HEALTH AND WELLNESS SUMMIT

FUELING FOR ACTIVITY: A GUIDE TO BASIC SPORTS NUTRITION

- DR. NICOLE STOB
- DEPARTMENT OF INTEGRATIVE PHYSIOLOGY
- UNIVERSITY OF COLORADO BOULDER

#1 RULE OF SPORTS NUTRITION

- Tolerance, tolerance, tolerance
 - Consider <u>each</u> person's tolerance

LONG-TERM SPORTS NUTRITION GOALS

- Adequate energy intake
 - Meet the energy demands of training and performance
- Adequate carbohydrate (CHO)
 - Replenishment of muscle and liver glycogen
- Adequate protein intake
 - Growth and repair of tissue
- Adequate hydration
- Adequate overall diet to maintain good health
- Appropriate weight and body composition

Storage form of CHO in humans

SHORT-TERM SPORTS NUTRITION GOALS

- Consumption of food and beverages
 - Delay fatigue during training and competition
- Minimization of dehydration and hypohydration
- Utilization of dietary strategies beneficial for performance
 - Precompetition meal
 - Appropriately timed caffeine intake
 - CHO loading
- Intake of nutrients that support recovery
- Appropriate timing of nutrients

BASIC SPORTS NUTRITION GUIDELINES TO SUPPORT TRAINING, PERFORMANCE, AND HEALTH

- Adequate energy intake
 - Energy intake needed to maintain energy balance
 - Adjustments to energy intake (e.g. change body composition)
- Adequate carbohydrate intake
 - 3-12 g/kg body weight daily
 - Proper timing of intake
- Adequate protein intake
 - 1.2-1.7 g/kg body weight daily
 - Proper timing of intake

BASIC SPORTS NUTRITION GUIDELINES TO SUPPORT TRAINING, PERFORMANCE, AND HEALTH

- Adequate fat intake
 - Fat intake is typically 20-35% of total calories
 - Last macronutrient determined
- Vitamin and mineral intake
 - Meet the DRI
 - Emphasis on nutrient dense foods
- Fluid intake
 - Match fluid intake with fluid loss
 - Body water loss of 2-3% can hurt performance

BASIC SPORTS NUTRITION GUIDELINES TO SUPPORT TRAINING, PERFORMANCE, AND HEALTH

- Appropriate body weight
- Healthful weight loss practices
- Avoidance of disordered eating or eating disorders
- Evaluating dietary supplements and ergogenic aids
- Flexible eating plan
- Each athlete's sport or position within the sport must be considered when planning dietary intake

- Athletes should consume 3-12 g CHO/kg/day
 - Goal = replenish depleted glycogen stores
 - Light, low-intensity training: 3-5 g/kg
 - Moderate-intensity training: ≥5 g/kg
 - High-intensity, rigorous training: 6-10 g/kg
 - Ultraendurance athletes: 8-12 g/kg
 - Moderate-high intensity exercise for 4+ hours/day
 - Not just endurance athletes that should be concerned about CHO intake

Exercise intensity and duration	Examples of sports	Daily CHO recommendation (energy intake must be adequate)
Low-intensity or short-duration skill- based activities	Curling Shooting Archery	3–5 g/kg
Low-intensity, long-duration (>1 hour)	Golf Baseball Softball	5–7 g/kg

Exercise intensity and duration	Examples of sports	Daily CHO recommendation (energy intake must be adequate)
Very high- intensity, very short-duration (<1 minute)	Field events such as shot put, discus, or high jump Track sprints (50–200 m) Swimming sprints (50 m) Sprint cycling (200 m) Weight lifting Power lifting Bobsled (running start)	5–7 g/kg

Exercise intensity and duration	Examples of sports	Daily CHO recommendation (energy intake must be adequate)
High-intensity, short-duration (1-30 minutes continuous)	Track (200–1,500 m) Swimming (100–1,500 m) Cycling (short-distance) Rowing (crew) Canoeing/Kayaking (racing) Skiing (downhill racing) Figure skating Mountain biking	5–7 g/kg

Exercise intensity and duration	Examples of sports	Daily CHO recommendation (energy intake must be adequate)
High-intensity, short-duration (1 to 30 minutes with some rest periods)	Gymnastics Wrestling Boxing Fencing Judo Tae kwon do	5–7 g/kg
Moderate- intensity, moderate- duration (30-60 minutes)	10 km running (elite runners finish in <30 minutes)	6–8 g/kg

Exercise intensity and duration	Examples of sports	Daily CHO recommendation (energy intake must be adequate)
Intermittent high-intensity, moderate- to long-duration (>1 hour)	Soccer (football) Basketball Ice hockey Field hockey Lacrosse Tennis Water polo	6–8 g/kg; 8–10 g/kg during heavy training and competition
Moderate- to high-intensity, long-duration (1 to 3 hours per day)	Distance running (marathon) Distance swimming Distance cycling Nordic (cross country) skiing	6–10 g/kg during periods of heavy training and competition

Exercise intensity and duration	Examples of sports	Daily CHO recommendation (energy intake must be adequate)
Moderate-intensity, ultralong-duration (more than 4 to 5 hours per day)	Ultradistance running Ultradistance swimming Ultradistance cycling Triathlon Adventure sports	8–12 g/kg depending on the stage of training
Other	Bodybuilding	5–10 g/kg depending on the stage of training
	American football	5–8 g/kg; Varies according to position

Source: Thomas et al., 2016.

CHO INTAKE PRIOR TO TRAINING AND COMPETITION

- Pre-training and competition dietary goals (most related to CHO)
 - Avoid hunger
 - Delay fatigue
 - Minimize GI distress
 - Prevent hypohydration
- Must consider
 - Time of event
 - Environment
 - Food availability
 - Jitters

CHO INTAKE PRIOR TO TRAINING AND COMPETITION

- Timing
 - 1-4 g CHO/kg
 - 1-4 hours prior to training or competition
 - "Top off" glycogen stores
 - Avoid hunger during exercise
 - Individual considerations
 - Hunger level
 - Food preferences
 - Gl tolerance
 - Time prior to exercise

CHO INTAKE PRIOR TO TRAINING AND COMPETITION

- Timing
 - Glycemic Index
 - Low-GI before exercise beneficial because of maintenance of BG 1-2 hours into exercise
 - Most athletes seem to do OK with high GI CHO
 - Avoid consuming <1 hour prior to exercise</p>
 - Many specialized products exist, but may not be necessary

- CHO intake plan should consider
 - Exercise duration and intensity
 - Type of exercise
 - How easily food/fluid can be obtained
 - Food/fluid preferences
 - Availability of CHO sources

- Individual tolerance must be determined
 - Too much CHO slows gastric emptying → GI distress
 - Distance runners have more GI distress vs cyclists
 - Trial and error
 - Competition can add more stress
- Sports drinks can be a good option (6-8% CHO)
 - Leave stomach more quickly
 - 1 liter will provide 60-80 g CHO

Exercise intensity and duration	Sport or event	Recommended CHO intake to enhance performance*
High-intensity exercise less than 45 minutes	Running (sprints up to 10 km); cycling (track cycling, short criteriums); swimming (sprints up to 1500 m); crew (rowing)	None
High-intensity exercise (continuous or intermittent) approximately 45–60 minutes	Team sports, such as basketball, lacrosse, water polo, or ice hockey; cycling time trials	0–30 g/h, or mouth rinse

Exercise intensity and duration	Sport or event	Recommended carbohydrate intake to enhance performance*
High-intensity exercise (intermittent) approximately 90 minutes	Team sports, such as soccer; skilled recreational tennis players; team or individual handball, racquetball, or squash	30–60 g/h
Moderate to vigorous exercise more than 2 hours	Backpacking, hiking; recreational cycling	30–60 g/h**

Exercise intensity and duration	Sport or event	Recommended carbohydrate intake to enhance performance*
High-intensity exercise more than 2 hours	Marathon running; sprint and Olympic distance triathlon; 50 km ski racing; professional tennis match	30–60 g/h**
Ultraendurance competitions lasting many hours or repeated over days	Ironman® length triathlons; cycling stage races, adventure racing	up to 90 g/h**

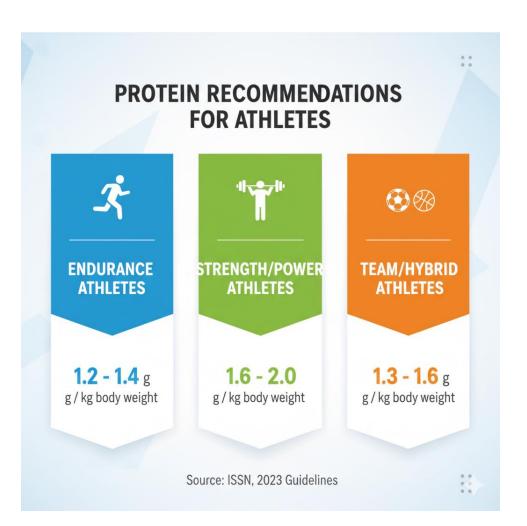
- Mouth rinse w/CHO solution
 - Research shows performance benefit for 30-60 minute high-intensity endurance exercise
 - Central effect?
 - CHO in the mouth stimulates reward centers in brain
 - Mechanism?
 - Questions
 - How much, how often?
 - CHO status of athlete

- Commercial CHO products
 - Sports drinks
 - Provide fluid, electrolytes, and CHO
 - <10% CHO
 - Glucose or maltodextrins more beneficial vs fructose
 - Maltodextrin → slow, sustained CHO delivery to blood
 - Fructose is used
 - For flavor → more fluid consumed
 - Gl comfort
 - Increase ability to absorb CHO
 - When CHO need is high, consume variety of CHO sources

- Commercial CHO products
 - Sports drinks (20 oz bottle, 36 g CHO)
 - Sodium (270 mg)
 - May enhance glucose absorption
 - Replace sodium lost in sweat
 - Low-CHO sports drinks
 - Provide fluid and electrolytes
 - CHO content sufficient?

- Commercial CHO products
 - Gels
 - 1 packet = 100 kcal, 20-23 g CHO
 - 2-3 packets/hour
 - Solid CHO sources
 - If tolerated
 - Helps w/hunger
 - Sports/energy bars
 - Usually contain CHO, fat, and protein (tolerance?)
 - Good for adventure racers
- Individual must be aware of CHO content and what they need

CHO INTAKE AFTER TRAINING AND COMPETITION


- Glycogen, glycogen, glycogen
- Some glycogen will be resynthesized because of depleted glycogen stores (even w/o eating)
 - Make glucose in the liver
 - Still need much more glycogen resynthesis
 - Carbohydrate and insulin are necessary
 - Insulin activates glycogen synthesis

CHO INTAKE AFTER TRAINING AND COMPETITION

- Optimal muscle glycogen resynthesis
 - Timing
 - ASAP after activity
 - >2 hours after activity → reduced muscle glycogen synthesis
 - Meal size
 - Small, frequent meals over hours vs one large meal
 - Insulin remains elevated
 - Type of CHO
 - Beverages w/glucose or sucrose (minimize fructose)
 - High-GI CHO may enhance muscle glycogen resynthesis vs low-GI CHO
 - Higher BG and insulin

CHO INTAKE AFTER TRAINING AND COMPETITION

- Optimal muscle glycogen resynthesis
 - Type of CHO
 - Commercial recovery products available
 - Usually contain CHO and protein (Gatorade, Endurox)
 - Amount of CHO
 - 1.5 g CHO/kg (~120 g) during first hour after exercise
 - 1-1.2 g CHO/kg/hour over next 3 hours
 - If <8 hours before next exercise session, 1-1.2 g CHO/kg for 1st 4 hours
 - Protein/AA
 - Some research indicates that also consuming protein after exercise may enhance glycogen synthesis rate
 - Adding protein does not hurt

- Consider daily intake, protein quality, distribution, and timing
- General recommendations for athletes should be individualized
 - Assume adequate energy intake & good quality protein

 During periods of low energy intake, protein intake should be 1.8 g/kg to maintain skeletal muscle mass

- Bodybuilders
 - Typically high protein intake of 2.5-3.5 g/kg
 - Because of the upper limit of urea synthesis, a limit of 2.5 g/kg is recommended
 - >2.5 g/kg risks increasing blood ammonia levels
 - No evidence of building more muscle tissue

- Different proteins = different ability to stimulate muscle protein synthesis
 - Proteins that maximize muscle protein synthesis
 - High quality proteins
 - Dairy, meat, fish, eggs, soy
 - Food or supplement sources
- Distribution
 - 25-35 g Pn/meal
 - 3-5 meals or snacks throughout the day

- Timing of protein intake
 - Exercise induces a catabolic state
 - Followed by an anabolic state
 - Allows for recovery from the acute effects of exercise and for skeletal muscle growth
 - 2-hours after exercise = "anabolic window"
 - Optimal skeletal muscle protein synthesis (MPS)
 - Muscle still sensitive to protein intake for 24-48 hours
 - Consuming protein after exercise elevates amino acid levels in blood
 - Activates signaling molecules that promote MPS
 - Leucine

PROTEIN INTAKE AFTER RESISTANCE EXERCISE

- Beneficial for MPS, strength, power, body composition
 - ASAP up to 2 hours after exercise
 - 0.25 to 0.3g/kg within 2 hours of exercise
 - 15-25 g of protein
- High-quality protein w/indispensable AA
 - Egg white, whey, casein, soy
- Maximum protein synthesis
 - 1.7-2.4 g leucine
 - Dairy, eggs, whey protein
- Maximum amount of protein after resistance exercise
 - 25 g

PROTEIN INTAKE AFTER RESISTANCE EXERCISE

- Milk
 - Contains whey and casein
 - Each have benefits
- Soy
 - Fast-acting protein like whey
 - Whey may promote skeletal muscle increase more quickly over time

CHO-PROTEIN CONSUMPTION AFTER EXERCISE

- CHO stimulates insulin secretion
 - Insulin increases AA uptake into the muscle and inhibits muscle protein degradation
- Good options
 - Chocolate milk, fruit yogurt, sports beverages w/both CHO and protein
- Endurance athletes would benefit in terms of glycogen,
 MPS, and calorie intake
 - Other benefits not demonstrated

CHO-PROTEIN CONSUMPTION DURING EXERCISE

- Few studies in strength-trained athletes
 - Theory: Consuming protein or AAs may:
 - Offset muscle protein breakdown?
 - Enhance MPS postexercise?
- Endurance athletes
 - Theory: Consuming protein or AAs may:
 - Offset damage from exercise
 - Mixed research results

PROTEIN INTAKE BEFORE...

- Protein intake before resistance exercise
 - Insufficient evidence to support the idea that protein before exercise would benefit performance or recovery

- Protein intake before sleep
 - Sleep is typically characterized by protein degradation
 - Protein intake before sleep can
 - Reduce skeletal muscle protein breakdown
 - Stimulate MPS
 - At least 40 g

EFFECT OF ENERGY INTAKE ON PROTEIN INTAKE

- Adequate energy intake
 - Spares protein from being used for energy
 - Helps maintain nitrogen balance
 - Nitrogen balance necessary to maintain muscle mass
 - Positive nitrogen balance to increase muscle mass
- Amount of protein needed during an energy deficit depends on
 - Magnitude of energy deficit
 - Whether energy deficit is acute or chronic
- Higher protein intake recommended to dieting athlete

DIETARY MANIPULATIONS TO ENHANCE FAT METABOLISM

- "Fat loading"
 - Increase fat oxidation and spare CHO use?
 - Endurance performance not likely to improve
- Research shows high fat diets (p. 208-209):
 - Can favor fat oxidation at rest, and light to moderate-intensity exercise
 - Result in low endogenous carbohydrate availability
 - Limits intensity of exercise
- Newer strategy
 - "Training low"
 - Short-term CHO-restricted diet followed by CHO restoration prior to exercise

EFFECT OF CAFFEINE ON FAT USAGE

- May enhance fat mobilization
 - Fat oxidation is not significantly increased
 - Muscle glycogen not spared
- Central nervous system stimulant
 - Increases sense of awareness
 - Decreases perceived effort

- Appropriate fat intake depends on
 - Calorie needs (assume weight maintenance)
 - Macronutrient balance
 - Higher CHO/protein intake typically means lower fat intake
 - Severe restriction of fat intake not recommended
- Fat needs often expressed as a % of total energy intake
 - 20 to 35% total caloric intake
 - May be expressed on g/kg body weight basis
 - ~1.0 g/kg daily

- Determining fat intake for an athlete
 - Determine energy needs
 - Determine CHO needs
 - Determine protein needs
 - ...then determine fat needs

- Energy needs CHO kcals Pn kcals = fat kcals
- fat kcals/9 = grams of fat needed

- Assuming energy and macronutrient balance, the general guideline for daily fat intake: 1g fat/kg
- Endurance athletes:
 - Up to 2 g fat/kg
 - Replace intramuscular triglycerides (IMTG)
- Some athletes do not meet CHO and protein recommendations
 - May need to reduce fat intake to be able to increase CHO and/or protein
 - Do not overly restrict fat intake
 - Can affect performance

- Emily, 64 kg runner
 - Needs
 - Kcals: 64 kg x 42 kcal/day = ~2700 kcal/day
 - CHO: 64 kg x 7 g CHO/kg = ~445 g CHO/day
 - Pn: 64 kg x 1.4 g Pn/kg = \sim 89 g Pn/day

Calculate Emily's recommended fat intake in grams

INADEQUATE FAT INTAKE CAN NEGATIVELY AFFECT TRAINING, PERFORMANCE, AND HEALTH

- Effects of an inadequate fat intake
 - Inadequate replenishment of IMTGs
 - Reduced after endurance exercise and need replenishment
 - Inability to manufacture sex-related hormones
 - Testosterone, estrogen?
 - Changes in HDL:LDL ratio
 - <20% of kcals from fat can lower HDL</p>
 - Inadequate fat-soluble vitamin intakes
 - <0.75 g fat/kg/day</p>

REDUCING CALORIC INTAKE BY REDUCING DIETARY FAT INTAKE

- At some point, an athlete may want to be in an energy deficit to lose body fat
 - May benefit performance
 - First reduce alcohol calories, if present in diet
 - Since CHO and protein can affect performance, reduction of fat intake is logical

REDUCING CALORIC INTAKE BY REDUCING DIETARY FAT INTAKE

- Kevin, 100 kg bodybuilder
 - Usual intake
 - 5500 kcal/day (55 kcal/kg)
 - 150 g fat/day (1.5 g fat/kg)
 - Pre-contest diet (6-12 weeks)
 - 3500 kcal/day
 - Slight increase in protein intake
 - Slight decrease in CHO intake
 - Substantial decrease in fat intake (0.65 g fat/kg)
 - Further reduction 1 week prior to contest

HEALTH AND WELLNESS SUMMIT

Resources

CU System:

CU Advantage - Employee Perks (system wide)
advantage.cu.edu
CU Employee Services
www.cu.edu/employee-services

CU Boulder:

CU Boulder Health & Wellness Services

colorado.edu/health

CU Boulder Employee Wellness

colorado.edu/health/WorkWell

CU Boulder Office of Institutional Equity and Compliance (OIEC)

colorado.edu/oiec

CU Boulder Benefits, Perks, and Resources

colorado.edu/hr/faculty-and-staff-perks

UCCS:

UCCS Gallogly Recreation & Wellness Center recwellness.uccs.edu
UCCS HealthCircle Clinics healthcircle.uccs.edu
UCCS Lyda Hill Institute for Human Resilience resilience.uccs.edu
UCCS Office of Institutional Equity equity.uccs.edu

CU Denver:

CU Denver Wellness & Recreation

ucdenver.edu/wellness

CU Denver Counseling Center

ucdenver.edu/counseling-center

CU Denver & Anschutz Office of Equity

ucdenver.edu/offices/equity

CU Denver HR

ucdenver.edu/offices/human-resources/current-faculty-staff

Anschutz:

Anschutz Health & Wellness Center

medschool.cuanschutz.edu/health-and-wellness

Anschutz Student Health & Wellness

www.cuanschutz.edu/student/health-wellness

CU Denver & Anschutz Office of Equity

ucdenver.edu/offices/equity

Anschutz HR

cuanschutz.edu/offices/human-resources/current-faculty-and-staff

WELLABLE APP

CU Boulder Faculty and Staff: Connect with a Healthier U Prioritize your well-being with WorkWell Connect!

- Unlimited, live health coaching
- On-demand fitness
- Meditation and mindfulness classes
- Recipes and meal plans
- Sleep stories
- Individual and team challenges

Apple

Android

HEALTH AND WELLNESS
SUMMIT

Take the survey

