Supporting Information for "Hidden Zeeman-type spin polarization in bulk crystals"

Shan Guan,¹ Jun-Wei Luo,^{1,2,*} Shu-Shen Li,^{1,2} and Alex Zunger³

¹State Key Laboratory of Superlattices and Microstructures.

Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

Center of Materials Science and Optoelectronics Engineering,

University of Chinese Academy of Sciences, Beijing 100049, China

³Renewable and Sustainable Energy Institute,

University of Colorado, Boulder, Colorado 80309, USA

I. DETAILS OF FIRST-PRINCIPLES CALCULATIONS

Our first-principle calculations were performed by using Vienna *ab-initio* simulation package $(VASP)^{1,2}$ within the framework of the projector augmented wave (PAW) method³. The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE)⁴ realization was employed for the exchange-correlation potential. The structures were fully optimized until the energy and force converged to less than 10^{-5} eV and 10^{-2} eV/Å, respectively. The plane-wave energy cutoff was set to be 350 and 520 eV for WSe₂ and BaBi₄O₇, respectively. Van der Waals interaction is considered by using the approach of Dion et al⁵ in the structural optimization of WSe₂. The Brillouin zone (BZ) integration was carried out on a Γ -centered Monkhorst-Pack grid with sizes of $21 \times 21 \times 5$ and $9 \times 9 \times 7$ for WSe₂ and BaBi₄O₇, respectively. The optimized lattice constants are a = b = 3.297, c = 13.095 Å for WSe₂ and a = b = 7.818, c = 13.574 Å for BaBi₄O₇. The spin polarization was evaluated by summing the projection of the calculated wavefunction $|\psi_k\rangle$ on the spin and orbital basis of each atomic site $|C_{i,l,m,\eta}|^2 = \langle \psi_k | (\frac{\hbar}{2} \sigma_\eta \otimes |l, m\rangle_{ii} \langle l, m|) |\psi_k \rangle$ in a given sector.

II. HIDDEN ZEEMAN-TYPE SPIN POLARIZATION FOR WSe_2

FIG. 1: The calculated local spin polarization for the highest occupied valence band in WSe₂ at $k_z = \pi$. One observes that the twofold degenerate band states on the whole BZ plane have opposite spin polarizations pointing exactly to the $\pm z$ -direction and remain independent of the momentum, demonstrating a hidden Zeeman-type spin polarization as proposed in the main text.

III. BAND STRUCTURE WITHOUT CONSIDERING SOC FOR BaBi₄O₇

FIG. 2: The calculated band structure of BaBi₄O₇ in the absence of SOC.

- * Electronic address: jwluo@semi.ac.cn
- ¹ G. Kresse and J. Hafner, Phys. Rev. B **47**, 558 (1993).

- ² G. Kresse and J. Haller, Phys. Rev. B 47, 556 (1955).
 ² G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
 ³ P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
 ⁴ J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
 ⁵ M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). (2004).