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Abstract. The structure and implementation of a new general iterative method for 
diagonalising large matrices (the ‘residual minimisation/direct inversion in the iterative 
subspace’ method of Bendt and Zunger) are described and contrasted with other more 
commonly used iterative techniques. The method requires the direct diagonalisation of 
only a small submatrix, does not require the storage of the large matrix and provides 
eigensolutions to within a prescribed precision in a rapidly convergent iterative procedure. 
Numerical results for two rather different matrices (a  real 50 x 50 non-diagonally dominant 
matrix and a complex Hermitian 181 X 181 matrix corresponding to the pseudopotential 
band structure of a semiconductor in a plane wave basis set) are used to compare the new 
method with the competing methods. The new method converges quickly and should be 
the most efficient for very large matrices in terms both of computation time and central 
storage requirements; if is quite insensitive to the properties of the matrices used. This 
technique makes possible efficient solution of a variety of quantum mechanical matrix 
problems where large basis set expansions are required. 

1. Introduction 

The matrix formulation of quantum mechanics permits essentially any quantum 
mechanical problem to be reduced to the diagonalisation of matrices. In modern 
electronic structure calculations, for instance, the problem is of the so-called ‘general 
Hermitian eigenproblem’ form, i.e. 

H ~ u )  = A s l a )  

where H is the N x N (Hermitian) Hamiltonian matrix, S is the N x N overlap matrix 
(reflecting possible non-orthogonality of the basis set, i.e. S, = (4t 14,) where { \4 , )}  is 
the set of basis functions) and la)  is one of the eigenvectors sought, with eigenvalue 
A. For matrices of reasonable size ( N  G 500) this eigenproblem is usually solved by 
the Choleski-Householder (CH) procedure: the Choleski decomposition of the overlap 
matrix S (Wilkinson 1965) is used to reduce the problem to the form 

H’la‘)=Alu’) (1.2) 

and the Householder method (Wilkinson 1965) is then used to find eigenvectors and 
eigenvalues of this problem. Finally, the eigenvectors are back-transformed using the 
inverse Choleski decomposition to find those of equation (1.1). 

These are, however, a number of practical difficulties with this approach. First, 
the C H  process needs random access to all of H and S (and often they must be stored 
in central memory as well). Second, the computation time for CH diagonalisation of 
an N x N matrix scales as N 3 ,  with a coefficient roughly independent of the number 
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1344 D M Wood and A Zunger 

of eigenvalues sought: even if only the lowest few eigensolutions are needed, the 
computational effort involved is close to that required for all eigensolutions. 

There are many problems of physical interest for which such difficulties with the 
CH method can become acute. Many quantum mechanical Hamiltonian problems 
require only the lowest few eigensolutions to very large matrices whose elements 
(4 , lHl+,)  are easy to calculate, but which possess no simple systematics (e.g. they are 
not diagonally dominant or  sparse). Such is the case, for example, in ground-state 
electronic structure calculations for molecules, solids and  surfaces, where our relative 
ignorance of what constitutes a physically motivated basis set {I+,)} often leads to the 
need for very large bases of simple functions. This is also the case when reasonable 
basis functions for each particle are known, but when the number of such particles 
(or quasiparticles) is large, e.g. in spin Hamiltonian problems. Interestingly, many 
well known approximations in electronic structure theory have, in fact, evolved as a 
result of the difficulty with direct matrix diagonalisation by the C H  method. For 
instance, an  expansion in terms of a simple plane wave basis set constitutes a reasonable 
and practical description of systems in a weak periodic potential (i.e. only a few Fourier 
components of the potential are important). The need to limit the number of plane 
wave basis functions in order that the C H  diagonalisation method be practical has 
spurred a variety of physical approximations which make the atomic (pseud0)potential 
artificially weak (e.g. Cohen 1970), but the physical validity of these remains uncertain 
(see the discussion in Zunger (1979) and Zunger and  Cohen (1978, 1979)). 

Similarly, the need to limit the dimension of the Hamiltonian matrix in molecular 
electronic structure studies has often led to laborious procedures for constructing a 
small set of physically efficient but unintuitive basis orbitals (e.g. Huzinaga 1963, 
Bishop 1967, ten Hoor 1980). As a final example, in many empirical tight binding 
methods for studying molecules and polymers, e.g. the Huckel method and  its variants, 
the interaction between distant particles is set to zero so that the resulting Hamiltonian 
matrix will possess certain special properties, permitting matrix folding and partial 
block diagonalisation (e.g. Harrison 1980). Clearly, many of these approximations 
would become unnecessary if the difficulties with the C H  diagonalisation method could 
be circumvented. 

In response to these serious drawbacks in the usual Choleski-Householder method 
there have developed in the past three decades a number of iterative methodst, all of 
which have the twin virtues that ( a )  they require the matrices H and S at worst only 
one row at a time and  ( b )  the time per iteration scales only as N 2 .  The tradeoff, 
however, is that one must iterate the procedure several (typically 2-20) times until a 
convergence criterion is met. It should be emphasised that these iterative techniques 
are intended to be useful when the computational bottleneck is the actual diagonalisation 
of the large matrices and  not the generation of the Hamiltonian and overlap matrix 
elements themselves. 

In § 2 of this paper we briefly review the philosophy of several well known iterative 
procedures for diagonalising large matrices and establish the notation to be used in 
§ 3, where a new iterative method (Bendt and  Zunger 1982b) is described in detail 
and contrasted with its predecessors. In 9 4  two numerical examples are given and  
discussed, and in § 5 some suggestions for implementation of the new method are 
presented; there the true benefits of the new method, and  when it is likely to be the 
method of preference, are discussed. An appendix contains the program structure. 

An excellent overview of most current iterative (and other) large matrix methods appears in NRCC (1978). 
A good brief review is Nesbet (1981). 
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2. Iterative methods for large matrix diagonalisation 

2.1. Background 

One is generally confronted with the problem of finding the lowest n eigenvalues and  
eigenvectors of the N x N general Hermitian eigenproblem ( 1.1). Typically, for ground- 
state properties of a physical system, the number of eigenvalues sought, n, is a small 
or very small fraction of N. In this section we discusss the features common to most 
iterative approaches to this problem. In what follows it will be assumed that one has 
identified a finite dimension N such that the matrices H and S describe adequately 
the physics of the problem at hand. One can then use the methods of finite-dimensional 
Hilbert spaces to proceed. 

The first point of similarity among the different iterative methods for diagonalisation 
is that most define or  use three distinct sets of auxiliary N-dimensional vectors. These 
are (i) the basis set {Id,), i = 1, . . . , N } ,  a set of functions of position used to compute 
the numerical elements of H and S ;  (ii) the complete set, { lxz ) ,  i = 1, . . . , N}, a set of 
vectors which must span the entire N-dimensional Hilbert space and in terms of which 
any  vector may be expressed; (iii) the expansion set: most iterative methods share the 
assumption that all eigenvectors of interest may be expanded in a small set of N- 
dimensional vectors { I  b,), j = 1, . . . , Nb} (the expansion set);  here Nb << N. The 
expansion set need contain only Nb elements precisely because it need span only that 
part of the N-dimensional Hilbert space corresponding to the lowest n (or smaller) 
eigenvectors of H. Depending on the iterative method discussed, Nb may be smaller 
than or greater than n. 

We will not dwell on the properties of the elements of H and S, but will assume 
that they are readily available for use by a computer program. Each iterative method 
is characterised by its choice of the complete set {Ixt)}  and the expansion set {Ib!)}; 
these will be discussed as they arise below. 

A second feature shared by the iterative methods is that, in order to provide 
reasonable input guesses to the iteration problem, one often partitions H into a ‘small’ 
part Ho (i.e. the unperturbed or ‘zero-order’ problem), of ‘small’ dimensions No x No, 
and the rest. (With the exception of the Lowdin perturbation approach (Lowdin 1951), 
none of the methods to be described below depends for its success (or lack thereof) 
on the extent to which the full N x N matrices can be accurately partitioned into ‘big’ 
and ‘small’ parts.) One directly diagonalises the No x No problem (say, by the CH 

method because No is ‘small’) and uses its output as input to the iterative procedure, 
which then refines eigenvectors and eigenvalues to a desired accuracy?. Since the 
No x No problem is by assumption small, in what follows we will assume that we have 
the general hierarchy 

Generally (as discussed in Q 5) one should choose No so that the level structure (i.e. 
the ordering and  degeneracy of eigenvalues) of the lowest n states of the full N x N 
Hamiltonian H is preserved, so as to avoid possible omission of eigenvalues and the 

t In electronic structure studies, for example, No may be the size of the ‘minimal basis set’, determined by 
the product of the number of atoms of a given type and the minimum number of basis states needed to 
crudely represent the wavefunctions for that atom, summed over the number of different atomic types in a 
unit cell. For a spin degeneracy of two, the number of occupied states (those, n in number, whose eigenvectors 
and eigenvalues are sought) may be roughly N 0 / 2 .  
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necessity for eigenvalue sorting:. The first step is to use the Choleski-Householder 
method to find the lowest n eigensolutions of Ho. Next, one augments the No- 
dimensional eigenvectors of Ho (which we will denote { I U ? ) , ~  = 1 , .  . . , No}) with ( N  - 
No) zeros to make them, together with the set of eigenvalues of Ho (denoted {AY}) ,  
suitable input guesses for whatever iterative method is being used$. 

Most of the efficient iterative methods are of the so-called 'basis expansion' variety 
(see, for example, Davidson 1978), based on the expectation that the approximate 
eigenvector will converge to the exact one rapidly as one adds to the expansion set 
{lb,)} one or  more new N-dimensional vectors per iteration. In each iteration one finds 
the eigenvalues and eigenvectors of the 'expansion set-projected' matrix problem 

(2.2) = I C )  = e fqc )  

ZzJ =(b , lH/bJ)  ntJ = ( b t l s l  '1)' (2.3) 

- 
where 

Then ek is the current approximation to the kth eigenvalue of H and 

is the current approximation to the kth eigenvector of H, where lek) is the kth eigenvector 
of equation (2.2). 

Finally, we note that most of the methods described below are sequential, i.e. they 
are designed to find first one eigenvector (to within a specified tolerance) and  its 
eigenvalue, then the next, etc. Several, however, are 'block' methods, i.e. they generate 
approximations to several eigenvalues and  eigenvectors at a time. 

2.2. The Newton- Nesbet step 

Obviously all of the iterative methods have in common the need to generate a new 
vector (either for addition to the expansion set o r  directly as a new approximation to 
an eigenvector) from a current one. Hence we next discuss the so-called Newton step. 
A quantity of central importance is the 'residual vector' 

IR(IA"'), E"'))= (H-  EaPS)IAap) (2.5) 

the quantity R = ( ( R  I R)/(AdPIS~AdP))"' is a widely used measure of the extent to 
which an  approximate eigenvector iAap) and eigenvalue EdP fail to be exact. In equation 
(2.5) Ea' is directly computable from IAaP) via the Rayleigh quotient: 

E ap = (AapI HIAap)/(AaplSl Asp). (2.6) 

The strategy adopted by most iterative methods is to determine a vector increment 
/6A) which, when added to the current approximate eigenvector \Aap), yields a residual 
vector as small as possible (ideally, zero). We thus require that 

I R( I AaP + SA), E"')) = I R(  /AdP), E"')) + ( H  - EdPS) /8A)  = 0 (2.7) 

+ Since n < <  N and one often knows from group theory what the degeneracies should be, this is rarely a 
problem. 

Alternatively, one may use as the input guess a vector believed to be 'close' to the final eigenvector sought. 
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where we have used the linearity of the residual operator. Unfortunately, the formal 
solution 

/6A)  = -( H - EapS)-’ /  R (  lAap), E”’))  (2.8) 

is no easier to solve than the original eigenproblem because of the need for matrix 
inversion. One may develop a simple basis for iteration by expanding /6A) in the 
complete set {ix,)} and taking the inner product with one, say lx,); the result 

(2.9) 0 = (x, 1 R )  + 1 (x,lH - EaPS/x,)(x, 1 6A) 
J 

however, remains equivalent to equation (2.8). To overcome this difficulty, all popular 
iterative methods make the ‘diagonal approximation’ in keeping only the term j = i in 
equation (2.9). (For  later use we note that this would be exact if the {Ix,)} were the 
true eigenvectors of H ;  hence, the closer they are to true eigenvectors, the better the 
diagonal approximation will be.) The result of the diagonal approximation becomes 

(2.10) 

which we shall term the ‘Newton step’ because of its resemblance to the usual 
Newton-Raphson iterative procedure for finding the zero of a function. The similarity 
of this expression to low-order perturbation theory follows from its Taylor series 
origins?. The prime in (2.10) means ‘omit any i such that the magnitude of the 
denominator is less than a cutoff 6’; one may choose S to be typical of the numerical 
difference between eigenvalues which will be regarded as physically degenerate$. This 
omission is necessary because we have effectively defined a diagonal approximation 
to ( H  - EapS)-’ in equation (2.8); if Rk = 0 then the component AiP = AYact so SAk 
should be zero. 

Clearly we now have the framework for iteration: we replace /Aap) by \Ane%) = \Aap)+ 
ISA), and E“’ by E”‘” = (Anew~H~Anew) / (Anew~S~Anew) ,  and iterate. In practice, however, 
simple iteration of this process is not guaranteed to converge for an arbitrary Hamil- 
tonian H. In our description of the new RMM-DIIS  method in 9 3 we will show how 
the sequence of the {16A“’)} generated by iterations, labelled m, using a careful choice 
of complete set and a powerful convergence acceleration step, can be used in an  
efficient technique for diagonalising large matrices. 

With the notation established above we are now in a position to review several 
well known iterative methods commonly used in physics. 

2.3. Simpre iteration 

Choosing 

{IxJ} = {IeJ} (2.1 1 )  

where le,) is a column vector of zeros with a one in the ith position, and  using it in 
the Newton step (equation (2.10) above) yields one version of the well-known Nesbet 
method (Cooper 1948, Nesbet 1965). This is not a basis expansion method, but relies 

+However, in contrast to perturbation theory, in deriving equation (2.10) we did not need to require 
orthogonality of the complete set {lx,)}, and we arrived at a form which does not become more difficult as 
the iteration number (order of perturbation theory) increases. See Bendt and Zunger (1982b) for details, 
$ S - 10 Ryd is typical, though results should be and are extremely insensitive to this choice. 
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instead on repetition of the Newton step. Variants of this procedure and a block form 
are described in detail by Raffenetti (1978, 1979). Because the {ix,)} are not close to 
eigenvectors of H, however, the diagonal approximation (equation (2.10)) is expected 
to be poor; even a convergence accelerator may not overcome the limitations of an 
inadequate complete set. 

2.4. The Lanczos method 

Probably the oldest and best k:,own basis-expansion iterative method is due to Lanczos 
(Lanczos 1950, Parlett 1980, Scott 1981). It may be described succinctly by the 
identification (for the case S = I )  

{lb,)Kp=0/1/2/ . . . l = [ l a ~ ? l H I ~ ~ ) l H 2 1 a ~ ? /  . . .  1 (2.12) 

where the vectors between slashes are those added to the expansion set in the corre- 
sponding iteration number p (see Davidson (1975) for an identification of this basis 
set): in the zeroth iteration the expansion set consists of the input guess for the 
eigenvector, in the first iteration it contains two vectors la,”) and Hlay), etci. H is then 
diagonalised with the space of expansion vectors; see equations (2.2)-(2.5). This 
method typically works well for the largest eigenvalues, since repeated multiplication 
by H followed by normalisation converges to the eigenvector corresponding to the 
highest eigenvalue. 

2.5. Block Davidson 

We describe a method originally proposed by Davidson (1975)$, as modified into 
block form by Liu (1978). It is described by the sets 

{lxi)} = {le,)) (2.13) 

(2.14) 

In words, in each iteration rn new orthogonal vectors are added to the expansion set: 
in the first iteration each new vector consists ofthe Newton correction /6Ak) correspond- 
ing to the kth eigenvector of the No x No problem (augmented with zeros to make it 
N-dimensional), Gram-Schmidt orthogonalised to its predecessors already added to 
the expansion set. (In practice, if the resulting vector has too small a norm ( < E ) ,  it is 
discarded.) This approach has the virtue that the input of a single row of H can be 
used to refine m eigenvalues and eigenvectors per iteration. Since there are m more 
expansion vectors at the end of an iteration, the rate of convergence of the iteration 

t To be precise, i f  all the { lb , )}  are normalised (but not orthogonal) Ib,)= lap), lb2)= IT,), and for k a 3 ,  
l b k ) = l T k ) - I b ~ - &  where, for all k, ~ T ~ ) ~ [ H - ( b ~ ~ , ~ H i 6 ~ - , ) ~ ] ~ b ~ - , ) .  In the absence of round-off error S 
(for n = I )  would be fridiagond In  practice, one usually Gram-Schmidt orthogonalises Ibk) to all earlier 
members of {lb,)}  to prevent error accumulation. 

This scheme is an alternate formulation of the unsymmetric Lanczos method; the so-called ‘Paige’ variant 
(Parlett 1980) of the symmetric Lanczos method, which is applicable to Hermitian matrices, would probably 
be more efficient. 

See also Nesbet (1981) and Butscher and Kammer (1976) for a root-homing version. 
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sequence may be improved considerably. (The usual Davidson procedure (Davidson 
1975, Butscher and Kammer 1976) corresponds to the choice m = 1.) 

2.6. The Lowdin perturbation method 

This technique (Lowdin 1951, Brust 1964, 1968) bears no close relationship to any of 
the approaches described above or below, but is widely used to ‘fold in’ the effects of 
a large N x N Hamiltonian into a much smaller No x No effective Hamiltonian. For 
the matrix eigenproblem ( H  - A l ) l x )  = 0, the N x N Hamiltonian H is partitioned into 
four blocks, where Ho is No x No as shown schematically: 

(2.15) 

so that, provided the number of eigenvalues sought, n, satisfies n S No<< N,  the effective 
eigenproblem may be reduced to diagonalising the No x No matrix 

(2.16) 

Obviously the effective matrix elements now depend on the actual eigenvalues of the 
full Hamiltonian H ;  the iterative solution of the new problem (2.16) naturally generates 
the so-called Brillouin-Wigner perturbation series (e.g. Ziman 1969). In practice (Brust 
1964, 1968), to find eigenvalues of H near A: (an eigenvalue of Ho) one replaces A 
above by A y ,  or even by a free-electron approximation to it. As typically implemented, 
however, the Lowdin scheme keeps only the lowest two orders in perturbation theory. 
As such, the technique may diverge from a correct eigenvalue or converge to an 
incorrect one, as will be illustrated below. 

H ; ~  = tz0- B( c - A I ) - ’ B + .  

3. RMS-DIIS method 

The ‘residual minimisation/direct inversion in the iterative subspace’ ( R M M - D I I S  or 
simply DIIS)  method due to Bendt and Zunger (1982a,b) will be discussed in detail 
below; it can be described by the choices, for iteration number p and eigenvalue j ,  

and 
{Ix l )}={Ia~) , J=l  , . . . ,  N o } + { I e , ) , j = N o + l ,  . . . ,  NI (3.1) 

{Ib,)}[p=0/1/2/ . . . ] = [ I  ~y)/l6A:”)/lSA:~’)/ . . . .  (3.2) 
The first distinguishing feature of the D I I S  method is its choice of complete set. As 
discussed after equation (2.9) above the usual diagonal approximation in the Newton 
step (equation (2.10)) becomes exact if the complete set selected consists of the true 
eigenvectors of H. Thus we expect that a complete set consisting of approximate 
eigenvectors of H (i.e. the set { lay)})  of eigenvectors of Ho augmented with zeros to 
make them N-dimensional) plus a set of unit vectors (to make the complete set contain 
N linearly independent vectors) will be a considerably better choice than the usual 
set {le]) ,  j = 1, . . . , N}. Moreover, the eigenvectors of Ho are immediately available 
since Ho was diagonalised to provide starting guesses for the eigenvalues and eigenvec- 
tors to be refined by the iterative process. For our choice (3.1), then 

(3.3) 
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The expansion set {I b,)} requires further explanation. Like the other basis expansion 
methods, D I I S  uses a Newton step, equation (3.3), to generate a new vector /6A) which 
is then added to {Jb,)}. The elements of this set are thus the )6A) generated in each of 
the preceding iterations, so that DIIS  clearly incorporates information from the entire 
iteration history for the given eigenvector being refined. Since the vectors {16A"))} are 
generated by the iteration process, they are said to span the 'iterative subspace'. The 
great power of the DIIS  method lies, however, not in the choices for {Ib,)} and {Ix,)} 
but in the fact that, to produce the new approximate eigenvector of H one asks: 'what 
linear combination of the expansion vectors minimises the residual of the resulting 
vector IA",qs)?' (hence the R M M  of residual minimisation). 

In what follows the steps involved will be described sequentially. It will be assumed 

IA("-')), the latest approximations to the eigenvalue and its eigenvector. At this point 
the expansion set consists of {I8A'O'), )6A")), . . . , 18A("-'))}, where we have defined 
ISA'") = lay), the input guess for the eigenvector. The procedure is as follows. 

(i) Generate /SA"') via the Newton step equation (3.3) and  add it to the set { lb l ) } ,  
which now contains ( m  + 1)  elements. (One generally forms and stores the set of 
vectors {HIGA'"'')} and  {S16Aim')} as the {ISA'"'))} are generated, for reasons which 
will become obvious in step (ii)). 

that upon entering the mth iteration one has available E,,, = E'"-') and (Aold) = 

(ii) Perform the D I E  step: one writes 

(3.4) 

for k = 0 , .  . . , m. Letting la) denote the ( m  + 1)-dimensional vector whose components 
are the ak, this problem is equivalent to finding the eigenvector of lowest eigenvalue 
of the generalised Hermitian eigenproblem: 

Pia) = p*QIa) (3.6) 

Pry =((If- Eol,S)SAi')l(H- E,,,S)GA'") (3.7) 

where 

and 

Q~~ = (GA(')/S/SA(~)). (3.8) 

Since P and  Q are matrices of size only ( m  + 1) x ( m  + 1) and the number of iterations 
required is small, this diagonalisation may be performed by the Choleski-Householder 
method in negligible time. (This step has been termed by Pulay, who introduced this 
step to accelerate the convergence of self-consistent solutions of the Schrodinger 
equation (Pulay 1980), 'direct inversion in the iterative subspace', hence RMM-DIIS.) 

(iii) Substituting the coefficients {ak} minimising the residual into (3.4), one then 
calculates 

E E& = (A",qsI HI A",q";/( AElYs I S I AE;s) (3.9) 

(3.10) 
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using the stored values of the {H(SA'k ' ) } .  Note that the new residual R"'"= 
((Rnewl R,,,))"2isusuallymuchlessthan(p2)"2inequation(3.6) becausetheenergy (3.9) 
has been updated. 

(iv) Check for convergence; if the residual R"'" is less than a prescribed tolerance, 
stop the iterations and store the new eigenvector and eigenvalue. If the desired residual 
has not been achieved, replace ,Fold by EEGs and IAold) by IAg&) and return to step (i). 

It should be clear from the discussion above that the D I I S  method in no way relies 
on any special features of the matrices treated, e.g. they need not be sparse, or diagonally 
dominant, etc. The new R M M - D I I S  method clearly builds on a number of existing 
ideas, and it may be though of schematically as 

{ D I I S }  = {better complete set} + {Newton step} + {convergence accelerator} 

the last of which is the real key to its success. As such, it seems clear that there may 
be a whole class of new iterative methods based on such 'DIIS '  steps, differing in details 
from the method described above. Some suggestions as to implementation are described 
in § 5 and the appendix. 

4. Numerical examples 

Several questions arise immediately in the context of a new matrix diagonalisation 
iterative method. Among these are: ( i )  how does its convergence rate compare with 
existing methods?; (ii) how does the computation time spent to obtain a set of 
eigenvalues and eigenvectors to desired residual accuracy compare with competitors?; 
(iii) to what features of the matrices to be diagonalised is the method sensitive? In 
what follows we will address these questions by means of specific examples. Although 
this method can be easily applied to huge matrices (see, for example, Bendt and Zunger 
1982c, Jaffe and Zunger 1983), for illustrative purposes we consider below relatively 
simple matrices of moderate size. 

It cannot be overemphasised that the convergence rate (i.e. the decrease in residual 
per iteration) alone is an inadequate index of the efficiency of an iterative method: if 
the time taken per iteration is excessive, a given iterative method may not be practical. 
Nonetheless, the convergence rate provides a useful demarkation between several 
classes of iterative methods. 

4.1. Real matrix convergence rates 

In figure 1 we show the iteration histories for the lowest eigenvector of the 50x50 
so-called 'modified Nesbet matrix' (Raffenetti 1978, 1979) defined by 

H . .  U = H..  11 = 1 i # j  i , j = l , 2  , . . . ,  50 

(4.1 ) 

Here we have used as input guesses the eigenvectors and eigenvalues of the leading 
5 x 5 sub-block of H, i.e. No = 5; this is not so for curves, D, E and F. This matrix 
has been used recently by Raffenetti (1979) for tests of other iterative methods. While 
not large, it formally presents a fairly difficult test because the leading 5 x 5 sub-block 
is clearly not diagonally dominated; we may, in fact, regard the close spacings of the 
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I terat ion number 

Figure 1. Iteration histories for the modified Nesbet matrix: A, block Davidson ( m  = n = 4), 
E = IO-’: B, Davidson: C, D I I S ;  D, E, F, simultaneous coordination relaxation for m = 5,  
3, 1 ,  respectively (see Raffenetti 1979); G, our version of unsymmetric Lanczos (equation 
( 2 . 1 2 ) ) :  H, simple iteration using the D I I S  complete set (equation ( 3 . 1 ) ) ;  I ,  simple iteration 
using the Nesbet complete set (see equation ( 2 . 1 3 ) ) .  

first five diagonal matrix elements as an imitation of the effects of five-fold degeneracy. 
Inspection of figure 1 shows the following. 

(i) The three most rapidly convergent methods are the block Davidson method 
(with m = n =4 ,  curve A), the regular Davidson method ( m  = 1, curve B) and DIIS, 
curve C. 

( i i )  The ‘simultaneous coordinate relaxation’ method (Raffenetti 1978) (not dis- 
cussed here), applied here in a block form, converges at a rate which is fairly sensitive 
to the number of eigenvectors being refined simultaneously ( m  = 1,3,  5 ;  curves F, E, 
and D, data of Raffenetti (1978)). 

(iii) Our  variant (equation (2.12)) of the unsymmetric Lanczos procedure (curve 
G) appears to converge, but slowly and non-monotonically. 

(v) Simple iteration of the Newton step (curve H), even using the improved D I I S  

complete set (equation (3.1)), converges extremely slowly, if at all. Simple iteration 
of the Newton step using the diagonal approximation and a unit vector complete set 
(the ‘Nesbet’ approximation, curve I )  also fails to converge. 

Since the first three methods have the best convergence rates, we will confine 
discussions below to these methods. The m = 1 (regular Davidson) and DIIS  results 
converge at essentially the same rate, though there is an offset because of different 
handling of the first iteration. The m = n = 4 block Davidson method, however, 
converges considerably faster (about 34 times) than the other two?. 

4.2. Comparison of block Davidson and Diis  approaches 

The reason for the difference in convergence rates between the block Davidson (BD) 
and D I I S  methods is implicit in their different structures. The BD method chooses to 
add many (in the usual B D  method, m = n )  new vectors to the expansion set in one 
iteration. The benefits this provides are (i) faster or  even much faster convergence 
than the D I I S  or unblocked ( m  = 1 )  Davidson methods and (ii) decreased input/output 
requirements and increased convenience because many ( n )  eigenvectors and eigen- 
values are being refined simultaneously in the same loop. The drawback of the BD 

method is most pronounced, however, when the ‘small’ matrix dimension No is relatively 

t It would have converged four times faster (because nt = 4) except that one of the added vectors had a 
post Gram-Schmidt norm E of <IO- ’  (our threshold for acceptance) and so was discarded. 
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large. I t  is that the size of the expansion set Hamiltonian E increases by m with each 
iteration-(No+ m )  square after the first iteration, etc. If m - n and n - No (cases of 
typical physical interest) the time spent in the Choleski-Householder operations grows 
rapidly. If the number of new vectors added to the expansion set per iteration is 
reduced below n, however, the convergence rate is generally reduced accordingly. 

The great virtue of the D I I S  procedure is that, after the zeroth iteration diagonalisa- 
tion of the small H,, problem, it need never diagonalise a matrix larger than the maximum 
number of iterations, typically s 10. Its drawback is that it is in essence a sequential 
process: for each eigenvector to be refined, the full Hamiltonian (and overlap matrix, 
if present) must be read in one row at a time?. The discussion of computation time 
scaling, in which the true benefits of the DIIS method are demonstrated, is postponed 
to § 5 .  

4.3. Convergence rates f o r  a complex Hermitian matrix 

It may be objected that the modified Nesbet matrix of figure 1 is rather artificial; we 
consider next the numerical results for a 181 x 181 complex Hermitian Hamiltonian 
matrix describing slightly expanded ZnSe, at the r point of the Brillouin zone, within 
a plane wave basis ( S  = I ) .  The matrix elements are computed using the pseudopoten- 
tial parametrisation: of Louie et a1 (1977) and were written into external files from 
which they were read, as usual, one row at a time. This Hamiltonian is fairly typical 
in both form and  numerical content of those encountered in band structure calculations. 
It presents the added difficulty, typical of solid-state problems, that many of the 
eigenvalues are degenerate; the exact level sequence is shown on the right-hand side 
of figure 3, to be  discussed later. 

The iteration histories for the lowest eigenvalue at r for six different methods are 
shown in figure 2. Here No = 15 was selected because this was the smallest set of the 
plane waves for the ZnSe structure for which the eigenvalue structure of the lowest 
eight levels of H was preserved. The structure of the Hamiltonian here is sufficiently 
well behaved that all methods used converged, albeit some better than others. 

Once again there is a clear division between the more sophisticated basis expansion 
techniques: block Davidson (curve A), Davidson (curve B) and  DIIS (curve C)  and 
the simple iterative methods (curves D, E and  F). This time, however, the presence 
of degeneracy enormously reduces the factor by which the block Davidson (here, 
m = n = 8) converges faster than the DIIS and regular Davidson methods. As before, 
D I I S  and regular Davidson methods converge at about the same rate, as the parallelism 
of curves B and C indicate. 

4.4. Complex Hermitian matrix: Lowdin method 

Before turning to the computation time discussion, we briefly remark on the inadequacy 

+To  reduce input/output operations, one could easily 'block' the D I I S  step, so that m eigenvalues and 
eigenvectors were refined simultaneously at the expense of increased central memory storage. The residual 
for each eigenvalue, however, would converge as if  it were being refined independently of the other ( m  - 1 ) .  

One may also exploit the Hermiticity of H and S by reading only up to and including the diagonal of 
H and S :  see Shavitt (1970). We thank Dr Sverre Froyen for pointing out how the original D I I S  algorithm 
could be modified to take advantage of this simplification. 
?The  form is V,,,(q) = b , ( q 2 -  b,){exp[b,(q2- b,)]+ I ) - '  where the coefficients for Zn(Se) are b,  = 
6.7008(0.?334), b,= 1.4983(3.3858), b3=0.6696(0.7266) and b,= -4.7128(+2.2012). We scaledthe reciprocal 
lattice vectors by a factor of about I .06 (i.e. with a lattice constant of6.002 A )  to simulate dilation of the lattice. 
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lterotion number 

Figure 2. Iteration histories for the complex Hermitian ZnSe matrix: A, block Davidson 
( m  = n = 8 ) ;  B, Davidson; C, D I I S ;  D, simple iteration using the D I I S  complete set equation 
( 3 . 1 ) ;  E, our version of the unsymmetric Lanczos method (equation (2.12)); F, simple 
iteration using the Nesbet complete set equation (2 .13) .  

of the well known Lowdin perturbation scheme (see § 2) .  In figure 3 we show, for 
fixed ‘small” matrix dimension No=9,  the eigenvalues which result from the DIIS 

method (or, in fact, any method which gives correct eigenvalues) and  the Lowdin 
perturbation calculation (using the eigenvalues of Ho in equation (2.17)) as one 
increases the size N of the large matrix from 9 to 181 (the full reference Hamiltonian 
described above). Curves belonging to the same multiplet (indicated on the right-hand 
margin of the figure) are connected with braces?. It is clear that for the valence band 
(the lowest two multiplets, of degeneracy 1 and  3, respectively) the Lowdin perturbation 

I- I 

I l , l , l , l , l , l , l , l r l ,  

0 40 80 120 160 2 00 
Size o f  large matrix, N 

Figure 3. Comparison of Lowdin (- - - )  and D I I S  (-) convergence for fixed N0=9 as 
a function of N .  

+ The pathology for D I I S  and the Lowdin method for the highest eigenvalues shown (i.e. complete omission 
of the second level from the top) is a manifestation of the inadequacy of No = 9 in representing the lowest 
six multiplets of the 181 x 181 problem. 
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method gives results which are convergent, but wrong: the valence band is not described 
by the eigenvalues of Ha used in equation (2.17). By contrast, the lowest two eigenvalues 
of the conduction band (also of degeneracy 1 and 3, respectively) found by the Lowdin 
method are quite close to the exact values, since free-electron conduction band levels 
are frequently less perturbed by the crystal potential. 

4.5. Computation time considerations and constraints 

As argued in 9: 4.2, the standard block Davidson method rapidly becomes unwieldy if 
(a) No>> I ,  so that the starting matrix Ha is already large enough to make its Choleski- 
Householder diagonalisation time (- N i )  a significant constraint, and/or  if (b) many 
new vectors are added to the expansion basis set { ( b i ) }  per iteration. To make more 
quantitative the time trade-offs in D I I S  and BD, we adopt a simple scaling model. It is 
based on several observations: (i) both methods (indeed, all iterative methods) must 
calculate vectors of the form Hlq)  for N-dimensional vectors 14). Such multiplications 
take a time proportional to N 2  (and are generally the dominant time step). There is 
one such computation per D I I S  iteration, but m per iteration for B D ;  (ii) in the BD 

method there is an  additional time associated with Choleski-Householder diagonalisa- 
tion of the matrix E in the basis expansion set, proportional to ( N o +  where I 
is the iteration number and  m is the number of new vectors added to {Ibi)} per iteration. 
Thus the times required to find the lowest n eigenvalues of H are, within the model, 

Here a and  b are numerical constants to be determined from actual computer runs, 
ItD is the number of BD iterations and 1;"' is the average number of iterations per 
eigenvector (averaged over the n eigenvalues of H found), needed to achieve some 
fixed residual. One can thus define a dimensionless ratio R by the equation 

T:D/ T:"' = ( ItD/I;"') R (4.3) 

where 

and  

G ( I ,  x )  = 1 + : ( I +  l ) x +  ( I  + 1)(1 +$)x'+:I(I + l ) 2 ~ 3 .  (4.4) 

For purposes of numerical comparison we have taken ItD = 3 (fairly typical for 
the matrices we have examined) to achieve a residual of G (corresponding, in our 
experience, to -eight decimal places in the eigenvalue and four in the eigenvector 
components) ; our numerical results indicate that b/  a - 1. Contours of constant R are 
displayed as a function of No/ N and n /  No (= m /  No for the usual block Davidson) 
in figure 4. If, for example, it were known that I","/ I:"' = (e.g. for the band structure 
problem of figure 2) then, within the model, the regime of parameters above the R = 2 
contour would favour use of the DIIS method. It should be noted that the situation 
of typical physical interest is that one knows the total number of eigenvalues sought 



1356 D M Wood and  A Zunger 

Figure 4. Block Davidson to D I I S  time ratio for model computation times (equation (4 .2 ) ) .  

n, and the size of the large Hamiltonian N ,  so that the intersection of the hyperbola 
n / N = c o n s t a n t  with the contours R would determine the choice of method. The 
model results are very likely an  oversimplification, but should be useful when No >> 1 
and N >> 1 .  

5. Implementation of the DIE method 

We discuss below some important considerations in the practical use of the RMM-DIIS  

method. As has been noted above, central to the implementation of most of the iterative 
methods is the identification of an appropriate ‘small’ matrix H,, subject to the 
constraint that its eigenvalues preserve the level structure of the lowest n eigenvalues 
of H. It might be argued, however, that since a better initial guess for an  eigenvector 
of H (from the H ,  problem) will result in fewer iterations to achieve a given residual, 
one should pick No as large as possible. In fact, the trade-offs in starting residual Ro 
against the required number of iterations are shown for the lowest eigenvalue of the 
181 x 181 complex Hermitian band structure matrix in figure 5. It should be noticed 
that the reduction in the starting residual Ro is less than a factor of 4.5 as one increases 
No from 1 (corresponding physically to a free-electron input eigenvalue) to 113t. 
Moreover, to achieve R =s requires three iterations for No = 113, but only six for 
No = 1. However, the time needed to diagonalise Ho scales as N i ,  so that very rapidly 
(using arguments similar to those leading to equation (4.2)), it becomes more efficient 
simply to iterate more rather than use a larger No;  the convergence rate A(log R)/iter- 
ation is essentially independent of No. (In fact, d(log Ro) /dNo is not always 
monotonic.) 

Thus our  rules of thumb for the choice of the small matrix dimension No are: ( a )  
pick No large enough to reproduce the level ordering and degeneracies of the lowest 

i Even if we approximate the bottom of the valence band by a I x 1 matrix, corresponding to a homogeneous 
electron gas, we find after five iterations the correct srrongly inhomogeneous state to eight decimals for the 
energy and four decimals for the wavefunction components. 
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1 I 1 I 1 P I\ 
0 2 4 6 8 1 

I terat ion number 

Figure 5. Dependence of iteration hisyory on small matrix dimension No for 181 X 181 
complex Hermitian matrix. Values of No: A, I ;  W, 9 ;  0, 15; e, 27;  A ,  5 1 :  0, 65:  0. 113. 

n eigenvalues of H, in order not to waste time on level crossings and  eigenvalue sorts; 
( b )  pick the smallest No consistent with ( a )  to minimise time spent in Choleski- 
Householder diagonalisation of Ho. 

The DIIS procedure would seem to be most valuable under the following circum- 
stances: ( i)  the size of the ‘small’ matrix, No, is itself large enough so that the time 
spent per iteration for the other efficient methods (e.g. the Davidson methods) becomes 
unwieldy, and/or  (ii) there is significant degeneracy in the level structure of the 
eigenvalues sought (which often confuses or slows down competing methods). 

The explicit sequence of steps in the DIIS procedure is given in the appendix. 

6. Summary and conclusions 

We have presented above a description of a new iterative method for diagonalising 
very large matrices. The structure and philosophy of the method were compared with 
other currently used methods ; we have displayed numerical comparisons for two rather 
different test matrices which illustrate the strengths and  weaknesses of the new and  
older methods, both in terms of convergence rates and  computation times (within a 
simple model). A brief description of its implementation was given with suggestions 
for the choice of convergence and other parameters. 

The new R M M - D I I S  method has already been used successfully for a large number 
of electronic structure problems (e.g. Bendt and Zunger 1982c, Jaffe and Zunger 1983). 
It is efficient both in terms of computation time and  central memory storage require- 
ments, and  holds the promise of pushing back a number of obstacles in the path of 
the calculation of, for example, the electronic structure of complex crystalline and  
amorphous materials. Subject to the constraint that one needs to provide reasonable 
input guesses for eigenvalues and eigenvectors, it may help remove the great premium 
which has customarily been placed on the choice of efficient basis functions. 
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Appendix. Structure of DIIS calculation 

It is assumed that the Hamiltonian H (and overlap S, if  present) are available for 
reading from external devices. 

( 1 )  Define Ho and use Choleski-Householder (e.g., in the EISPACK library) to find 
its lowest n eigenvalues {h:, j  = 1, . . . , No} and eigenvectors { lay ) , j  = 1 ,  . . . , No};  the 
{la:)} are augmented with zeroes to make them suitable N-dimensional input guesses. 

(2) Pick an  input eigenvalue Eold = A y  and an  input eigenvector IAold) = la,") to refine: 
(i) Initialise: store ISA"'); calculate and store HI6A'") and the input residual vector. 
(ii) Begin iteration m. 
(a )  Use the Newton step to generate (6A'"); store it. 
(b )  Read in a row of H (and S if present) and compute H16A'"') (and S16A'"')) 

and store them. 
DIIS step: 

(c) Calculate the new elements of P and Q and find the lowest eigenvector using 

(d )  Form the DIIS new best eigenvector IA",4';,): using the {H16A"')} (and {SJSA'")}) 
find the new DIIS  expectation energy E:& and the corresponding new DIE residual 
vector and its norm R. (This R is generally less than the (p ' ) ' ' '  found as the lowest 
eigenvalue of the DIIS eigenproblem since the energy EEG, is better than &id.) 

(e )  If R < (stopping criterion), stop; if not, let E,,, = E:& and lAold) = IAg&) and 
return to (a). 

It should be apparent that the principal central core memory storage requirements 
for use of the DIIS  method are ( i )  Ho (and  So), for use by CH; (ii) { lay)} ,  the No 
( N,-dimensional) eigenvectors of Ho;  ( i i i )  various N-dimensional vectors: [A,,,), I R) ,  
l h )  (one row of H ) ,  is) (one row of S, if present), and  several other subsidiary vectors: 
P and Q require negligible storage, being 4 15 x 15. 

As mentioned above, for use on a C D C  7600 (single precision -15 significant 
figures) we have selected S (the Newton step 'skipping parameter', equation (2.10)) 
to be IO- '  and  the output of the Ho Choleski-Householder step is assumed to give 
eigenvalues good to It should be noted that round-off error does eventually 
destroy positive-definiteness of the overlap matrix Q in equation (3.8), but this typically 
occurs for 3 10 iterations, for which the residual is typically s (10-12) significant 
figures in the eigenvalue). 

CH. 
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