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Atomic structure and ordering in semiconductor a]1oys
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Application of a first-principles local-density total-energy minimization method to both ordered and ran-
-dom models of a III-V semiconductor alloy shows a bimodal distribution of anion-cation bond lengths
despite a close adherence to Vegard's rule and predicts ordered intermediate phases to be the thermo-
dynamically stable low-temperature ground state, whereas the disordered phase is shown to be metastable.

Pseudobinary semiconductor alloys such as A„'"Bp'„Cv
have been known' 3 to form as disordered (D) metastable
phases with positive excess enthalpies of formation
EHD(x) = H(A„B) „C)—xH(AC) —(1—x)H(BC), lat-
tice parameters that are close to the composition (x)
weighted average a(x) =xaqc+ (1—x)a)rc of the constit-
uent AC and BC compounds" (Vegard's rule), and band
gaps that are smaller than the composition weighted aver-
age2 ~ (positive "optical bowing"). Current theories of
structure and stability of semiconductor alloys' 3 have tacitly
postulated that the low-temperature instability PHD(x) & 0
of the disordered phase follows from the inherent instability
of (long-range) ordered intermediate compounds (e.g. ,
ABC2), and that optical bowing is largely disorder induced.
For instance, in Stringfellow's model' it is postulated that
the enthalpy H of any phase, ordered or disordered, is a
convex function of its lattice parameter H = ( —K/a)')
(where K is an empirical constant and p & 0). Hence, any
phase with a lattice parameter intermediate between those of
its constituent compounds will have hH & 0. Similarly, in
Van Vechten's model, positive optical bowing accompany-
ing compound formation is interpreted as a (destabilizing)
upward shift of the valence-band energies, leading to
AH & 0 for either ordered or disordered compounds whose
gaps are reduced relative to their average. All strain-
minimizing models necessarily lead to hH) 0, as the
strain energy is positive-definite.

Applying a first-principles local-density self-consistent
total-energy minimization method5 to both ordered and
disordered models of a prototype semiconductor alloy
(Ga„Int „P) we show the following: (i) Hitherto unrecog-
nized ordered (0) intermediate phases (e.g. , GaInP2) can be
stable (i.e., bHo & 0) despite the fact that we predict them
to obey Vegard's rule and to have positive optical bowing;
(ii) both ordered and disordered intermediate phases are
characterized by locally ordered and microscopically distort-
ed anion positions, 6 leading to two unequal anion-cation
bond lengths R&c&R~c (bond alternation); and (iii) despite
the stability of the ordered phases, substitutionally random
semiconductor alloys nevertheless have a positive excess
enthalpy EHD(x) & 0 as a result of the dominance of strain
effects over chemical bonding effects. They are stable
against disproportionation only at temperatures higher than
Tc, when the disorder-induced excess entropy 5SD
outweighs PHD (hence, Tc=LLHD/ASD).

Structural model. The four cations. of type A and Bcan as-
sume five different near-neighbor arrangements A4C,
A3BC, A2B2C, AB3C, and B4C around the centra1 anion C
in a fourfold coordinated alloy A„B1 „C. Denote these
structures by the number n = 0, 1, 2, 3, and 4 of the B-type

cations, and the corresponding nearest-neighbor anion-
cation bond lengths by RgP and R)SP. In general, these
bond lengths (and the corresponding bond angles) could be
deformed relative to the ideal bond lengths d~oc = (J3/4) a~ac

and de= (J3/4)agc of the constituent binary crystals AC
and BC at their equilibrium lattice constants a~c and agc,
respectively. Call these deviations 6$$=R)P —d~c and
b $P = RgP —

d)WIc. Extended x-ray absorption fine-structure
(EXAFS) measurements6 indicate that the A and B cations
are very nearly distributed on the ideal fcc sites, with only a
slight broadening in this distribution. Neglecting this small
broadening, we have for each cation-cation separation a/J2
only a single independent displacement coordinate b, ~" per
structure. We now evaluate the equilibrium (eq) values
h(g)(a), as well as the changes in total energy for both or-
dered crystals and for randomly disordered alloys sharing the
same local structures.

Ordered intermediate compounds. The local structures n
that exist in alloys could also be realized in coherent period-
ic crystals with a unit cell of the form A4 „B„C4, and a
total energy (say, relative to separated atoms) of
E~ )r c [a "),b "]per cell. For n=0 and n=4 these are

4 —n n 4
the conventional zinc-blende structures (F43m, or B3).
For n =2 we take the CuFeS2-type (I42d, or El)) chal-
copyrite structure7 and the simple tetragonal lattice (P4m2,
with a CuAu-I cation sublattice), whereas for n =1 and
n =3 we take the luzonite Cu3AsS4-type (P43m, or H24,
with a Cu3Au cation sublattice) structure and the famatinite
Cu3SbS4-type (I42m, or H2„with a A13Ti cation sublattice)
structures. For each ordered phase n we define its excess
energy relative to its constituent binary compounds at
equilibrium as

gE(n)[ (I) g(n)] E [ (n) g(n)]
A4 B C4

4
"E~c[o~oc]+

4 Eac [brac]
)

We have minimized the two-dimensional function
b, E " [a, 6] for A =Ga, 8 = In, and C = P for each of the
five crystals n, obtaining thereby the ordered phases ener-
gies AE0 using the self-consistant local-density pseudopo-
tential total-energy method. 5 The input to the calculation
consists of the first-principles atomic pseudopotentials of
Ga, In, and P, and the Ceperley-AMer correlation function-
al.9 A basis set consisting of 600-&00 plane waves in these
& atom unit cells and a strict self-consistency tolerance of
10 Ry assures a very precise convergence of AE " to
within better than 0.2 kcalimole (a mole is taken in this pa-
per as an atomic pair). We determined h(q) for each value
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FIG. 1. Percent charge (in units of dtop doRp) of the' near-
neighbor bond lengths in ordered phases ( ~) and in random alloys
(~).

of a iteratively by displacing the atoms to obtain the equili-
brium conditions of zero Hellmann-Feynman forces. '0

For the end-point crystals GaP (n =0) and InP (n=4),
we find calculated equilibrium lattice constants QG p and a~ p
that are within 1.5'/0'of experiments, like in other recent
calculations. " We find InP to have ~eaker bonds than GaP
(the cohesive energy —Et~[atop ] is smaller by 4 kcal/mole
than that of GaP) and a larger degree of ionicity: its max-
imum charge density p~„=32.5e/cell is both larger than
that of GaP (p,„=31e/cell, the experimental value is'2

35+3e/cell) and is drawn closer to the P site. For the in-
termediate compounds n= 1., 2, 3, i.e., Ga3InP4, Ga2In2P4,
and GaIn3P4, respectively, we find equilibrium lattice con-
stants aeq" that are within 0.5'/0 of the calculated
composition-weighted average values a ( n ) —= ~ (4 —n ) ag p

+ ~ )los p, confirming thereby quantum mechanically

Vegard's rule [a,~~") = a(n)] for the ordered compounds.
However, bond lengths do not average as lattice constants
do [i.e., A~c~ (x —1)(d~c —de) ]. ,We find very small
equilibrium deformations ht") ~ 0.01 A (solid circles in Fig.
1), indicating that throughout the composition range the
bond lengths tend to stay very close to their values in the
parent crystals. These results parallel the observed and cal-
culated anion displacements in real chalcopyrites7 and reflect
the classical idea by Bragg' ' and Pauling' ' that bond ra-
dii are approximately conserved quantities in different
chemical environments [b, t"l=—0]. What is new, however,
in the present quantum-mechanical result relative to classi-
cal theory is that we predict the intermediate compounds to
be not only stable relative to dissociation into free atoms,
i.e., (E~ s c (0), but to also be stable towards dispro-

portionation into its constituent binary compounds [i.e. ,
6Eeq ( 0, whereas classical additivity of bond energies'
would give AEt "l =0 in Eq. (1)]. We illustrate the mechan-
isms leading to this stability by considering the process
(4 —n)AC+ nBC~ A4, B„C4 in three steps. First,
compress at„p and dilate a(~ to the equilibrium lattice a,t~"l

of the intermediate compound. For n=2 we find that the
energy is raised by the volume deformation (VD) contribu-
tion d EvD = 0.87 kcal/mole due to this uniform elastic

strain. This is the only contribution considered in virtual
crystal mode1s' which grossly overestimate 4E'" . Second,
bring together 4 —n AC cells and n BC cells, both prepared
at Qeq to form the crystal A4 „B„C4,without relaxing the
internal bond lengths and angles [i.e., RgP
=Rgb = (J3/4)a, ~" ] to their equilibrium values. The en-
ergy change AE s reflects the ability of the A —C and B-C
bonds, having, in general, different chemical electronega-
tivities (CE), to exchange charge in the combined system.
Figure 2 (a) displays the corresponding difference in
charge densities d, pcE(r) = p [GaInP2, a,tel, undistorted]
—2p[GaP, a,'P ] —2p[inP, a,'4l ]. It shows that charge flows
from the less ionic Ga-P bond to the more ionic (but weak-
er) In —P bond, as Phillips' ionicity (fo~ = 0.327,
ft„p=0.421) would suggest. We calculate a small positive
AE = 0.85 kcal/mole, reflecting accumulation of extra
charge on the weaker bond. (In general AE could also be
negative, if the more ionic bond, e.g. , Ga-P, is stabler than
the less ionic bond, e.g. , Ga —As). In the final step we relax
the internal bond lengths and angles to achieve equilibrium
at b„t„"), involving a structural (S) energy change of
AE- = —3.2 kcal/mole which stabilizes the system. Had we
done this last step semiclassically by minimizing the bond
bending and stretching3 energies, using force constants of
the noninteracting AC and BC compounds' " (i.e., the
valence force field, VFF approach) we would have obtained
only a small energy stabilization of AE~ = —0.7
kcal/mole. This would have neglected deformation-induced
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FIG. 2. Cation-electronegativity induced I 5p ~ in (a)], and
structurally induced (hps in (b)] changes in the electronic charge
densities along the anion-cation bond in GaInP2. (c) shows hp for
GaIn3P4, where solid (dashed) contours indicate gain (loss) of
charge.
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charge transfer. Figure 2(b) shows the self-consistently
calculated deformation-induced charge transfer
b,ps(r) = p[GaInP2, a,{~2), distorted) —p[GaInP2, a,{~2), undis-
torted] and Fig 2. (c) shows similarly Ap (r) for Gain3P4.
They indicate substantial charge redistributions: the stabler
Ga-P bond (with a deep Ga pseudopotential) acquires more
charge than it lost in the previous step to the In-P bond
(with the shallower In pseudopotential). The corresponding
polarization (pol) energy is 6E"."—= 6E —6Ev""= —2.5
kcal/mole for n =2 and constitutes the main driving force
for stability. The tota1 excess energy of the ordered com-
pound is 5Eo=hE{" = (hE n+AE~"")+ (hE E+gE~')
We find AE,„=—1.48 kcal/mole for the chalcopyrite. The
ordered simple tetragonal structure is only 0.1 kcal/mole
less stable; similarly the luzonite and famatinite structures
are also close to one another in stability. A few observa-
tions are in order. First, the closeness of the ordered phase
energies AEg for these polytype pairs suggests that all are
likely to form kinetically at growth temperatures, but the
choice of growth (i.e., substrate) orientation might discrim-
inate them: the chalcopyrite is a (2,2) superlattice in the
(2,1,0) direction whereas the simple tetragonal CuAu-I-like
structure is a (1,1) superlattice in the (1,0,0) direction. We
hence predict these particular superlattices to be intrinsically
(not accidentally') stable against alloy formation below an
ordering temperature To = (PHD+ b, Eo)/LSD Secon. d,
these structures can be identified by their fingerprint diffrac-
tion beams. They are (+1,0, 0) and (+1, +1,0) for lu-
zonite and (0, + 1, + 1/2) for chalcopyrite, 7 whereas both
the farnatinite and the simple tetragonal structures have in
common the (0,0, + 1) and ( + 1, + 1,0) beams, but the
former also has the ( + 1,0, + 1/2) beam. Third, our
analysis suggests that alloys formed from closely lattice
matched binaries with a large difference in bond stability in
the direction of the charge flow (e.g. , AI„Ga~ „As with an—0.1% bond length mismatch but a large, 24 kcal/mole ex-
cess bond energy of AIAs over GaAs) will order readily
below To as (hE n+hE" ) is a vanishingly small positive
quantity but (hE +PEP") is larger and negative. Ironical-
ly, it is this closeness in atomic sizes (i.e., "atom indis-
tinguishability"), that also renders the same alloy grown
above Tc as strongly disordered. An opposite example
(5Eo ) 0) is likely to be GaSb„P~ „. Finally, it is interest-
ing to note'4 that whereas the chemical energy affects the
value of b, EO, it has a negligible effect on the position of its
minimum; i.e., R~"~ can be calculated with useful accuracy
from strain-minimizing models. '4

We have calculated the changes in the lowest band gaps
of Ga4 „In„P4 relative to the average of the calculated GaP
and InP band gaps ("optical bowing" ) for n =1, 2, and 3.
We find that most of the observed bowing4 7 (b =—0.5 eV)
is accounted for by the calculated VD, CE, and S changes
(0.45 eV). Hence, positive optical bowing can be produced
by local bond relaxation effects and need not reflect a ther-
modynamic instability of the compound.

Randan alloys. At the temperatures that semiconductor
alloys are usually grown, entropy-favored disordered alloys
are quenched in. We model the excess enthalpy of forma-
tion EHo(x) of such substitutionally disordered alloys by
assuming the A4 „B„units to exist at each composition
x(a) with a random probabilities Pt")[x(a)]
= („')x"(I—x)' " [Fig. 3(a)l leading to

AH (x) = X P'"'fx(a)hE{" [a, A]
n=0
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FIG. 3. Illustration of the way in which (a) the random oc-
currence probabilities P{"~(x) combine with (b) the equations of
state hE " (a) of the stable species n (stable areas highlighted by
shading), to produce (c) a positive excess enthalpy b, H&(x).

The properties of P{")(x) and hE{")(a) are such that
EHD (I ) =

AHD (0)= 0.
Figure 3 shows schematically why EHo(x) is positive for

a disordered semiconductor alloy, although stable ordered
intermediate phases (i.e., EE,{~") (0) can exist for integer
A/8 ratios at lower temperatures. At any given composi-
tion, say x=r [at which a(1/2)=a„'c/2+age/2], the
P{2)(1/2) = 37.5% of the ABC2 species present is seen to be
near equilibrium in its hE (a) curve, contributing there-
fore a negative term to hH~. However, the
P 0 (1/2) =P (1/2) =6.25% of the pure AC and BC
species present at this concentration with a(1/2) (as well as
the 25% each of the 238 and A83 species) are strained rela-
tive to their equilibrium lattice constants a~c and agc, con-
tributing therefore positive terms to AHD. The superposi-
tion of all five equations of states d, E{"(a) [Fig. 3(b)l,
weighted with their probabilities P{"[x(a) ] [Fig. 3(a)] pro-
duce in this case a positive AHD(x) curve [Fig. 3(c)]. Since
we showed that a,~" =a(n), the lattice mismatch 5{"(x)
of each species in the alloy is

a,'q"' —a(x) = (x —n/4) {aJc agc—) =—(x —n/4)aa

For small ha, the energy AE'"' is second order in 8 " (x);
hence, AHo{x) —Aa2. This is exactly the scaling found
empirically' to be necessary to explain the distribution of
the experimentally remeasured AHD values of most semicon-
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ductor alloys. Voile we have assumed a perfectly random
solid solution, the physical idea leading to /J, HD(x) ) 0 (cf.
Fig. 3) also suggests that in actual samples, the concentra-
tion fluctuations3 (as well as clustering') may be reduced
through the Boltzman factor exp —[b, E~"~(a)/ kT], reflect-
ing the smaller-than-random existence probability of the
highly strained species. Our analysis simply predicts this
tendency for homogenizations of the species to be enhanced
as ha increases, leading also to a temperaure dependence'
and nonparabolicity in i) HD(x).

For Ga„ln~ „P, we find that the experimental' /J. HD(x)
curve for the disordered alloy, with a maximum at
B,HD(1/2) = 0.72 kcal/mole (experimental uncertainty in
this value is around" 6 50%) is consistent with an excess
stability of an ordered GaInP2 of AEeq 03 kcalimole.
Our calculation (yielding —1.5 kcal/mole) overestimates
this stability due to "Brillouin zone effects, "7 i.e., reso-
nances between periodically arranged bonds present in the
ordered compound but not in the alloy.

We can use our calculated bond lengths RAg(a) and
RgP (a} for the ordered structure, to obtain their sample
averages'5 R (x) in a disordered alloy

R~c(x) = X cu)(P" [x(a)]R/P (a)
n=o

where co)/=4 —n (or cu$P= n} is the number of AC (or
BC) bonds. A similar expression pertains to Rs~(x). The
dashed lines in Fig. 1 show the calculated results, indicating
a bimodal distribution similar to that observed for other al-
loys, but R (x), in a random alloy, deviates from the corre-
sponding do values significantly more than do the bond
lengths R ' in the ordered phases.

%e conclude that the stability of the ordered structures
arises from the fact that they are strain reducing (i.e., small
b, Evn+ i5.Ev~), reflecting their ability to simultaneously ac-
commodate the two dissimilar bond lengths in a coherent
fashion (solid circles in Fig. 1). When small, this allows
the stabilizing chemical charge transfer terms to take over
(the net electron flow is from the less stable bond to the
more stable bond). Such ordered systems are predicted to

have a Vegard-like lattice constant, much like their random
analogs at the same concentration (hence the latter could be
used as a convenient substrate for growing the former), a
sharp bimoda1 distribution of bond lengths with displaced
anions, and positive "optical bowing" (although with some-
what larger gaps than their random counterparts). In con-
trast, random alloys do not minimize strain: although the
average bond lengths are still close to the ideal bonds (solid
squares in Fig. 1), configurations with strained bonds are
quenched in [Fig. 3(b)]. They are entropy stabilized over
the ordered phase when grown at temperatures above T~ or
(To); hence, annealing of these samples is not likely to or-
der them readily. Upon quenching to lower temperatures
they will either (a) disproportionate, (b) remain metastably
disordered, or (c) order. Ordering and disproportionation
can occur if sufficient atomic mobility remains at the lower
temperature and the activation barriers posed, for example,
by coherent strains, ' are-surmountable. The choice between
these two reactions depends both on the relative values of
Tc and To and on the relative size of their (unknown) ac-
tivation barriers. While reaction (c) could hopefully be cat-
alyzed chemically or by suitable photons, under normal con-
ditions, reaction (a) (e.g, , in GaP„Sb~ „, showing a misci-
bility gap) or (b) (e.g. , in Ga„Alt „As) prevail upon cool-
ing. However, if grown from the outset below To (about
iJ, Eo/k=200'C below conventional growth temperatures)
by growth techniques that assure sufficient surface mobili-
ties at lo~er temperatures, ordered phases, presumably with
appealing transport properties, are predicted to form.

Note added in proof: After the submission of this
manuscript we have been informed by T. S. Kuan, T. F.
Kuech, W. I. Wang, and E. L. Wilkie (unpublished), for
which we are grateful, that low-temperature growth of
Al„Ga~ „As for x= ~, Y, and ~ has produced a novel or-
dered and stable crystalline phase showing CuAuI-like dif-
fraction spots, confirming our theoretical predictions.

This work was supported in part by the Office of Energy
Research, Materials Science Division, U.S. Department of
Energy, under Grant No. DE-AC02-77-CHO 0178.

'Permanent address: Physics Department, University of Ulster,
Coleraine, Northern Ireland BT52 15A, United Kingdom.

tG. B. Stringfellow, J. Cryst. Growth 27, 21 (1974); J. Electron.
Mater. 11, 903 (1982).

2J. Van Vechten, in Semiconductors Handbook, edited by S. P. Keller
(North-Holland, Amsterdam, 1980), Vol. 3, p. 1.

P. A. Fedders and M. %'. Muller. , J. Phys. Chem. Solids 45, 685
(1984).

4A. Onion, M. R. Lorenz, and W Reuter, J. Appl. Phys. 42, 3420
(1971).

5J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409 (1979).
6J. C. Mikkelsen and J. B. Boyce, Phys. Rev. Lett. 49, 1412 (1982).
7J. E. Jaffe and A. Zunger, Phys. Rev. Lett. 51, 662 (1983); Phys.

Rev. B 29, 1882 (1984).
STo assure convergence of AE" to a useful precision ( —0.2

kcal/mole) we use a smoothed local approximation to the
density-functional pseudopotentials of A. Zunger and M. L.
Cohen, Phys. Rev. B 20, 4082 (1979), giving physically correct
lattice constants and charge densities (see text).

sSee J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
~oP. Bendt and A. Zunger, Phys. Rev. Lett. 50, 1684 (1983).
'For example, S. Froyen and M. L. Cohen, Phys. Rev. B 28, 3258

(1983). Even state-of-the-art calculations, phen converged, pro-
duce a rather large —2% error ( —0.04 A) in the lattice con-
stants of heavy III-V's (unconverged calculations can be better).
All numbers quoted in the text correspond therefore to our con-
verged results, which underestimate 6a.

~2H. G. Brifhl and U. Pietsch, Phys. Status Solidi A 68, 689 (1981).
t3(a) W. L. Bragg, Philos. Mag. 40, 169 (1920); (b) L. Pauling, The

Nature of'the Chemical Bond (Cornell Univ. Press, Ithaca, 1967).
t~J. L. Martins and A. Zunger, Phys. Rev. B 30, 6217 (1984).

A. Balzarotti, R. A. Kisiel, N. Motta, M. Zimnal-Starnawska,
M. T. Czyzyk, and M. Podgorny, Phys. Rev. B 30, 2295 (1984).
I. V. Bodnar, E. E. Matyas, and L. A. Makovetskaya, Phys. Status
Solidi A 36, K141 (1976).

~7A. R. Miedema, F. R. de Boer, and P. F. de Chatel, J. Phys. F 3,
1558 (1973).


