determining typical expressions.

1. Determine the available light. This provides the greatest convenience when
 determining the available light. To determine this, the photographer should
 observe the light source and its angle relative to the subject.

2. Determine the light source direction and intensity. The intensity of the
 light source affects the appearance of the subject. A high-intensity light
 source will create a strong contrast between the subject and the background,
 while a low-intensity light source will create a soft, even lighting effect.

3. Determine the light source color. The color of the light source affects
 the color temperature of the subject. A warm light source will create a
 warm color temperature, while a cool light source will create a cool color
 temperature.

4. Determine the light source distance. The distance between the subject
 and the light source affects the amount of light that reaches the subject.
 A closer distance will result in more light reaching the subject, while a
 greater distance will result in less light reaching the subject.

5. Determine the light source orientation. The orientation of the light
 source affects the direction of the light. A light source oriented to the
 side of the subject will create a strong contrast between the subject and the
 background, while a light source oriented to the front of the subject will
 create a soft, even lighting effect.

6. Determine the light source shape. The shape of the light source affects
 the appearance of the subject. A soft, diffused light source will create a
 soft, even lighting effect, while a hard, focused light source will create a
 strong contrast between the subject and the background.

7. Determine the light source type. The type of light source affects
 the color temperature and the amount of light that reaches the
 subject. A tungsten light source will create a warm color temperature and
 a high amount of light, while a fluorescent light source will create a cold
 color temperature and a lower amount of light.

8. Determine the light source position. The position of the light source
 affects the direction of the light. A light source positioned to the side of
 the subject will create a strong contrast between the subject and the
 background, while a light source positioned to the front of the subject will
 create a soft, even lighting effect.

9. Determine the light source intensity. The intensity of the light source
 affects the amount of light that reaches the subject. A higher intensity
 light source will result in more light reaching the subject, while a
 lower intensity light source will result in less light reaching the subject.

10. Determine the light source distance. The distance between the subject
 and the light source affects the amount of light that reaches the subject.
 A closer distance will result in more light reaching the subject, while a
 greater distance will result in less light reaching the subject.

11. Determine the light source orientation. The orientation of the light
 source affects the direction of the light. A light source oriented to the
 side of the subject will create a strong contrast between the subject and the
 background, while a light source oriented to the front of the subject will
 create a soft, even lighting effect.

12. Determine the light source shape. The shape of the light source affects
 the appearance of the subject. A soft, diffused light source will create a
 soft, even lighting effect, while a hard, focused light source will create a
 strong contrast between the subject and the background.

13. Determine the light source type. The type of light source affects
 the color temperature and the amount of light that reaches the
 subject. A tungsten light source will create a warm color temperature and
 a high amount of light, while a fluorescent light source will create a cold
 color temperature and a lower amount of light.

14. Determine the light source position. The position of the light source
 affects the direction of the light. A light source positioned to the side of
 the subject will create a strong contrast between the subject and the
 background, while a light source positioned to the front of the subject will
 create a soft, even lighting effect.

15. Determine the light source intensity. The intensity of the light source
 affects the amount of light that reaches the subject. A higher intensity
 light source will result in more light reaching the subject, while a
 lower intensity light source will result in less light reaching the subject.

16. Determine the light source distance. The distance between the subject
 and the light source affects the amount of light that reaches the subject.
 A closer distance will result in more light reaching the subject, while a
 greater distance will result in less light reaching the subject.

17. Determine the light source orientation. The orientation of the light
 source affects the direction of the light. A light source oriented to the
 side of the subject will create a strong contrast between the subject and the
 background, while a light source oriented to the front of the subject will
 create a soft, even lighting effect.

18. Determine the light source shape. The shape of the light source affects
 the appearance of the subject. A soft, diffused light source will create a
 soft, even lighting effect, while a hard, focused light source will create a
 strong contrast between the subject and the background.

19. Determine the light source type. The type of light source affects
 the color temperature and the amount of light that reaches the
 subject. A tungsten light source will create a warm color temperature and
 a high amount of light, while a fluorescent light source will create a cold
 color temperature and a lower amount of light.

20. Determine the light source position. The position of the light source
 affects the direction of the light. A light source positioned to the side of
 the subject will create a strong contrast between the subject and the
 background, while a light source positioned to the front of the subject will
 create a soft, even lighting effect.

21. Determine the light source intensity. The intensity of the light source
 affects the amount of light that reaches the subject. A higher intensity
 light source will result in more light reaching the subject, while a
 lower intensity light source will result in less light reaching the subject.

22. Determine the light source distance. The distance between the subject
 and the light source affects the amount of light that reaches the subject.
 A closer distance will result in more light reaching the subject, while a
 greater distance will result in less light reaching the subject.

23. Determine the light source orientation. The orientation of the light
 source affects the direction of the light. A light source oriented to the
 side of the subject will create a strong contrast between the subject and the
 background, while a light source oriented to the front of the subject will
 create a soft, even lighting effect.

24. Determine the light source shape. The shape of the light source affects
 the appearance of the subject. A soft, diffused light source will create a
 soft, even lighting effect, while a hard, focused light source will create a
 strong contrast between the subject and the background.

25. Determine the light source type. The type of light source affects
 the color temperature and the amount of light that reaches the
 subject. A tungsten light source will create a warm color temperature and
 a high amount of light, while a fluorescent light source will create a cold
 color temperature and a lower amount of light.

26. Determine the light source position. The position of the light source
 affects the direction of the light. A light source positioned to the side of
 the subject will create a strong contrast between the subject and the
 background, while a light source positioned to the front of the subject will
 create a soft, even lighting effect.
Specifications

Weight:
Approx. 190 grams

Dimensions:
112 x 50 x 34 mm

EV Scale:
C = 3.0, K = 1.25

Aperture Scale:
1/3 - 1/16

Shutter Speed:
0.7 - 1/8000 second

ISO Scale:
60 - 4000

Measuring Accuracy:
Within ± 0.3 (EV 1/3 stop)

Measuring Range:
A: ISO 100, EV 1 - 17

Incident Light (Reflected Light System):
Magnet

Photocell:
Main Light

Fill-in Light:
Lumisphere

Diagram:
- Diagram of the camera's light meter system.

7. After combining film sensitivity and shutter speed, direct reading, (optional) can be used for directly determining the aperture value. The aperture value is employed as a light sensing element.

8. Selenium photocell is employed as a light sensing element.

9. With the selection of available accessories, allows numerous photo-
1. Incident Light Measurement

2. Zero Position Check and Adjustment

3. Stopper Button Operation

Standard Accessory Operation
with hand. Exposure is required, cover slot

Although this does not necessarily
may enter through the slot

range direct straight through the slot, strob.

When no scale is inserted, strob.

Note:

Film sensitivity intermediate values

ISO

Aperture scale

Shutter speed scale

Intermediate values

9. At this time, the shutter speed scale (A) and aperture scale (B) com-

Mark: 2. Slide beyond scale, insert the high

and the meter needle deflection

Example: With high scale inserted, meter indicates 80 ~ 100.

Camera: Shutter exposure becomes 1/250 sec at F/6.3, 1/30 sec at F/1.6 and 1 sec at F/5.

At ISO 100, the proper exposure becomes 1/250 sec at F/6.3, 1/30 sec at F/1.6 and 1 sec at F/5.

By changing ISO setting, the set combination of shutter speed and proper exposure is automatically altered to the appropriate one.

The meter needle deflection is excessively bright, the shutter exposure becomes 1/250 sec at F/6.3, 1/30 sec at F/1.6 and 1 sec at F/5.

When the stop button is released, the meter needle becomes the correct exposure.
1. Illumination Measurement

2. Luminaire Measurement

Example:

960 x 10.76 = 7748.6 lumens

Example:

80 x 10.76 = 860.8 lumens

High density: After adjusting the high density, multiply

High density: After adjusting the high density, multiply

Press the stop button and read meter scale luminaire

Press the button, parallel with the measured surface

A luminaire, luminaire to the light sensor in the same manner as

Fit the luminaire to the light sensor in the same manner as

Example of illumination contrast:

measures 200 footcandles,

The contrast ratio is 200:1 with main light at 640 lux.

The contrast ratio is 200:1 with main light at 640 lux.
Empting the scale:

1. Set stop button to 'set'.
2. Set EV readout value to EV scale.
3. Read meter needle and set stop button to 'set'.
4. Read meter needle.
5. Place the lens cap on the lens.
6. Set EV readout value to EV scale.
7. Read meter needle.
8. Place the lens on the lens.
9. Set EV readout value to EV scale.
10. Read meter needle.
11. Place the lens on the lens.
12. Set EV readout value to EV scale.
13. Read meter needle.
14. Place the lens on the lens.
15. Set EV readout value to EV scale.
16. Read meter needle.
17. Place the lens on the lens.
18. Set EV readout value to EV scale.
19. Read meter needle.
20. Place the lens on the lens.
21. Set EV readout value to EV scale.
22. Read meter needle.
23. Place the lens on the lens.
24. Set EV readout value to EV scale.
25. Read meter needle.
26. Place the lens on the lens.
27. Set EV readout value to EV scale.
28. Read meter needle.
29. Place the lens on the lens.
30. Set EV readout value to EV scale.
31. Read meter needle.
32. Place the lens on the lens.
33. Set EV readout value to EV scale.
34. Read meter needle.
35. Place the lens on the lens.
36. Set EV readout value to EV scale.
37. Read meter needle.
38. Place the lens on the lens.
39. Set EV readout value to EV scale.
40. Read meter needle.
41. Place the lens on the lens.
42. Set EV readout value to EV scale.
43. Read meter needle.
44. Place the lens on the lens.
45. Set EV readout value to EV scale.
46. Read meter needle.
47. Place the lens on the lens.
48. Set EV readout value to EV scale.
49. Read meter needle.
50. Place the lens on the lens.
51. Set EV readout value to EV scale.
52. Read meter needle.
53. Place the lens on the lens.
54. Set EV readout value to EV scale.
55. Read meter needle.
56. Place the lens on the lens.
57. Set EV readout value to EV scale.
58. Read meter needle.
59. Place the lens on the lens.
60. Set EV readout value to EV scale.
61. Read meter needle.
62. Place the lens on the lens.
63. Set EV readout value to EV scale.
64. Read meter needle.
65. Place the lens on the lens.
66. Set EV readout value to EV scale.
67. Read meter needle.
68. Place the lens on the lens.
69. Set EV readout value to EV scale.
70. Read meter needle.
71. Place the lens on the lens.
72. Set EV readout value to EV scale.
73. Read meter needle.
74. Place the lens on the lens.
75. Set EV readout value to EV scale.
76. Read meter needle.
77. Place the lens on the lens.
78. Set EV readout value to EV scale.
79. Read meter needle.
80. Place the lens on the lens.
81. Set EV readout value to EV scale.
82. Read meter needle.
83. Place the lens on the lens.
84. Set EV readout value to EV scale.
85. Read meter needle.
86. Place the lens on the lens.
87. Set EV readout value to EV scale.
88. Read meter needle.
89. Place the lens on the lens.
90. Set EV readout value to EV scale.
91. Read meter needle.
92. Place the lens on the lens.
93. Set EV readout value to EV scale.
94. Read meter needle.
95. Place the lens on the lens.
96. Set EV readout value to EV scale.
2. Direct Reading Slides

The direct reading slides can also be used as a direct reading slide.

<table>
<thead>
<tr>
<th>100</th>
<th>50</th>
<th>25</th>
<th>12.5</th>
<th>6.25</th>
<th>3.125</th>
<th>1.5625</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

Note: One set of slides consists of slide numbers 1 to 11 in a case.

3. Using Exposure Multipliers

Set the appropriate mark instead of the % to the dial scale value. Use 1/125 or 1/60 or 1/100 mark to multiply.

Exposure multiplier indications are provided at both ends of the dial scale.
Examples: Observe the scene, set the view, etc.

This refers to the situation where a subject object in the subject

3. Orientation

Even under back lighting, diffused or direct light can play a role in the subject, as some objects in the light can affect the subject. Subject orientation is important here.

Examples: Observe the scene, set the view, etc.

This refers to the situation where a subject object in the subject

2. Typical Scenes

Even under back lighting, diffused or direct light can play a role in the subject, as some objects in the light can affect the subject. Subject orientation is important here.

Examples: Observe the scene, set the view, etc.

This refers to the situation where a subject object in the subject

1. Portrait Photography

There are various kinds of portrait photography. In a case...
Example: If observations 1/125 are 1 1/2, 1/125, 1/200 or 1/125 x 1/125 = 1/250 is reduced by 1/125 = 1/250.

The meter is positioned to about 50% of the scale. If an objective is divided into three equal parts, the middle division will be the point where the meters are red. The mean value of the two meters is determined by taking the mean of the two readings.

To determine the mean of two values, perform the following steps:

1. Add the two values.
2. Divide the sum by 2.
3. The result is the mean.

4. Show scores.
6. Silhouette Photography

Mean values (mean density) are used for observations based on and measured by standard methods. Withdrawing exposure from the mean value (mean density) position of the object. First, the silhouette can be defined in a general way by adjusting the exposure and making the silhouette visible. For a given silhouette, the silhouette can be defined as distinct or the picture or picture used to define the silhouette. A silhouette is defined as visible when the silhouette is defined or distinct. In the typical case of a dark and side lighting, the silhouette of the object is defined as having the highest contrast.
2. Illumination Contests

Applications of Illumination Contests: Utilizing the selection of accessories also opens the way for the same product, the Becomes possible as those leading to an increase in illumination. By allowing variations in exposure to be performed, the exact limit of the range can be determined in color photography. This is the main point for determining illumination. Since good photography is determined in color photography, where the light measurement is done, in non-color photography of the light measurement, the illumination used for testing the range can be determined by the illumination of the scene, where the light measurement is done. By the light measurement, the illumination used for testing the range can be determined.
Applications

1. Special Features of the Studio Dilex

2. Illumination Contours
Reflective Luminance Measurement

1. Luminance reading center point

2. Subject to show indoor light method.

3. Reflective light measurement is employed for the following purposes:

- Reflective light measurement by reflected light method and location within
- Illumination and can be varied by adjusting
- Fill in light measurement
In order to obtain an acceptable color photograph it is necessary to:

1. Obtain a position with a measured minimum luminance less than 80/95 of the lower 5.
2. Determine the minimum luminence range.

1. Select the meter readout and minimum reading which is lower than 80/95 of the lower 5.
2. Determine the minimum luminence range.

Luminance range measurement

- Select the meter readout and minimum reading which is lower than 80/95 of the lower 5.
- Determine the minimum luminence range.
4. Illumination Adjustment

Stage 2

Key light setting

In the adjustment shown on this page, the key light is a 3/4 stop stop (midrange) behind the primary light. In other words, the key light is at 1/2 stop behind the primary light. This is the recommended ratio for key light to primary light.

Stage 1

Determine overall lighting strength

The Studio Deluxe Instructions provide this information in the Lighting Budget section. The lighting budget is a visual representation of the lighting setup. The key light is shown in orange, the fill light is shown in blue, and the background light is shown in green. The lighting budget helps you visualize the lighting setup and ensure that the proper lighting ratios are maintained.

Stage 0

The Studio Deluxe Instructions provide this information in the Lighting Budget section. The lighting budget is a visual representation of the lighting setup. The key light is shown in orange, the fill light is shown in blue, and the background light is shown in green. The lighting budget helps you visualize the lighting setup and ensure that the proper lighting ratios are maintained.
4. Observe the compensation factor from Table 1.

5. Adjust the light until the light meter indicates the correct exposure.

6. Compare the result with the compensation factor from Table 1.

7. Make any necessary adjustments to the exposure settings.

8. Repeat steps 1-7 until the desired exposure is achieved.

9. Record the final settings for future reference.

10. Finally, take the photograph and review the results.
Handling Cautions

- Do not store in high concentration of high humidity location.
- Avoid dropping or abusing the instrument.
- Use ample care in regard to the following points.
- Since the studio is coated with a high retardation instrument.

Table 1: Close-up Exposure Compensation Table

<table>
<thead>
<tr>
<th>Exposure Correction Factor</th>
<th>Subject to Computation</th>
<th>Computation Factor</th>
<th>Subject to Exponential Correction Factor</th>
<th>Image Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.41</td>
<td>4.0:1</td>
<td>1:1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0.63</td>
<td>1.9:1</td>
<td>1:1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0.83</td>
<td>1.2:1</td>
<td>1:1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.08</td>
<td>0.9:1</td>
<td>1:1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.25</td>
<td>0.8:1</td>
<td>1:1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.40</td>
<td>0.7:1</td>
<td>1:1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.57</td>
<td>0.6:1</td>
<td>1:1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.74</td>
<td>0.5:1</td>
<td>1:1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1.92</td>
<td>0.4:1</td>
<td>1:1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.08</td>
<td>0.3:1</td>
<td>1:1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.24</td>
<td>0.2:1</td>
<td>1:1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.38</td>
<td>0.1:1</td>
<td>1:1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2.55</td>
<td>1:1</td>
<td>1:1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>