar
should be more
phenotypically similar

Can be thought of like a
regression®

Slope of regression line
is proportional to
heritability

*This is not how the model is fit though!



Classical Twin Design

Squared intrapair phenotypic difference

Slope of regression is related
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Sibling Pairs and IBD sharing

Not much narrower
range of X values!

Slope of regression is related
to heritability

Squared intrapair phenotypic difference
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Unrelated Pairs and IBS sharing

Note very narrow
range of X values!

Slope of regression is related

SNP heritability
‘ / (note flatter slope)

Squared intrapair phenotypic difference

Genetic similarity o '
ot real data



GCTA Process

* Two step process

* Estimate Genetic relatedness matrix (GRM)

* Exclude one from each pair of individuals who are >2.5% IBS (genetically
related individuals more likely to share common environments; individuals
who are more genetically similar dominate analysis)

 Estimate variance components (via “REML” or via “FIML”)



(1) GCTA- Genetic Relationship Matrix

(X5 — 2p:) (X — 2p;)
Ap = Z ’ P

o Ep l—m

Ay Is the genomic relatedness between individuals j and k
X;; Is the dosage {x;; = 0,1,2} of the reference allele for SNP i for individual |

X, 1S the dosage {x;, = 0,1,2} of the reference allele for SNP i for individual k

p; is the frequency of the reference allele for SNP i

M is the number of markers across the genome

Think of Ay, as like an average genetic correlation across the genome for individuals jand k



(1) GCTA- Genetic Relationship Matrix

(X5 — 2p:) (X — 2p;)
Ap = Z ’ P
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Recall the formula for a Pearson correlation coefficient:;

1Y -X)(Y -Y)
"N SDySDy

The formula for the elements of the GRM is analogous



(1) GCTA- Genetic Relationship Matrix
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(1) GCTA- Genetic Relationship Matrix
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Ay 1s the genomic relatedness between individuals j and k
x;; Is the dosage {x; = 0,1,2} of the reference allele for SNP i for individual |
X, 1S the dosage {x;, = 0,1,2} of the reference allele for SNP i for individual k

p; is the frequency of the reference allele for SNP i
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Each dosage x;; (and X;) Is distributed as a binomial variable (like tossing a coin and counting the number of heads)



(1) GCTA- Genetic Relationship Matrix
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Ay 1s the genomic relatedness between individuals j and k
x;; Is the dosage {x; = 0,1,2} of the reference allele for SNP i for individual |
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(1) GCTA- Genetic Relationship Matrix
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Ay 1s the genomic relatedness between individuals j and k
x;; Is the dosage {x; = 0,1,2} of the reference allele for SNP i for individual |
X, 1S the dosage {x;, = 0,1,2} of the reference allele for SNP i for individual k

p; is the frequency of the reference allele for SNP i

M is the number of markers across the genome
Each dosage x;; (and x;) Is distributed as a binomial variable (like tossing a coin and counting the number of heads)

So each x;; ~ BIn(2, p;) with mean = 2p; and variance = 2p;(1-p;)



(1) GCTA- Genetic Relationship Matrix
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(1) GCTA- Genetic Relationship Matrix
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(2) Estimate Variance Components
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> is the expected phenotypic covariance matrix

6, is the additive genetic variance

6, is the unique environmental variance

Ais a GRM containing pairwise genome-wide genetic “correlation” between individuals

| is an identity matrix



Interpretation of Parameter Estimates

* 0,%/(0,%+ 02 ) is the estimated “SNP heritability” of the trait

* The proportion of phenotypic variance explained by SNPs on the
microarray

e Since most markers on arrays are common, this will primarily reflect
common genetic variation, but will also include rare variation that
happens to be tagged by the array.

* SNP heritability is different from “heritability” which is typically
estimated from twin studies



M-GCTA



Extending the Phenotype \

Extended Phenotype

Eaves et al., 2005,
In Kendler and Eaves, 2005.




M-GCTA

* An extension of GCTA to estimate the proportion of offspring
phenotypic variance explained by the maternal (and child’s) genomes

* Requires genome-wide genotyped mother-offspring pairs (“dyads”)
where the offspring has been phenotyped

* Dyads should be “unrelated” to one another



Path model for offspring and maternal effects in mother-child dyads.
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Deriving the Phenotypic
Variance
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Path model for offspring and maternal effects in mother-child dyads.
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Path model for offspring and maternal effects in mother-child dyads.
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Path model for offspring and maternal effects in mother-child dyads.
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Path model for offspring and maternal effects in mother-child dyads.
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Path model for offspring and maternal effects in mother-child dyads.
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Path model for offspring and maternal effects in mother-child dyads.
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Path model for offspring and maternal effects in mother-child dyads.
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Path model for offspring and maternal effects in mother-child dyads.

Maternal Maternal
1 O 1
Maternal genotype
m
VAR(P) = m2+c2+h2+ex1
P Phenotype y
1/, (Dyadic) 2

Environment

Offspring Offspring genotype Offspring




Path model for offspring and maternal effects in mother-child dyads.

Maternal Maternal
1 O 1
Maternal genotype
m
VAR(P) = m2+c2+h2+ex1xe
P Phenotype y
1/, (Dyadic) 2

Environment

Offspring Offspring genotype Offspring




Path model for offspring and maternal effects in mother-child dyads.

Maternal Maternal
1 O 1
Maternal genotype
m
VAR(P) = m2+c2+h2+e?
P Phenotype y
1/, (Dyadic) 2

Environment

Offspring Offspring genotype Offspring




Path model for offspring and maternal effects in mother-child dyads.

Maternal Maternal
1 O 1
Maternal genotype
m
VAR(P) = m2+c2+h2+eZ+m
P Phenotype y
1/, (Dyadic) 2

Environment

Offspring Offspring genotype Offspring




Path model for offspring and maternal effects in mother-child dyads.
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Path model for offspring and maternal effects in mother-child dyads.
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Path model for offspring and maternal effects in mother-child dyads.
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Path model for offspring and maternal effects in mother-child dyads.
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Deriving the Phenotypic
Covariance
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Estimate Path Coefficients™

Y. = Am?+ B(c’+h?) + Amc + le?

> is the expected phenotypic covariance matrix for the offspring
m? is the additive genetic variance from the maternal genome

c?+h? is the additive genetic variance from the child’s genome

mc is the covariance arising because of the same genes with (indirect) maternal and (direct) fetal effects
e? is the residual variance (includes environmental variance)

Ais a GRM containing pairwise genome-wide genetic correlation between mothers

B is a GRM containing pairwise genome-wide genetic correlation between children

A 'is a GRM containing pairwise (twice) the genome-wide genetic correlation between mothers and children

| is an identity matrix

*Note the implicit constraint in that the covariance mc can only be != 0 if both m and ¢ are non-zero



Formulating the Delta Matrix

Mother 1
Mother_2
A =  Mother 3
Mother_n

Child_1
Child_2

Child_3

Child_n
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A is a symmetric matrix derived by adding the mother-child GRM to its transpose



Estimate Variance Components (Alternative Formulation)*

Y = Ac’, + Bo?

> is the expected phenotypic covariance matrix

2 2
g T Ac?, + 1o,

6., is the additive genetic variance from the maternal genome

o°, is the additive genetic variance from the child’s genome

o2, is the covariance arising because of the same genes with (indirect) maternal and (direct) fetal effects
6?, is the residual variance (includes environmental variance)

Ais a GRM containing pairwise genome-wide genetic “correlation” between mothers

B is a GRM containing pairwise genome-wide genetic “correlation” between children

A is a GRM containing pairwise (twice) the genome-wide genetic “correlation” between mothers and children

| is an identity matrix

*This model could be fitted in e.g. the GCTA software package, but it contains no implicit constraint



Some Empirical Results

Table 4 Results of fitting “GCTA”™ model for direct and maternal effects to maternal stature and birth length data in the ALSPAC cohort.
Results are presented as standardized variance components

2

Model G M Q E —21nl Y df. P %
Maternal stature  Full 0.15 (0.11)  0.72 (0.11)  —0.08 (0.09) 0.21 (0.12) 19825526 — - -
Q=0 0.09 (0.08) 0.66 (0.09) - 0.25 (0.10)  19826.412 0.886 1 35
M=Q=0 0.24 (0.08) - - 0.76 (0.09)  19881.294 55.768 2 8 x 107"
G=Q=0 - 0.68 (0.08) - 0.32 (0.08) 19827.480 1.954 2 38
M=G=Q=0 - - - 1 19889.516  63.99 3 8 x 10712
Birth length Full 0.13 (0.13)  0.11 (0.13)  0.06 (0.10) 0.70 (0.14)  3553.870 - - -
Q=0 0.18 (0.10)  0.16 (0.10) - 0.66 (0.13)  3554.242  0.37 1 54
M=0Q = 0.22 (0.10) - - 0.78 (0.10)  3556.624  2.75 2 25
G=Q= - 0.20 (0.10) - 0.80 (0.10)  3557.646  3.78 2 15
M=G=Q= - - - 1 3561.774  7.90 3 5

Model parameters are: G vartance due to direct genetic (“offspring/fetal’™) effects, M variance due to indirect genetic effects on offspring
o o o o
phenotype (“maternal effects™), Q phenotypic variance due to covariance of direct and indirect genetic effects, E residual (“unique environ-

mental effects™)
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Table 4 Results of fitting “GCTA”™ model for direct and maternal effects to maternal stature and birth length data in the ALSPAC cohort.
Results are presented as standardized variance components

2

Model G M Q E —2Inl Y df. P %

Maternal stature  Full 0.15 (0.11)  0.72 (0.11)  —0.08 (0.09) 0.21 (0.12) 19825526 — - -
Q=0 0.09 (0.08) 0.66 (0.09) - 0.25 (0.10)  19826.412 0.886 1 35
M=Q=0 0.24 (0.08) - - 0.76 (0.09)  19881.294 55.768 2 8 x 107"
G=Q=0 - 0.68 (0.08) - 0.32 (0.08) 19827.480 1.954 2 38
M=G=Q=0 - - - 1 19889.516  63.99 3 8 x 10712

Birth length | Full 0.13 (0.13)  0.11 (0.13)  0.06 (0.10) 0.70 (0.14)  3553.870 - — — I
Q=0 0.18 (0.10)  0.16 (0.10) - 0.66 (0.13)  3554.242  0.37 1 54
M=0Q = 0.22 (0.10) - - 0.78 (0.10)  3556.624  2.75 2 25
G=Q= - 0.20 (0.10) - 0.80 (0.10)  3557.646  3.78 2 15
M=G=Q= - - - 1 3561.774  7.90 3 5

Model parameters are: G variance due to direct genetic (“offspring/fetal”™) effects, M variance due to indirect genetic effects on offspring
phenotype (“maternal effects™), Q phenotypic variance due to covariance of direct and indirect genetic effects, E residual (“unique environ-

mental effects™)
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Abstract

Indirect genetic effects from relatives may result in misleading quantifications of heritability, but can also be of interest in their
own right. In this paper we propose Trio-GCTA, a model for separating direct and indirect genetic effects when genome-wide
single nucleotide polymorphism data have been collected from parent-offspring trios. The model is applicable to phenotypes
obtained from any of the family members. We discuss appropriate parameter interpretations and apply the method to three
exemplar phenotypes: offspring birth weight, maternal relationship satisfaction, and paternal body-mass index, using real
data from the Norwegian Mother, Father and Child Cohort Study (MoBa).

Keywords Indirect genetic effects - Within-family - Trio-GCTA - MoBa - Gene—environment correlation

Introduction

Most human traits exhibit some degree of heritability (Pol-
derman et al. 2015). Some phenotypes are characteristics
not only of individuals, but also depend on the influence of
other individuals. While direct genetic effects refer to how
the phenotype of an individual depends on their own geno-
type. indirect genetic effects refer to how it depends on the
genotypes of others (McAdam et al. 2014). In this paper
we describe a model for separating direct genetic effects
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from the indirect genetic effects of family members when
genome-wide single nucleotide polymorphism (SNP) data
have been collected from parent-offspring trios.

As parents transmit half their complement chromosomes
to their children. the genomes of parents and offspring are
correlated. Because the same genelic variants can have both
direct and indirect effects. failing to account for the indi-
rect genetic effects of relatives when attempting to meas-
ure heritability can result in misleading quantifications of
the importance of direct genetic effects (Eaves et al. 2014;
Young et al. 2019).

Indirect genetic effects can also be of interest in their
own right. With respect to the focal individual (i.e., the
individual whose phenotype is the focus of study), indirect
genetic effects are part of the environment and may be of
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