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Scientists at CU Boulder are doing
lots of climate research

e Scientists in several departments at CU Boulder are doing climate
related research (Atmospheric and Oceanic Sciences, Geography,
Geological Sciences, ATOC, INSTAAR, CIRES, Aerospace Engineering,

...)

 Many focus on historical climate change and paleo climate, building
the foundation of our understanding of how climate reacts to
perturbations

e Several groups focus on projections of future climate change

— the focus of this presentation is on climate projections and future
climate change



How is the climate changing?
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NASA News & Feature Releases

NASA, NOAA Data Show 2016 Warmest Year on Record Globally
Posted Jan. 18, 2017

Earth's 2016 surface temperatures were the warmest since modern recordkeeping began in 1880, according to
independent analyses by NASA and the National Oceanic and Atmospheric Administration (NOAA).

Globally-averaged temperatures in 2016 were 1.78 degrees Fahrenheit (0.99 degrees Celsius) warmer than the mid-20th
century mean. This makes 2016 the third year in a row to set a new record for global average surface temperatures.



September sea ice cover and age in the Arctic
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The area of summer sea ice lost since the 1980s is as large as
40 percent of the continental U.S Source: NASA Earth Observator



http://www.nasa.gov/feature/goddard/2016/arctic-sea-ice-is-losing-its-bulwark-against-warming-summers

Temperature anomaly (°C)

Global warming attribution with climate models
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CO, (ppm)

An unprecedented global experiment is underway
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An unprecedented global experiment is underway
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To assess how the climate will change in response to the different possible future CO2
emission, we use climate models

Slide courtesy of K. Karnauskas


http://www.globalcarbonproject.org/

What is a global climate model?
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What is a global climate model?

Back
3-D Grid box radiation
(CO,, dust, H,0,)

Incoming
solar radiation

All of that stuff
calculated at EVERY
grid point

on the planet!



From emissions to climate response
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Sources of Uncertainty of Climate Projections

Uncertainty in climate models
projections is due to:

1) Scientific uncertainty

2) Societal uncertainty

3) Chaotic system uncertainty
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Sources of Uncertainty of Climate Projections

Global average surface temperature change
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Societal uncertainty: how much uncertainty is there due to the fact
that we don’t know how human emissions will change over the
course of this century?




Sources of Uncertainty of Climate Projections
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Scientific uncertainty: how much uncertainty is there due to the fact that we

have imperfect models?

Chaotic system uncertainty: how much uncertainty is there due to the fact that

the climate system is a chaotic system that has inherent predictability limits?




Chaotic System uncertainty

One model, same forcing, difference between simulations (=uncertainty) due to
chaotic system
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Figure from Kay et al. 2015
Differences in projections due to chaotic nature of the system (not part of scientific

uncertainty!)
Chaotic system uncertainty can not be reduced (just like accurate weather forecasts for
Dec. 25" on May 9th will never be possible)

Jennifer Kay, ATOC and CIRES Assistant Professor
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Chaotic System uncertainty

Temperature anomaly (°C)
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Important sources of uncertainty
in climate projections on
regional spatial scales and on
short to medium (several
decades) timescales.

Less important on global scales
and for long periods (>50 years)



Chaotic System uncertainty

Influence of chaotic system on sea ice projections of the first
occurrence of an ice-free Arctic

Within one model and one scenario, large projection uncertainty
due to the chaotic climate system
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Climate Projections Uncertainty

Scientific & chaotic

Global average surface temperature change system
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Climate Projections of average surface air temperature

Global average surface temperature change
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Climate Projections of temperature extremes

As a result of a shift in the mean, the probability of extreme events changes

Probability of occurrence
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Source: IPCC WG1 2013



Climate Projections of other variables

Global average surface temperature change
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Ocean acidification
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K Vanatlons in global climate, both natural cycles and Iong
R term (anthropogenic) trends, can alter the geographic
% .. ¢ distribution of surface air pressure.

~ « Air pressure is directly related to the partial pressure of
oxygen, to which the human body is sensitive—especially
at high altitude.

, M.D. (University of Colorado
5 Elalne Reno, M.D. (Unlﬁgrsny of Colorado

Benjamin Honigman, M.D. (Universi
.Inlgo San Mllrén Ph,D Unlver
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Kris Karnauskas, ATOC & CIRES

ApO,, (%)

Changes in the partial pressure of oxygen (expressed in kPa on the left, and % change on the
right) as a function of altitude. The blue horizontal lines on the right indicate a few notable

elevations: Boulder, Bear Peak, Ethiopian Highlands, 14ers, Tibetan Plateau, Denali, and
Everest.
These results indicate that by the end of this century, there will be ~3% greater pO, at the
summit of Mt. Everest
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Future freshwater stress for .
Island populations “

Kris Karnauskas (ATOC & CIRES)



Island groups
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Karnauskas, K. B., J. P. Donnelly, and K. J. Anchukaitis, 2016: Future Freshwater Stress for Island Populations. Nature Climate Change, 6, 720-725.




Some of the climate projection expertise at CU Boulder

Sea level rise: and Architectural Engineering)
 Weiqging Han (ATOC)  Noah P. Molotch (INSTAAR and Geography)
e R.S. Nerem (Aerospace)

« Jan Lenaerts (ATOC) Drought prediction and impacts:

e Ben Livneh (Civil, Environmental, and
Polar climate: Architectural Engineering & CIRES)
e Alexandra Jahn (ATOC & INSTAAR)
e Jennifer Kay (ATOC & CIRES)
e John Cassano (ATOC & CIRES)
e Mark Serreze (Geology & CIRES & NSIDC) Climate and health

Climate adaptation
e  William Travis (geography)

e Colleen Reid (wildfires and human health)
Ocean biogeochemistry

_ _ e  Kris Karnauskas (altitude sickness and climate
* Nicole Lovenduski (ATOC & INSTAAR)

change; freshwater stress on island populations)

e Balaji Rajagopalan (climate change & kidney

Monsoon changes )
disease)

e Balaji Rajagopalan (CIRES and Civil Environmental,
and Architectural Engineering)

e Kris Karnauskas (ATOC & CIRES)

Global climate model development/CMIP6
e Alexandra Jahn (ATOC & INSTAAR)

e Jennifer Kay (ATOC & CIRES)

e Jan Lenaerts (ATOC)

Temperature extremes:

e Thomas N. Chase (Civil, Environmental, and
Architectural Engineering & CIRES)
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