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ANALYSIS OF ORDINAL
VARIABLES

®* PROVIDE INTUITIVE SENSE OF HOW WE ESTIMATE
CORRELATIONS FROM ORDINAL DATA

®* INTRODUCE THE CONCEPT OF LIABILITY THRESHOLD
MODELS

®* PROVIDE A MATHEMATICAL DESCRIPTION OF THE MODEL



ORDINAL DATA

WE OFTEN MEASURE BEHAVIORS USING A LIMITED NUMBER OF ORDERED
CATEGORIES:

®* ABSENCE (0) OR PRESENCE (1) OF A DISORDER
®* SEVERITY OF A DISORDER
® SCORE ON A SINGLE LIKERT ITEM ‘NONE/SOME/LOTS’

* NUMBER OF SYMPTOMS (FAR FROM IDEAL)



PROBLEMS WITH THE TREATING BINARY
VARIABLES AS CONTINUOUS

®* NORMALITY — ORDINAL VARIABLES ARE NOT
DISTRIBUTED NORMALLY, OBVIOUSLY.

® THIS MEANS THAT THE ERROR TERMS CANNOT
BE NORMALLY DISTRIBUTED




WHAT HAPPENS IF WE USE
CONTINUOUS METHODS ON
BINARY VARIABLES ¢
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Taken from Verhulst & Neale, 2021



TWO WAYS OF THINKING ABOUT BINARY
DEPENDENT VARIABLES

1. ASSUME THAT THE OBSERVED BINARY VARIABLE IS INDICATIVE OF AN

UNDERLYING, LATENT (UNOBSERVED) CONTINUOUS, NORMALLY DISTRIBUTED
VARIABLE.

®* WE CALL THE UNOBSERVED (LATENT) VARIABLE A LIABILITY

2. ASSUME THE BINARY VARIABLE AS A RANDOM DRAW FROM A BINOMIAL
(OR BERNOUILLI) DISTRIBUTION (NON-LINEAR PROBABILITY MODEL).
(GENUINELY CATEGORICAL RESPONSES, NO UNDERLYING CONTINUOUS
DISTRIBUTION.



BINARY VARIABLES AS INDICATORS OF
LATENT CONTINUOUS VARIABLES

® ASSUME THAT THE OBSERVED BINARY VARIABLE IS INDICATIVE OF AN UNDERLYING,
LATENT (UNOBSERVED) CONTINUOUS, NORMALLY DISTRIBUTED VARIABLE.

* ASSUMPTIONS:

1.

CATEGORIES REFLECT AN IMPRECISE MEASUREMENT OF AN UNDERLYING NORMAL
DISTRIBUTION OF LIABILITY. THIS LIABILITY IS THOUGHT TO BE INFLUENCED BY MANY
MANY THINGS, EACH OF WHICH DOES ALMOST NOTHING. THE CENTRAL LIMIT

THEOREM PREDICTS THAT VARIATION SHOULD BE DISTRIBUTED ACCORDING TO THE

NORMAL OR GAUSSIAN DISTRIBUTION.

THE LIABILITY DISTRIBUTION HAS 1 OR MORE THRESHOLDS



FUNDAMENTALS OF THE LIABILITY
THRESHOLD MODEL
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IDEAS BEHIND THE LIABILITY THRESHOLD
MODEL (LTM}

®* WE ONLY OBSERVE BINARY OUTCOMES, AFFECTED OR
UNAFFECTED, BUT WE KNOW THAT PEOPLE CAN BE MORE OR
LESS AFFECTED.

® SINCE THE VARIABLES ARE LATENT (AND THEREFORE NOT
DIRECTLY OBSERVED) WE CANNOT ESTIMATE THE MEANS AND
VARIANCES WE DID FOR CONTINUOUS VARIABLES.

® THUS, WE HAVE TO MAKE ASSUMPTIONS ABOUT THEM
(PRETEND THAT THEY ARE SOME ARBITRARY VALUE).



IDENTIFYING ASSUMPTIONS

MEAN ASSUMPTION
THE INTERCEPT (MEAN) IS O
OR
THE THRESHOLD IS O (T = 0)

® EITHER OF THESE TWO ASSUMPTIONS PROVIDE EQUIVALENT MODEL FIT AND THE
INTERCEPT IS A TRANSFORMATION OF T.

VARIANCE ASSUMPTION
VAR(E| X) = 1 IN THE NORMAL-OGIVE MODEL
VAR(E| X) = N2/3 IN THE LOGIT MODEL.
ASSUMPTION 3
THE CONDITIONAL MEAN OF E IS O.

® THIS IS THE SAME ASSUMPTION AS WE MAKE FOR CONTINUOUS VARIABLES, AND ALLOWS
THE PARAMETERS TO BE UNBIASED



IDENTIFYING ASSUMPTIONS OF ORDINAL
ASSOCIATIONS

® THE ASSUMPTIONS ARE ARBITRARY

®* THE SAME MODEL CAN BE SPECIFIED IN DIFFERENT WAYS, AND THE PARAMETERS WILL ESTIMATE
DIFFERENT THINGS, BUT THE -2LNL SHOULD BE THE SAME FOR MODELS THAT ARE
TRANSFORMATIONS OF EACH OTHER.

® THE ASSUMPTIONS ARE NECESSARY.

®* BECAUSE THE LATENT DIMENSION IS ONLY MEASURED INDIRECTLY, BY ORDINAL ITEMS, WE HAVE
NO DIRECT INFORMATION ON ITS VARIANCE. THE THRESHOLDS COULD EXPAND OR CONTRACT
(THINK ACCORDION) TO COMPLETELY COMPENSATE FOR A CHANGE IN VARIANCE.



INTUITIVE EXPLANATION OF THRESHOLDS IN
THE UNIVARIATE NORMAL DISTRIBUTION

[ o(L;u=00%=1)dL,
7

The threshold is just a z L
score and can be
Intferpreted as such




INTUITIVE EXPLANATION OF THRESHOLDS IN
THE UNIVARIATE NORMAL DISTRIBUTION

[ o(L;u=00%=1)dL,
7

The threshold is just a z T
score and can be
Intferpreted as such

If tis-1.65 then 5% of the
distribution will be to the
left of T and 25% will be to
the right

If we had 1000 people, 50
would be less than t and
950 would be more than




INTUITIVE EXPLANATION OF THRESHOLDS IN
THE UNIVARIATE NORMAL DISTRIBUTION

[ o(L;u=00%=1)dL,
7

The threshold is just a z T
score and can be
Intferpreted as such
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If tis 1.96 then 97.5% of the If we had 1000 people, 975
distribution will be to the would be less than t and

left of Tt and .025% will be 1o 25 would be more than t
the right



TWO BINARY TRAITS (E.G., DATA FROM
TWINS)

CONTINGENCY TABLE WITH 4 OBSERVED CELLS:

CELL A: PAIRS CONCORDANT FOR UNAFFECTED
CELLS B&C: PAIRS DISCORDANT FOR THE DISORDER
CELL D: PAIRS CONCORDANT FOR AFFECTED

Twin 1

0 = unaffected
1 = affected

Twin 2



JOINT LIABILITY THRESHOLD MODEL FOR
TWIN PAIRS

®* PAIRS ARE ASSUMED TO FOLLOW A BIVARIATE NORMAL
DISTRIBUTION, WHERE BOTH TRAITS HAVE A MEAN OF O AND
STANDARD DEVIATION OF 1, AND THE CORRELATION BETWEEN

THEM IS WHAT WE WANT TO KNOW.

®* THE SHAPE OF A BIVARIATE NORMAL DISTRIBUTION IS DETERMINED
BY THE CORRELATION BETWEEN THE TRAITS

r .O

‘Walls




* The observed cell proportions relate to the proportions of the
Bivariate Normal Distribution with a certain correlation between
the latent variables (y, and y,), each cut at a certain threshold

In other words, the joint probability of a certain response
combination is the volume under the Bivariate Normal
Distribution surface bounded by appropriate thresholds for each

liability

y2 Un Aff

Unaffected 00

Affected 10

z-values




To calculate the cell proportions we rely on Numerical
Integration of the Bivariate Normal Distribution over
the two liabilities

e.g. the probability that both twins are above Tc:

o0 0O

| | @y, 251 = 0,Z)dy,dy,

TCITCZ

Z-values

® is the bivariate normal probability density function,

y,and y, are the liabilities of twinl and twin2,

with means of 0, and X the correlation between the two liabilities
T., I1s threshold (z-value) on y,, T., is threshold (z-value) on vy,



EXPECTED CELL PROPORTIONS
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Estimation of Correlations and Thresholds

« Since the Bivariate Normal distribution is a known mathematical
distribution, for each correlation (3 ) and any set of thresholds on the
liabilities we know what the expected proportions are in each cell.

» Therefore, observed cell proportions of our data will inform on the most
likely correlation and threshold on each liability.

r=0.60
T.,=T., = 1.4 (z-value)




THE MULTIPLE THRESHOLD LIABILITY MODEL

Liability
Distribution

Observed 0 1 5 3 4
values



Psychological Methods Copyright 2004 by the American Psychological Association
2004, Vol. 9, No. 3, 301-333 1082-989X/04/512.00 DOI: 10.1037/1082-989X.9.3.301

Squeezing Interval Change From Ordinal Panel Data: Latent Growth
Curves With Ordinal Outcomes

Paras D. Mehta Michael C. Neale

University of Illinois at Chicago Virginia Commonwealth University

Brian R. Flay

University of Illinois at Chicago

What happens it we change the default assumptions?

Mean Assumption
The intercept (mean) is O

or
The threshold is O (t = 0)

Variance Assumption
Var(e|x) = 1 in the normal-ogive model

Remember we can make different identifying assumptions but
the model fit will stay the same



WHAT ALTERNATIVE ASSUMPTIONS COULD WE
MAKE?
Mean of the

/ distribution
Distribution T Ty

Ty
of the /
liability
The distance between t,
and 7, Is 1

/
T, is is fixed to 0 The mean is

T
53
freely estimated



TWIN MODELS

®* ESTIMATE CORRELATION IN LIABILITIES SEPARATELY
FOR MZ AND DZ PAIRS FROM CONTINGENCY TABLE

* VARIANCE DECOMPOSITION (A, C, E) CAN BE APPLIED
TO THE LIABILITY OF THE TRAIT

® CORRELATIONS IN LIABILITY ARE DETERMINED BY PATH
MODEL

®* ESTIMATE OF THE HERITABILITY OF THE LIABILITY
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