

Introduction to Genetic Relatedness

Katrina Grasby

1. Terms used in describing genetic relatedness

2. Estimating genetic relationships from genotyped data

3. Background genetic relatedness

Genetic Relatedness

Historically calculated through pedigree information.

4th Great

Genetic Relatedness

Historically calculated through pedigree information.

Kinship coefficient

Probability that an allele at a locus for two individuals was inherited from the same genome.

4th Great

Genetic Relatedness

Historically calculated through pedigree information.

Kinship coefficient

Probability that an allele at a locus for two individuals was inherited from the same genome.

Inbreeding coefficient

Probability that the two alleles at a locus for an individual was inherited from the same genome.

4th Great

Genetic Relatedness

Historically calculated through pedigree information.

Kinship coefficient

Probability that an allele at a locus for two individuals was inherited from the same genome.

Inbreeding coefficient

Probability that the two alleles at a locus for an individual was inherited from the same genome.

Coefficient of relationship

Proportion of alleles in common between two individuals.

Genotyped data can be used to estimate genetic relatedness

Identity by state

Same allele at a locus.

Identity by descent

Same allele at a locus AND inherited from a recent common ancestor allele.

Identical by state (IBS)

...

Person 1Person 2IBSAAAAAA2AAAG1AAGG0

Recombination homologous sister chromosomes chromatids non-sister recombined chromatids

One diploid parent cell

Four haploid daughter cells

Genetic relatedness vs relationship category

Relationship category	k_0	k_1	<i>k</i> ₂	r
Monozygotic twins or self	0	0	1	1
Parent-offspring	0	1	0	0.50
Full sibs	0.25	0.50	0.25	0.50
2° (e.g. half sibs, avuncular)	0.50	0.50	0	0.25
3° (e.g. first cousins)	0.75	0.25	0	0.125
Unrelated	1	0	0	0

k coefficients summarize the probability that pairs of individuals share 0, 1, or 2 alleles at a locus.

The same relationship coefficient can result from different patterns of allelic sharing.

Genomic data can be used to calculate genetic relatedness

Identity by descent Needs pedigree data.

Can be estimated. Different methods with varying accuracy.

Typically using pattern of IBS, allele frequency, and hidden Markov models.

PLINK gives $\hat{\pi}$ as a proportion of alleles shared IBD.

Genomic data can be used to calculate genetic relatedness

Identity by state Doesn't require pedigree information.

Observed.

Gives a coefficient of relationship *r* but doesn't tell us about the relationship category.

Calculated in GRMs as the average correlation, weighted by allele frequency, between two individuals across genotyped variants.

Background relatedness

Linkage Disequilibrium

The non-random association of alleles at different loci in a population.

Recombination hot spots

The International HapMap Consortium, Nature 2005

Different populations. Different shades of the same colour indicate continental grouping of populations.

The 1000 Genomes Project Consortium, Nature 2015

Background relatedness

Allele sharing across populations

The International HapMap Consortium, Nature 2005

Population Structure

The 1000 Genomes Project Consortium, Nature 2015