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Describing the (a) electronic and magnetic properties (EMPs) of compounds generally requires the specifi-
cation of (b) the type of spin configurations one is considering [e.g., antiferromagnetic (AFM) or paramagnetic
(PM) phases, with or without spin short-range order (SRO)] and lattice structure (e.g., atomic displacements,
possible symmetry breaking) of such phases at a given temperature. Indeed, studying the interplay between
the spin configuration and lattice structure (SCLS) and the ensuing EMPs has been an outstanding challenge
in the theory of matter. The traditional approach of electronic phases of matter has generally focused on
the interelectronic interactions, regarding the lattice structure as a spectator degree of freedom (DOF), often
fixed from an external source (experiment or model assumptions). However, one expects that the EMPs of a
compound can generally respond self-consistently to changes in SCLS (including symmetry), and at the same
time, the SCLS can change in response to different electron and spin distributions visited during the calculation
of the EMPs. This ping-pong-like interplay where structure affects electronic properties and the latter affect
structure is indeed a cornerstone of much of the intricacy of understanding quantum materials. However, there
is a limited understanding of the theory required to determine the SCLS at finite temperature in a way that
can affect the EMPs and vice versa. We use here a practical, density functional theory (DFT)-based approach
that provides the SCLS as a function of temperature, involving the description of spin, lattice, and spin-lattice
dynamics of AFM and PM phases, thus providing the required ping-pong partners to the description of the
EMPs of different phases. We distinguish three levels of dynamics: (I) dynamics of the spin DOFs treated via
noncollinear Heisenberg Monte Carlo solved with exchange energies obtained from first-principles DFT cluster
expansion, (II) dynamics of the lattice DOFs treated by ab initio molecular dynamics (AIMD) employing a fixed,
representative spin configuration from Level I at the simulated temperature, and (III) coupling of spin and lattice
dynamics via Landau-Lifshitz-Gilbert spin dynamics combined with AIMD. Such SCLSs at each of the three
levels are used as inputs to DFT supercell calculations, providing the EMPs at each temperature. The results of
this sequence include electronic band structures, bandgaps, density of states, as well as the statistical distribution
of local moments and the SRO parameters, each as a function of temperature. Herein, we define a path to
include temperature in magnetic insulators at different levels of spin dynamics by intercommunication between
electronic structure theory and statistical mechanics. Using NiO as a test case, we address the separability of the
DOFs in magnetic insulators for a minimal description of EMPs, demonstrating that inclusion of spin dynamics
and, to some level, lattice dynamics is enough to explain the EMPs.
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I. INTRODUCTION

In dealing with electronic and magnetic structure of matter,
one faces contributions from the electronic system as well as
contributions from lattice structure, including local degrees of
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freedom (DOFs). Such theories of electronic and magnetic
properties (EMPs) at finite temperatures require the knowl-
edge of the spin configuration and lattice structure (SCLS).
Description of the EMPs includes selecting a level of the-
ory needed for describing the fundamental electron-electron
interactions (such as mean-field or many-body approaches),
whereas the SCLS requires the knowledge of spin configu-
rations one is considering [e.g., antiferromagnetic (AFM) or
paramagnetic (PM) phases, with or without spin short-range
order (SRO)] and lattice structure (including atomic displace-
ments, possible symmetry breaking involved) of such phases
at a given temperature, in a semiclassical picture of magnetic
materials.

The separation of the EMPs from the spin and lattice
configurations has been an outstanding problem in this field.
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The extreme approach of the theory of electron phases (as in
the Mott-Hubbard problem, exotic phases, and quantum spin
liquids) deals primarily with the electron part of the problem
while regarding the lattice motifs as largely a nonresponsive,
spectator DOF. However, it has been recognized that EMPs of
a phase generally respond self-consistently to changes in the
SCLS and vice versa, in a ping-pong-like fashion: structural
relaxation, positional or magnetic symmetry breaking, or dif-
ferent spin configurations (all being DOFs of the SCLS) can
drastically affect the ensuing predicted EMPs and vice versa.
At the same time, the choices of the type of interelectronic in-
teraction used in predicting the EMPs can affect the predicted
ensuing SCLS.

The complexity of developing appropriate computational
methods that deal with electron/spin DOFs along with
structure has historically steered solid-state physics to ar-
guing (frequently postulating) a decoupling between the
microscopic DOFs (m-DOFs) underlying the EMPs from
those underlying the SCLS as its historical standard modus
operandi. Disappointingly, not all attempts to separate the
dynamics of different m-DOFs into nonoverlapping domains
were as successful as the Frank-Condon adiabatic separation.
For instance, in magnetism, the often-asserted finite but weak
coupling [1–5] between the ionic vibration timescale and spin
dynamics timescales has become an accepted truth. Examples
include the conventional three-temperature model (3TM) [1],
which uses three individual sets of temperatures and heat
capacities from the spin moment, electron, and lattice, with
phenomenological factors to describe the coupling among dif-
ferent sets (often extracted from the signal fitting process from
experimental measurement). The simplified 3TM approach
as well as the absence of an atomistic description of the m-
DOFs has motivated other, more advanced models, including
the Elliott-Yafet scattering model [6,7], where spin flips ab-
sorb/excite phonons with a given probability, or the atomistic
spin dynamics (ASD) approach based on the Landau-Lifshitz-
Gilbert (LLG) equation [8,9], and the microscopic 3TM
method [5]. A difficulty in such model Hamiltonian methods
is that there exist empirical or phenomenological factors that
are not derived by the theory itself but sometimes introduced
ad hoc to explain observations. In this situation, it appears
important to critically test these assumptions of decoupled
DOFs beyond the static approximation.

A method that tries to tackle the problem of coupling
between magnetic and phonon DOFs is the spin-lattice dy-
namics [10,11], where a Hamiltonian composed of magnetic
and lattice parts is employed, and the spin and lattice m-DOFs
are evolved with LLG and Newton’s equations, respectively.
The parameters of the Hamiltonian can be calculated ab initio;
however, this method inherits all the problems of interatomic
potentials concerning accuracy and transferability. The effect
of a completely disordered picture of the PM state on vibra-
tions and electronic structure has also been investigated [12],
neglecting the temperature dependence for the spin m-DOFs.
Recently, a step toward the complete simulation from first
principles of magnetic materials with all electronic, magnetic,
and lattice m-DOFs has been made with the introduction of
LLG spin dynamics coupled with ab initio molecular dynam-
ics (AIMD) [13], or the ASD-AIMD method, where electrons
are treated explicitly, and interatomic forces are calculated

on the density functional theory (DFT) quantum mechanical
self-consistent level. This method, in contrast to spin-lattice
dynamics methods based on interatomic potentials [10,11],
enables a direct investigation of electronic properties: ASD-
AIMD was employed in Ref. [13] to investigate the effect
of magnetic DOFs at finite temperatures in the PM state on
phonon properties in CrN, a narrow gap semiconductor. The
result of that study was that, although the magnetic DOF in the
PM state has a short time scale (on account of CrN being nar-
row gap), the adiabatic separation of magnetic and vibrational
DOFs is not really justified. It is therefore important to assess
the validity of such separations in different material systems
and properties. Particularly, (i) an assessment of the effect
of the coupled spin-lattice dynamics on the electronic band
structure as compared with models which consider separately
spin or lattice DOFs is still lacking. Likewise, (ii) a frame-
work enabling the comparison of models with disjoint DOFs
against a coupled model will be desirable. In addition, (iii) the
coupling will have different effects in systems ranging from
insulators to metals, therefore requiring a framework which
can accommodate the whole spectrum of possible electronic
properties of materials systems. The computational platform
offered in this paper (Fig. 1) is designed to address these three
issues.

Building on the knowledge obtained from Ref. [13], in
this paper, we investigate the interrelation between electronic
structure and magnetic and vibrational DOFs by using a
method that combines on-the-fly statistical mechanics of find-
ing spin configurations and the lattice structure (the SCLS)
with electronic structure (the EMP). This allows one to ex-
amine how the treatment of the electronic DOFs affects the
structural DOFs and how the structure in turn affects the
EMPs. To examine the concept of separability of distinct
DOFs, we deliberately separate different levels of dynamics
of spin and lattice. Specifically, we will examine the validity
of separating lattice DOFs and spin dynamics by calculat-
ing these events first congruently and then separately within
dynamic DFT. This will test the common assumption that
these three dynamics are well decoupled from each other, thus
advancing our understanding in joint simulations of lattice and
spin dynamics. Finally, the electronic Hamiltonian is delib-
erately selected as mean field like DFT (albeit temperature
dependent), rather than leapfrogging to strongly correlated
methodologies. However, the description of EMPs is exe-
cuted within a larger-than-minimal unit cell of the appropriate
global symmetry so that positional or spin symmetry-breaking
events (reflected in the SCLS) are allowed to occur if they
lower the total energy. This approach allows us to examine
if the error of traditional mean-field band theory, predicting
incorrectly a metallic state in 3d Mott oxides, reflects the
absence of strong correlation (in the EMP) or the use of inap-
propriate SCLS that had limited symmetry breaking [14–16].

Table I summarizes the three levels of dynamics that will
be described in this paper. Level I consists of only spin dy-
namics in a frozen lattice (avoiding phonon effect). It was
done by generating many spin configurations via the non-
collinear Heisenberg Monte Carlo (MC) method and using
them with a frozen lattice as inputs to DFT calculations to
obtain magnetic and electronic properties. Level II is the
AIMD (following the ab initio forces from DFT) with a
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FIG. 1. Workflow of the three levels of dynamics. In Level I, we calculated with density functional theory (DFT) the exchange interactions
on the static lattice, which are then used in Monte Carlo simulations with the noncollinear Heisenberg Hamiltonian to generate several spin
configurations. These configurations are the input for the DFT calculations on the static lattice, which give as output the magnetic and electronic
structure properties at each temperature. In Level II, we employ one single frozen spin configuration from Level I at each temperature to carry
out ab initio molecular dynamics (AIMD) simulations at the corresponding temperature. Several spin-lattice snapshots from the simulations
are taken to perform additional DFT calculations to obtain the output magnetic and electronic structure properties at each temperature. In Level
III, we calculated the pair distance-dependent exchange interactions to have the coupling between the lattice and spin microscopic degrees of
freedom (m-DOFs). With these interactions parametrized, we carried out coupled spin and molecular dynamics simulations with ab initio
forces at each considered temperature, where both the spin and lattice m-DOFs are evolved simultaneously. Joint spin-lattice snapshots are
then taken to perform further DFT calculations and obtain the output magnetic and electronic structure properties at each temperature.

representative frozen spin configuration taken from Level I.
Level III is our joint description, based on the LLG spin
dynamics with interactions and feedbacks from a vibrating
lattice from DFT calculations. In Levels I and II, the effect of
thermal expansion and lattice vibrations on the pair exchange
interactions is neglected, whereas for Level III, the pair ex-

change interactions are dependent on the pair distance. This
dependence, together with the spin dependence of the inter-
atomic forces, provides the coupling between spin and lattice
m-DOFs.

Each of the three levels gives coupled spin and struc-
tural configurations, which are used as inputs to the DFT

TABLE I. Summary of three levels of spin-lattice dynamics theory used in this paper.

Level of dynamics Dynamic DOF Frozen DOF Simulation method for SCLS Calculation method for EMPs

Level I Spin Lattice Heisenberg MC (exchange Mean-field DFT
energies from DFT)

Level II Lattice Spin AIMD
Level III Spin + lattice – LLG dynamics with AIMD
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self-consistent Hamiltonian solver to obtain the magnetic and
electronic consequences of the whole dynamics, including
single-particle electronic properties such as density of states
(DOS), bandgaps, the unfolded E vs k dispersion (band struc-
ture), as well as magnetic properties such as local magnetic
moments, local motifs, and SROs. All details of these three
levels of theory are given in Sec. II. In this paper, we choose
one of the most famous and classical Mott insulators NiO as
the example of our joint description to study the properties
under different temperatures (300–700 K) across the Néel
transition TN = 523 K [17]. The choice of NiO is furthermore
motivated from available experimental works [18–21] that
suggested existence of spin-lattice coupling effects in this
compound and by an analysis of the magnetic and vibrational
timescales shown in Appendix A. We find that, while the
consideration of uncoupled magnetic and lattice dynamics is
important for a quantitative understanding of the electronic
properties and temperature evolution of the bandgap in NiO,
this system does not represent a case where the dynamical
coupling of these m-DOFs has a crucial impact on the EMP.
In this paper, we establish a framework for estimating which
phases of matter come out with weak, medium, or strong
coupling of electronic, magnetic, and vibrational m-DOFs,
without assumptions on the nature of the material system at
hand. The current test case is the insulator NiO, but the present
methodology is readily applicable to small-bandgap semicon-
ductors and metals as well, defining a path to investigate the
unknown trends of spin dynamics as an insulator becomes a
metal.

II. THREE LEVELS OF DYNAMICS

Figure 1 shows the workflow of the present investigation,
describing the three levels of dynamics, coupled with the
corresponding electronic structure calculations; the different
levels of dynamics are presented in this section. The general
workflow consists of the generation of spin-lattice configura-
tions at different temperatures, which are the input for DFT
calculations, from which the temperature-dependent proper-
ties are then obtained. The calculated EMPs are magnetic
moments, band structure, bandgap, and spin SRO.

A. Level I dynamics: Spin dynamics in a frozen
lattice via noncollinear Heisenberg MC using

DFT-determined exchange energies

As shown in Fig. 1, for all levels of dynamics, we
employ the Heisenberg Hamiltonian (noncollinear magneti-
zation) [22] to describe the spin-spin interaction and then
derive the spin configurations. The Heisenberg Hamiltonian
is defined only by the directions of the moments μ̂i and spin-
exchange interactions Ji j :

H = −
∑
i �= j

Ji jμ̂i · μ̂ j . (1)

This is the basic formulation of the Hamiltonian, but
extensions to include further effects such as distance de-
pendence of the exchange interactions [13,23], longitudinal
spin fluctuations [24–26], and higher-order terms [27,28]
have been developed. The Heisenberg Hamiltonian can model

spin waves [4] in materials, although it has issues mainly
concerning the low-temperature behavior of magnetic ma-
terials in general (e.g., low-temperature specific heat), and
antiferromagnets in particular [29]. Nonetheless, the gen-
eralized Heisenberg Hamiltonian enables a microscopic
description of the main features of the magnetic m-DOF.

The Heisenberg MC simulations at all temperatures are
carried out with exchange interactions calculated at the equi-
librium, 0 K lattice parameter. The exchange interactions of
Eq. (1) have been calculated with the cluster expansion struc-
ture inversion method [30] employing 10 ordered magnetic
structures. The energy of these 10 structures with different
spin configurations is calculated with DFT, followed by a
cluster expansion in terms of spin interactions up to second
and eighth interaction shells. The exchange interactions Ji j are
then retrieved by matrix inversion. The Néel transition tem-
perature (TN) is obtained by inspection of the specific heat as
a function of temperature, where the temperature with highest
specific heat is taken as the TN (see details on Level I dynam-
ics and calculations of Heisenberg exchange interactions in
Appendix B). Inclusion of eight interaction shells does not
improve the estimated TN as compared with two interaction
shells (see Appendix B). We therefore consider at all levels
magnetic interactions only up to next-nearest neighbors in the
metal sublattice. Since in this level we employ MC simula-
tions, the dynamics of the spins is not real-time dynamics but
rather the evolution of spin configurations without a specific
timescale.

From this level, we obtained a set of coupled spin-lattice
configurations at each temperature, where the lattice struc-
ture is the rock salt cubic structure with ions on ideal lattice
positions. In all levels, we employ a supercell made of two
repetitions in the x, y, and z directions of the conventional
rock salt cell.

B. Level II dynamics: Ab initio lattice (molecular) dynamics
with a frozen spin configuration taken from Level I

In Level II, as shown in Fig. 1, we choose one single
representative frozen spin orientation from Level I for each
temperature T and now allow all internal atomic positions
to evolve by AIMD. The spin configuration on all sites is
kept frozen during AIMD with the use of constrained DFT.
For each temperature, the AIMD simulation is carried out
with the corresponding experimental lattice parameters from
Ref. [31]. Since the spin configurations are taken from Level
I, in this level, there is no effect of thermal expansion or lattice
vibrations on the exchange interactions and, therefore, on the
spin configuration. Of course, as the spin configurations are
all taken from Level I, the first two levels of dynamics share
the same exchange interactions. Appendix C provides details
on the AIMD.

C. Level III dynamics: Coupled spin and lattice dynamics

As shown in Fig. 1, Level III includes the coupled spin and
lattice dynamics. To account for the coupling of spin and lat-
tice dynamics, we performed ASD-AIMD [13] simulations by
using distance-dependent exchange interactions Ji j (ri j ) and
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FIG. 2. Exchange interactions between first and second nearest
neighbors as a function of pair distance calculated on a vibrating
lattice (blue dots). The values calculated on the ideal lattice (red
diamonds) are shown as a comparison. The interpolation used in
the atomistic spin dynamics - ab initio molecular dynamics (ASD-
AIMD) simulations is shown as a green line. The inset gives a
schematic view of the interaction between Ni moments in the first
and second interaction shell.

LLG equations:

∂μ̂i

∂t
= − γ

1 + α2
μ̂i × (Heff + bi )

− γ
α

1 + α2
μ̂i × {μ̂i × (Heff + bi )}, (2)

where μ̂i is the direction of moment μi, γ and α are the
electron gyromagnetic ratio and the phenomenological damp-
ing factor, respectively, whereas bi is the random magnetic
field employed to enforce the right temperature T , as done in
Langevin dynamics. Here, Heff is the effective magnetic field
experienced by moment μi due to all the other moments in the
solid, and it is expressed as

Heff = − 1

μi

∂HHeisenberg

∂μ̂i
, (3)

with HHeisenberg being the Heisenberg Hamiltonian [Eq. (1)]
modified by the employment of the distance-dependent ex-
change interactions. Notice that the size of the local moments
μi enters into the LLG equations only through the effective
field Heff . In short, for each AIMD step that we perform, we
obtain new atomic positions and atomic pair distances ri j ,
from which we recalculate the exchange interactions Ji j (ri j )
according to the parametrization shown in Fig. 2. The up-
dated exchange interactions are fed into the ASD code, which
updates the direction of the moments employed in the next
AIMD step. The details of the ASD-AIMD simulation pro-
tocol are described in Ref. [13]. The experimental lattice
constant of NiO [31] at each temperature is employed in the
simulations.

It is important to notice that the coupled dynamics can
occur only through the distance-dependent Ji j (ri j ) since this
is the only mechanism considered here which enables the
influence of the lattice DOF on the magnetic DOF; the op-
posite influence of the magnetic DOF on the vibrations occurs

through the evolving spin configurations. An additional dif-
ference between Levels I/II and III is that, in the former,
there is no consideration of the effect of thermal expansion
on the exchange interactions. However, thermal expansion in
the range of temperatures considered here leads to changes in
the exchange interactions of 0.2 meV, which do not induce
any quantitatively relevant change on the results of the three
different levels of dynamics. Therefore, the main difference
between Levels I/II and III stems from the explicit lattice vi-
brations and their effect on the exchange interactions, together
with the coupled spin dynamics.

The exchange interactions of Eq (1) up to shells of the
second nearest neighbors as a function of pair distance
were calculated as described in Ref. [23] and detailed in
Appendix D. The resulting exchange interactions are shown
in Fig. 2 (blue dots) for first and second nearest neighbors,
respectively, together with the ideal lattice values (red dia-
monds) and the interpolation (green line) employed then in
ASD-AIMD for Level III.

III. CALCULATING PHYSICAL PROPERTIES
FROM LEVEL I–III SIMULATIONS

For every temperature T , using the coupled spin and
positional configurations {S(I)

i } − {d (I)
i }, {S(II)

i } − {d (II)
i }, and

{S(III)
i } − {d (III)

i } calculated from Levels I–III for a number of
snapshots t (T ), we utilize DFT to extract the physical prop-
erties using Perdew-Burke-Ernzerhof (PBE) + U calculations
[32,33] with U of 5 eV applied to Ni-d states as implemented
in VASP [33–37]. For each SCLS, as its spin and/or lattice
dynamics have already been done in Levels I–III, it is used as
the input to DFT calculations without further changes. This is
done by constrained noncollinear DFT keeping the directions
of the magnetic moments and the lattice structure frozen. The
cutoff energy was fixed to be 500 eV for all calculations. All
DFT calculations at this point are preformed using a 4 × 4 × 4
Г-centered Monkhorst-Pack grid [38].

We emphasize that the actual role of an interelectronic
onsite repulsion U in the Hubbard Hamiltonian treatment (a
strong correlation role) is rather different from the role of U
in DFT + U formalism (where the actual role of this pseudo-
U is in effect a self-interaction-like correction that renders
orbitals more spatially compact and downshifts the orbital
energy). Indeed, it has been shown [14,39] that a more proper
exchange-correlation DFT functional can nonempirically pro-
vide certain effects previously attributed to strong correlation
in DFT self-consistent calculations without U , such as gap-
ping of Mott insulators.

A. Calculation of the local magnetic moments
in AFM and PM phases

The local magnetic moments are obtained from DFT since,
especially for Level I, the size of the moments from the input
spin configurations has little meaning (Heisenberg Hamil-
tonian, Eq. (1), considers fixed size of the moments). To
calculate the distribution of local magnetic moments for every
site in each snapshot, we calculate the local magnetic mo-

ment as μi =
√

μ2
i,x + μ2

i,y + μ2
i,z, where μi,x, μi,y, and μi,z
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are corresponding projections of noncollinear local magnetic
moment on the x, y, and z axes.

B. Calculation of the local spin motifs

The local spin motifs (LSMs) for atom i at time t are
defined as

LSM(i, t ) = 1

Nneighbors

Nneighbors∑
j=1

μ̂i(t ) · μ̂ j (t ), (4)

where Nneighbors is the number of neighbors of magnetic atom
i in the corresponding coordination shell, and all other quan-
tities were previously defined. We carried out analysis of the
distribution of LSMs for first and second coordination shells
at every temperature and level.

C. Calculation of SRO

The SRO for a particular coordination shell is calculated as

SRO(shell) = 1

|μAFM|2Nsnapshots

Nsnapshots∑
t=1

〈μ̂i(t ) · μ̂ j (t )〉
shell

,

(5)

〈μ̂i(t ) · μ̂ j (t )〉
shell

= 1

Natoms

Natoms∑
i=1

1

Nneighbors

Nneighbors∑
j=1

μ̂i(t ) · μ̂ j (t ).

(6)

Here, Nsnapshots is the number of snapshots employed, Natoms

is the number of magnetic atoms in the supercell (32 in our
case), and |μAFM|2 is the modulus squared of the local mo-
ments in the AFM ground state, used as the normalization
value.

D. Calculation of DOS

The DOS is calculated by averaging the DOS computed for
40 different snapshots and aligned O-1s core levels:

DOS =
∑Nsnapshots

t DOS(t )

N
. (7)

We carried out the alignment with respect to the core levels
because the mean energy of O-1s states is roughly a constant
for different snapshots at the same temperature. The same ten-
dency is observed for all levels (the largest change in position
of core states in snapshots is 0.06 eV at T = 700 K in Level
III).

E. Calculation of unfolded band structures

The supercell approach applied in Levels I–III, although
allowing all different types of DOFs, suffers from the very
dense band structure due to the folding mechanism in the
small reciprocal-space Brillouin zones of the large real-space
cell sizes. With the help of rigorous band unfolding [here,
the effective band structure (EBS)] method [40–42], one can
restore the E -vs-k dispersive features, both coherent and inco-
herent, from the spectral functions of supercell band structures
unfolded back into the primitive Brillouin zone. The unfolded

band structure at each temperature was calculated as the su-
perposition of the EBS for 10 snapshots. A consistency test
of band structures and gap values from EBS superpositions
on the number of snapshots considered has been done up to
20 snapshots for each superposition, and we have found that
the superposition over 10 EBSs shows good convergence with
respect to the gap values. Appendix E provides details on the
superposition of unfolded band structures of the supercells.

F. Calculation of bandgap energy

The bandgap energy, calculated both from DOS and
EBS, is defined as the energy difference between band
edges having intensity larger than some critical values (i.e.,
0.1 eV−1 atom−1 for DOS and the spectral functions stronger
than 0.1 Å eV−1 atom−1 for EBS). We note that the bandgap
energies obtained from this paper should be compared with
the gaps from photoemission or angle-resolved photoemission
spectroscopy but not to the gaps from absorption spectroscopy
or mobility measurement, as the gap calculations in this paper
consider the DOS rather than transitions from state to state or
electronic mobility.

IV. RESULTS

We start the presentation of this section by summarizing
the main results.

First of all, at all temperatures investigated starting from
300 K (AFM below the Néel temperature TN) to 700 K (PM,
above the Néel temperature), NiO is an insulator with a finite
gap. In this range, NiO shows a distribution of local magnetic
moments, which is not only in contrast to the ground-state
AFM phase (all Ni sites have a uniform moment) but also in
sharp contrast to the aforementioned nonmagnetic approach
applied in naïve DFT. Different levels of theory (Levels I–III)
give only small differences in the distributions of local mag-
netic moments. In all cases, the average local moment on Ni is
1.7 μB. This clearly demonstrates that the PM phase of NiO
at finite temperature cannot be described as a nonmagnetic
global average structure, which has been rather a common
approximation in motivating the development of post-DFT
methods [e.g., dynamical mean-field theory (DMFT)] [43,44].

In addition, temperature induces a change in the distri-
bution of local magnetic motifs at all levels of spin-lattice
dynamics. Even below the Néel temperature but above 0 K,
NiO cannot be described as a perfectly long-range ordered
AFM structure but indeed should be described using a large
supercell with given SRO.

Temperature also induces a reduction of the bandgap of
0.2–0.6 eV from 300 to 700 K in NiO at all levels of dynamics,
together with a broadening of DOS as temperature increases.
The gap reduction and DOS broadening in Level I are smaller
than that in Levels II and III, while the results of the latter two
levels are relatively consistent with each other. It indicates that
both spin and lattice dynamics have nonnegligible contribu-
tions to the gap renormalization; however, the coupling of the
two dynamics has only weak effects on the gap.

Finally, for every temperature, by comparing individual
unfolded band structures from single time snapshot with the
superposition of many individual unfolded band structures,
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FIG. 3. Distribution of local density functional theory (DFT) magnetic moments (i.e., μi =
√

μ2
i,x + μ2

i,y + μ2
i,z) on Ni corresponding to

different levels of spin-lattice dynamics and different temperatures.

we find that the band structure superposition shows clearer
incoherent features (or fuzziness or E -vs-k nondispersiveness)
than the single unfolded band structure but almost identical
coherent features (or sharpness or E -vs-k dispersiveness).
The gap values extracted from the unfolded band structure are
consistent with the gap from the DOS, showing a decrease in
the gap of 0.3–0.5 eV going from 300 to 700 K, depending on
the theory level.

According to these findings, we achieved two conclusions:
Static mean-field-like DFT is sufficient to capture the proper-
ties of Mott insulators such as NiO, including the existence of
an insulating gap and local magnetization, provided that the
spin and lattice symmetry-breaking DOFs are considered; our
ab initio, general, joint description of Mott insulator dynam-
ics under finite temperature predicts that the spin and lattice
dynamics, as well as their coupling, can have very different
contributions to different observable properties, e.g., local
magnetic moments and bandgap. Our joint model introduces

temperature in DFT calculations via statistical mechanics and
enables the calculation of finite temperature properties within
the same computational tool. The three levels of theory in this
paper show a significant advantage on the ability to investigate
and understand the dynamics in a detailed and decoupled
way.

A. Distribution of local magnetic moments

We find that, in contrast to traditional DFT calculations
having single absolute values of magnetic moments at fi-
nite temperatures, NiO—both below and above the Néel
temperature—has a distribution of local magnetic moments
(Fig. 3). In all cases, the magnetic moments on Ni atoms are
found to be ∼1.7 μB. These results thus demonstrate that, for
PM NiO at finite temperature, attributing the failure of the
SCLS with nonmagnetic globally averaged structure as the
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FIG. 4. Distribution of local spin motifs in the first coordination sphere for different temperatures and levels of spin-lattice dynamics.

failure of DFT, which has been claimed in many previous
studies [43–45], is not fair.

Increase of temperature results in small changes in the
distribution of magnetic moments, as shown in Fig. 3, which
is both originated from the change of short-range spin order
(discussed below) and from the different lattice constants for
different temperatures. In Level II, the distribution is not as
smooth as in the other two levels because only one spin config-
uration per temperature is employed here; therefore, each spin
always maintains the same correlation with the neighboring
spins, leading to a less homogenous fluctuation of the value of
the local magnetic moment.

B. Distribution of LSMs

We perform detailed analysis of LSMs within the first and
second coordination spheres calculated with Eq. (4). The re-
sults for different levels of spin-lattice dynamics summarized
in Figs. 4 and 5 show that temperature results in a substantial
broadening of the distribution of LSMs. This is especially

visible for the first-coordination sphere (Fig. 4). The analysis
of local spin distribution in the second coordination shells sug-
gests significant asymmetry of the distribution at temperatures
below the Néel temperature, which is caused by presence of
spin ordering in the second coordination sphere. However,
as temperature increases, the spins become more randomly
oriented, shifting toward a Gaussian-like distribution. A resid-
ual asymmetry in the distribution for the second coordination
shell at high temperature is observed at all levels. From a
physical point of view, these results demonstrate that NiO
has a degree of AFM correlations which survives even above
the Néel temperature, and this degree reduces as temperature
increases. Although qualitatively similar, the distribution of
LSMs slightly differs for the different levels of spin-lattice
dynamics, as illustrated in Fig. 5. Concerning Level II, the rea-
son for the nonsmooth distribution, as previously mentioned,
is due to the employment of a fixed spin configuration at each
temperature, therefore, fixing the local magnetic environment
and not allowing for a complete sampling of the phase space
of these quantities.

134406-8



DENSITY FUNCTIONAL DESCRIPTION OF SPIN, … PHYSICAL REVIEW B 106, 134406 (2022)

FIG. 5. Distribution of local spin motifs in the second coordination sphere for different temperatures and levels of spin-lattice dynamics.

C. Temperature dependence of SRO

The temperature dependence of distribution of local mag-
netic motifs is generalized in the corresponding dependence of

SRO calculated using Eq (5) and shown in Fig. 6 for the first
and second coordination spheres. It is found that, for the first

FIG. 6. Spin short-range order computed as the mean value of distribution of local spin motif for (a) first and (b) second coordination
spheres as a function of temperature for different levels of spin-lattice dynamics.
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FIG. 7. Density of states averaged over snapshots for NiO computed for different levels of spin-lattice dynamics at different temperatures.
The occupied states are shown by light blue shaded region.

coordination shell, the three levels agree completely with each
other, with SRO = 0, as expected from the low-temperature
AFM ordering of NiO and the low intensity of the exchange
interactions between Ni first nearest neighbors. For the second
coordination sphere, the SRO from Levels I and II are almost
identical by construction since the spin configurations in Level
II are chosen to match the SRO of the noncollinear Heisenberg
MC of Level I. Level III, instead, shows a slightly more
negative value of SRO, especially at higher temperatures. This
difference is rooted in numerical resolution effects originat-
ing in the small simulation cell used in the LLG dynamics
as compared with standard spin dynamics simulations (see
Appendix F). However, physical mechanisms that could arise
and introduce differences in the SRO parameter are the ex-
plicit accounting of spin dynamics and accounting for distance
dependence of Ji j (not considered in Level I–II theories).

Nonetheless, in addition to supercell size convergence ef-
fects, the three levels qualitatively agree with each other and
show a residual AFM correlation between Ni second nearest
neighbors also at the highest temperature of 700 K. Impor-
tantly, independent of the level of spin-lattice dynamics, even

below the Néel temperature, we find that AFM NiO cannot be
described as a perfectly long-range ordered AFM structure but
already exhibits spin symmetry breaking. This spin symmetry
breaking is further enhanced above the Néel temperature.

D. Electronic structure, DOS, gaps, and unfolded
band structure

1. Temperature dependence of DOS

Spin-lattice dynamics also significantly affects the elec-
tronic properties, as shown in Fig. 7. Importantly, in contrast
to naïve DFT calculation, all three levels of theory pre-
dict PM NiO to be an insulator with large bandgap energy.
These results are consistent with that found based on the
spin-special quasirandom structure (SQS) [46,47] model
(high-temperature limit of PMs) used previously [39,48],
further confirming that electronic properties of PMs cannot
be described as properties of global average nonmagnetic
structures but should indeed be predicted as average properties
of different local motifs. For all three levels of spin-lattice
dynamics, we find that bandgap energies decrease with tem-
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TABLE II. Bandgaps in energy and momentum, extracted from EBS with spectral function intensity > 0.1 Å eV−1 atom−1 for AFM, SQS,
and Levels I, II, and III as a function of temperature. L-45%-� means that the band edge is along the L-� path having a distance to L 45% of
the distance from L-�. All momenta are in the primitive Brillouin zone of single-cell rock salt NiO.

Gap energy (eV) Momentum (VBM to CBM)

AFM (T = 0) 2.9 L-45%-� to �-40%-X
SQS-PM (inf. T ) 2.42 L to �

Level I Level II Level III

Gap Momentum Gap Momentum Gap Momentum
T (K) energy (eV) (VBM to CBM) energy (eV) (VBM to CBM) energy (eV) (VBM to CBM)

300 2.74 L-20%-� to � 2.6 L-38%-� to � 2.58 L-41%-� to �-45%-X
400 2.5 L-15%-� to � 2.44 L to � 2.50 L-38%-� to �

500 2.5 L to � 2.28 L to � 2.38 L-10%-� to �

600 2.38 L to � 2.12 L to � 2.30 L to �

700 2.42 L to � 2.08 L to � 2.18 L-26%-� to �

perature. This decrease is the smallest for Level I spin
dynamics. This is not surprising, as Level I theory ignores
the effect of thermal atomic vibration on electronic structure,
which is known to reduce the bandgap energy in oxides [49]
and can be seen by comparison of the results for Levels I
and II theories. When comparing DOSs for Levels II and III
spin-lattice dynamics, one clearly sees similarities in the elec-
tronic structures. The main difference here is only in relative
intensities of the states at the band edges.

Comparing the present results with x-ray photoelectron
spectroscopy measurements [50], we observe that inclusion of
spin DOFs, together with the details of the employed PBE +
U functional, shows improvements with respect to previous
LDA + U results [51] concerning the DOS between −3 and
0 eV: The depression of DOS seen in LDA + U [51] is absent
in the present results, and a peak is observed around the same
energy (−2 eV) as in experiments [50]. The spectral weight of
the two peaks closer to the valence band, however, is reversed
as compared with the experimental spectra [50] and previous
LDA + DMFT results [45], as expected in a mean-field DFT
picture. Nonetheless, a detailed comparison with experiments
and higher-level theories is beyond the scope of this paper
since accurate results would require a careful choice of the
U parameter.

2. Temperature dependence of EBS

The unfolded band structures for all levels at temperatures
of 300, 500, and 700 K (Fig. 8) show that the temperature does
not affect the sharpness or fuzziness of the bands. The only
effect which can be seen is the change of absolute bandgap
value. As a comparison, the EBSs for the AFM ground state
[Fig. 8(a)] and for two different models of the PM state
[Figs. 8(b) and 8(c)] are also shown. It is clear from Fig. 8(b)
that the nonmagnetic approach does not represent the PM state
of NiO, leading to a metallic band structure.

3. Temperature dependence of bandgap energy

Analysis of both DOS and unfolded band structure demon-
strates that the increase of temperature reduces bandgap
energy (Fig. 9). At Level I dynamics, the change of bandgap

energy comes only from the lattice expansion and change
of SRO. The Levels II and III dynamics clearly show lower
bandgap energies than Level I, which is mainly because of
thermally induced atomic displacements on bandgap energy
that are accounted in Level II/III dynamics but not accounted
in Level I dynamics. When comparing the bandgap difference
for Levels II and III spin dynamics, we conclude that this
difference is within the error bar of calculations and results
in identical bandgap energies. We note that the gap values
extracted from DOS and EBS are consistent with each other.
In Table II, the bandgap energy for AFM, SQS, and the three
levels of theory for all temperatures investigated are pre-
sented, together with the position in momentum of the valence
band maximum (VBM) and the conduction band minimum
(CBM).

V. CONCLUSIONS

In this paper, we have simulated across the Néel transition
temperature an AFM insulator using three levels of increas-
ing complexity in accounting for spin and lattice excitations
and their dynamics. The treatment of electron-electron inter-
actions, on the other hand, is kept on the mean-field DFT
level. Our methodologies allow us to reaffirm the findings
in our previous works [14–16,49,52–57] that the mean-field
DFT level of theory is very capable of correctly predict the
existence of an electronic gap also in the PM phase, if one
avoids the naïve single-site averaging of magnetic fluctuations
into a nonmagnetic solution. Instead, gapping appears when
the PM state is modeled as a disordered magnetic state.

With this knowledge at hand, we can make use of the
efficiency of DFT to probe the question of how a disordered
magnetic state behaves dynamically, how it interacts with lat-
tice vibrations, and how such DOFs manifest in the electronic
structure.

We demonstrate these effects by performing simulations
on three different levels of dynamics: (I) Only the spin state is
dynamic, while the lattice is kept frozen on ideal points. (II)
A subset of the snapshot of the magnetic states obtained in (I)
is kept fixed, while the lattice is dynamically simulated using
AIMD. Finally, in (III), we used LLG atomic spin dynamics
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FIG. 8. NiO band structure from different levels of theory. (a) The unfolded effective band structure (EBS) obtained by density functional
theory (DFT) + U using a T = 0 collinear antiferromagnetic double-cell structure (2 f.u./cell), unfolded back into the primitive Brillouin
zone, showing an insulating gap. (b) The band structure obtained by the same DFT + U method but using the nonmagnetic approach of the
paramagnetic phase, showing no gap, hence a metallic behavior. (c) EBS obtained by the same DFT + U method but using the magnetic special
quasirandom structure (SQS) supercell approach, which shows a gap like (a). The last three rows show the EBS obtained by the same DFT + U
method, using lattice and spin structures from (d)–(f) Level I, (g)–(i) Level II, and (j)–(l) Level III theories at three different temperatures.
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coupled with AIMD to simulate a dynamically coupled spin
and lattice state.

Our focus is on the electronic consequences of these lev-
els of dynamics. We find that the effect of lattice vibrations
and spin dynamics affects the EMPs of the system under
investigation, and both effects should be considered at some
level to obtain a full picture of the system. In Level III, we
only observe minute differences from Level II in terms of
DOS-derived bandgaps, but a somewhat larger difference
is seen when evaluating the bandgap with the EBS-based
method. This indicates that the electronic states in the vicinity
of the band edges demonstrate some influence of the coupled
dynamics even if the absolute band edge positions do not.
Overall, however, we conclude that, for PM NiO, the impor-
tant aspect in theoretical modeling is to consider disordered
magnetism and lattice vibrations. The effect of their mutual
dynamical coupling is not large on the properties studied here.
Further investigations could be directed to properties such
as phonon lifetimes, thermal conductivity, and other aspects
where dynamical phenomena can have a larger impact.
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APPENDIX A: ANALYSIS OF SPIN AND VIBRATIONAL
TIMESCALES

Spin-lattice coupling has been discussed for NiO exper-
imentally [18–21] as the reason for the anomalous shift of
the two-magnon peak with temperatures across the Néel
temperature. This implies that the spin-lattice coupling could
lead to changes in properties as a function of temperature.
However, such a coupling has been neglected in previous
theoretical works. We investigate the spin and vibrational
timescales as a preliminary step to motivate our three-level
investigation. This is done below the Néel temperature in the
AFM magnetic phase.

To do so, we calculate the spin autocorrelation function
from an ASD simulation with exchange interactions from
Level I and, separately, the velocity autocorrelation function
from an AIMD simulation, which corresponds to Level II of

TABLE III. Exchange interactions J (s)
i j from DFT cluster expan-

sion inversion method employing shells of up to second and eighth
nearest neighbors. The superscript (s) in the exchange interactions
J (s)

i j indicates the interaction shell. All values are in millielectronvolts.

Exchange energy

Shell of up to
second nearest

neighbors

Shell of up to
eighth nearest

neighbors

J (1)
i j 0.865 0.865

J (2)
i j −9.54 −9.54

J (3)
i j – −0.1

J (4)
i j – −0.2

J (5)
i j – 0.0

J (6)
i j – 0.0

J (7)
i j – 0.0

J (8)
i j – −0.2

Fig. 1. Both simulations are carried out at 300 K in the AFM
state (TN = 320 K, see Appendix B), using a 32 f.u. supercell.
In the ASD simulation, we use a timestep of 0.01 fs, and we
run the simulation for 10 ps. The AIMD simulation is taken
from level II, see Appendix C for computational details. The
autocorrelation function C(t ) at time lag t is defined as

C(t ) =
〈

1

Natoms

Natoms∑
i=1

ai(t0) · ai(t0 + t )

〉
t0

,

where ai is the vector quantity under investigation (spin or
atomic velocity) related to atom i, and the average is per-
formed over time origins t0. The two separate simulations
allow us to investigate the timescales independently of each
other, from which the possible coupling can then be judged.
The results are presented in Fig. 10.

From Fig. 10, one can notice that the velocity autocorrela-
tion function falls off slower than that of the spins. However,
the difference in the decreasing speed (that can present the
timescale) is not orders of magnitude but rather a factor of
4 since the spin and the velocity autocorrelation functions
decrease from 1.0 to 0.2 in ∼20 and 80 fs, respectively. This
relation suggests that one could find a nonnegligible effect
of spin-lattice coupling for some properties if employing a
simulation technique that considers an interaction between
spin and lattice DOFs, such as the Level III theory in this
paper.

APPENDIX B: LEVEL I DYNAMICS: OBTAINING THE
HEISENBERG EXCHANGE INTERACTIONS FROM DFT;
MC DETAILS AND COMPARING TN WITH LITERATURE

Results for J (s)
i j , where s indicates the coordination shell,

are shown in Table III. Since exchange interactions between
farther coordination shells are extremely small and induce
differences of the order of ∼10% in the prediction of the
Néel temperature, with negligible improvement, herein, we
considered exchange interactions up to the second coordina-
tion shell with J (1)

i j = 0.865 meV and J (2)
i j = −9.54 meV (the

same as those shown by Zhang et al. [58]). We note that an
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FIG. 9. Temperature dependence of bandgap energy calculated for different levels of lattice-spin dynamics computed using (a) averaged
density of states (DOS) and (b) unfolded band structure approach. For DOS, the bandgap is calculated between occupied and unoccupied
states having intensity of 0.1 eV−1 atom−1. Bandgaps in energy and momentum are extracted from effective band structure (EBS) with spectral
function intensity >0.1 Å eV−1 atom−1.

alternative approach to extract exchange energies from DFT
is to determine them by small-angle rotations: The linear-
response theory provides the exchange energies appropriate
to small-angle spin rotations, as required by the Heisenberg
representation, thus avoiding the approximation [59,60] of
obtaining Ji j from purely ferromagnetic and purely AFM
large-angle spin rotations. These were used, for example, in
Ref. [61] to calculate by MC the Heisenberg problem in
GaAsMn.

1. MC simulations of spin configurations
and the Néel phase transition

MC simulations were run with the UPPASD code [4,62]
using 2 and 10 repetitions in all x, y, and z directions (32
and 4000 f.u., respectively) of the conventional face-centered
cubic NiO cell (only Ni atoms are magnetic). The differ-

FIG. 10. Spin (red) and velocity (blue) autocorrelation functions
in the antiferromagnetic (AFM) state at T = 300 K, as an example,
from uncoupled atomistic spin dynamics (ASD; like Level I) and un-
coupled ab initio molecular dynamics (AIMD; Level II), respectively.

ent supercell sizes are employed to quantize the finite-sized
errors. At each temperature, the system is first thermalized
carrying out 100 000 (10 000) MC steps with the small (large)
supercell. The measurement phase consisted of an additional
1 000 000 (20 000) MC steps in the small (large) supercell.
Note that, in the MC simulations, we do not consider the
dependence of Ji j on lattice constant, and hence, the effect
of lattice expansion on the spin DOF is neglected. This ap-
proximation is motivated by the fact that lattice expansion
in the considered temperature range leads to changes in the
exchange interactions smaller or equal to 0.2 meV, which does
not have any appreciable effect on transition temperature and
SRO parameter.

Around the peak of the specific heat (see
Fig. 11), MC simulations are carried out every
10 K to have a higher resolution of the transition
temperature (i.e., 10 K can also be seen as our error bar
in the calculation of TN). We find that, despite that the two
supercell sizes have noticeable difference in the temperature

FIG. 11. Specific heat from Heisenberg Monte Carlo simulations
for 2 × 2 × 2 and 10 × 10 × 10 supercells. The predicted Néel tem-
perature is ∼320 K. Dashed lines are just a guide to the eye.
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FIG. 12. Comparison of TN as a function of J (2)
i j from Monte

Carlo (MC) simulations from different works [63–65] (see Table IV
and corresponding J (1)

i j values shown there). J (2)
i j and TN from the

works are rescaled to be consistent, i.e., having the same definition
of exchange interactions and neglecting quantum corrections on the
moment sizes (see correction in Fischer et al. [64]).

profile of the specific heat, both 32 and 32 000 f.u. Heisenberg
MC calculations result in the same Néel temperature of
∼320 K (Ising Hamiltonian simulations via the collinear MC
method have also been carried out, and the predicted Néel
temperature is 980 K), which is substantially smaller than the
experimentally known Néel temperature of 523 K [17]. These
results are consistent with other Heisenberg MC simulations
in the literature [63–65]. An alternative method [66] to
determine the Néel temperature requires the fourth moment
of the order parameter for different sizes of the simulation
box as a function of temperature: These curves all cross at
the same temperature, which is the critical temperature. This
method, employed, for example, in Ref. [61], is more accurate
in the determination of the transition temperature than the
inspection of the specific heat curve; however, in this paper,
we are not after accurate Néel temperatures since we are

already aware of the issues of the Heisenberg Hamiltonian in
the prediction of transition temperatures in antiferromagnets.

2. Comparison of J (2)
i j and TN used in this paper

and reported in the literature

Figure 12 and Table IV provide the summary of the com-
puted J (2)

i j and TN in this paper and that reported in the
literature [63–65]. The underestimation of the transition tem-
perature is common in the transition metal oxide series MnO,
FeO, CoO, and NiO, as seen in Ref. [64], where both the
cluster expansion method and the magnetic force theorem
[59] were used and showed minor differences in the values
of the exchange interactions. Exchange interactions calculated
with the advanced functional in Ref. [65] showed a better
agreement, although employment of the classical Heisenberg
Hamiltonian could also be responsible for the underestima-
tion.

APPENDIX C: LEVEL II DYNAMICS: DETAILS OF AIMD

The AIMD simulations were carried out using noncollinear
PBE + U calculations [32,33] with U of 5 eV applied to Ni-d
states as implemented in VASP [34–37] at temperatures from
300 to 700 K in steps of 100 K with a 2 × 2 × 2 super-
cell (32 f.u.) using a fixed magnetic configuration with the
SRO parameter as close as possible to the results of the MC
simulations of Level I at the corresponding temperature. The
simulations are run in the canonical ensemble using Langevin
dynamics with a friction parameter of 10 ps−1. At each tem-
perature, we run for ∼2 ps, disregarding the first 0.5 ps as
thermalization. The snapshots on which we calculate DOS and
band structure are separated from each other by ∼100 fs. The
lattice constants of NiO were changed gradually from 4.179
to 4.201 Å corresponding to 300 and 700 K AIMD calcu-
lations, respectively, according to the experimental thermal
expansion [31]. The cutoff energy was fixed to 600 eV, and
the Brillouin zone is sampled using a 2 × 2 × 2 Г-centered
Monkhorst-Pack grid [38].

TABLE IV. Exchange interactions and predicted Néel temperature for Heisenberg Hamiltonian from this paper and previous works [63–65].
The values of exchange interactions can differ greatly even using the same exchange and correlation functional because of the value of U
employed. All exchange interactions J (s)

i j and TN are rescaled to agree with the present formulation of the Heisenberg Hamiltonian and without
accounting for quantum corrections.

Method J (1)
i j (meV) J (2)

i j (meV) TN (K)

This paper, PBE + U 0.865 −9.54 320
LDA-PW [63] −0.25 −7.35 272
LDA-localized orbitals [63] 2.7 −21.75 967
PBE [63] 0.6 −22.25 824
PSIC [63] 1.65 −12.35 458
HSE [63] 1.15 −10.5 393
ASIC [63] 2.6 −22.5 1048
SIC-LSDA [64] 0.15 −6.92 229
LDA + U [65] 1.48 −20.035 900
PBE + U [65] 2.355 −25.15 824
ABCN0-LDA [65] 1.015 −11.015 418
ABCN0-PBE [65] 0.4 −6.925 256
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FIG. 13. For T = 700 K, noncollinear spin level-2 2 × 2 × 2 (32 f.u.) supercell, (a) effective band structure (EBS) of a single snapshot
(index = 506), and (b) the superposition of 10 EBSs of 10 snapshots (index = 506–2108). The energy zeros in the figure are the location of
supercell valence band maximum (VBM; before unfolding). The sharp bands from +2 to higher energy are from Ni s orbitals, while Ni d
electrons dominate the fuzzy bands from −6 to 0 eV. The superposition, or time average, smoothens the EBS but does not introduce any other
changes. This is true for all levela of EBSs of all temperatures calculated.

APPENDIX D: DISTANCE-DEPENDENT EXCHANGE
INTERACTIONS

The distance-dependent exchange interactions, as de-
scribed in Ref. [23], are obtained by calculating the exchange
interactions between pairs of moments in lattice configu-
rations with consistent thermal atomic displacements. To
generate these configurations, we ran an ASD-AIMD simu-
lation with fixed exchange interactions from Table III with
a 3 × 3 × 3 supercell at 700 K. From this simulation, we
extracted three snapshots in which we selected several pairs of
moments with different interatomic distances. The exchange
interaction for a particular pair of moments i and j are then
obtained by carrying out total energy DFT calculations with
the moments i- j in configuration up-up, up-down, down-up,
and down-down, while keeping frozen the magnetic moments
on all other atoms. The Ji j between moment i and j are finally

calculated as

Ji j = − 1
8 [E (↑↑) + E (↓↓) − E (↓↑) − E (↑↓)], (8)

where E (↑↑) indicates the total energy of the supercell with
both spin i and j pointing up and correspondingly for the
other energies. The resulting exchange interactions are shown
in Fig. 2.

APPENDIX E: EXTENDED BAND STRUCTURE
CALCULATIONS

The superposition of different snapshots, or time average,
smoothens the EBS but does not introduce any other changes.
This is true for all levels of EBS of all temperatures calculated.
This can be seen in Fig. 13, where examples of EBS from a

FIG. 14. Short-range order (SRO) parameter for second nearest neighbors from Heisenberg Monte Carlo (MC) simulations for different
cells. The vertical red line indicates the predicted Néel temperature. The results show a considerable finite size effect, with the 2 × 2 × 2
supercell overestimating the strength of SRO at temperatures just above TN. In Heisenberg MC simulations, the size of the magnetic moments is
considered fixed to the value obtained in the ground state (1.7 μB); therefore, the SRO is calculated for unit vectors such that antiferromagnetic
(AFM) ordering corresponds to SRO = −1.
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FIG. 15. Short-range order (SRO) from two Heisenberg Monte
Carlo (MC) simulations, with a 2 × 2 × 2 supercell (32 f.u., blue
circles) and a 10 × 10 × 10 supercell (4000 f.u., black squares),
together with the SRO from two atomistic spin dynamics (ASD)
simulations, with the same cell sizes (32 f.u.: green diamond; 4000
f.u.: left-pointing cyan triangle) and from combined atomistic spin
dynamics - ab initio molecular dynamics (ASD-AIMD; 32 f.u. right-
pointing red triangle), which corresponds to Level III. MC and ASD
simulations are run with the exchange interactions calculated on ideal
lattice; the ASD-AIMD simulation is carried out instead using the
distance-dependent J (first and second shells, Fig. 2).

single snapshot [Fig. 13(a)] and the superposition [Fig. 13(b)]
for Level II at 700 K are presented.

APPENDIX F: SRO FROM MC AND ASD CALCULATIONS

SRO parameters for the first and second coordination
shells from MC are shown in Fig. 14 for supercell sizes
of 2 × 2 × 2 and 10 × 10 × 10 repetitions. SRO for the
first coordination shell is zero for all temperatures and
cells employed, whereas for the second coordination shell,
a considerable finite-sized effect is observed around the
Néel temperature, with the 2 × 2 × 2 cell overestimating the
strength of SRO. This finite-sized effect is even more pro-
nounced in ASD, as shown in Fig. 15. In this figure, we
see that the large cell (10 × 10 × 10, 4000 f.u.) MC and
ASD results (black squares and cyan left-pointing triangles,
respectively) agree perfectly, whereas for the smaller cell
(2 × 2 × 2, 32 f.u.), there is a considerable difference between
MC (blue circles) and ASD (green diamonds). The ASD-
AIMD simulations (red right-pointing triangle) inherit this
finite-sized effect.
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