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Abstract. Both the electronic structure and the ‘breathing-mode’ relaxation for tetrahedral 
interstitial 3d transition atom impurities in silicon are studied in the local-density approxi- 
mation. The calculations show that although the interstitial 3d impurities constitute a very 
large perturbation locally, they interact rather weakly with the surrounding crystal in the 
sense that they perturb the spatial distribution of electrons on the surrounding atoms only 
weakly. A special pattern of relaxation is predicted, with an outward relaxation of the 
first-nearest neighbours and an inward relaxation of the second-nearest neighbours. It is 
explained in terms of the impurity-induced charge rearrangement. 

1. Introduction 

Isolated 3d transition atom impurities in semiconductors are among the most difficult 
point defects that can be studied theoretically. Unlike simple sp-bonded impurities (for 
instance intrinsic point defects), the localised but chemically and electrically active d- 
electrons give rise to effects which are still lacking a proper apriori description. A lot of 
data suggest that the 3d electrons occupy partially filled shells and are atomic-like in 
their localisation, leading to multiplet splitting and a net spin obeying Hund’s rules 
(Ludwig and Woodbury 1962, Kaufmann and Schneider 1980). Thus, a detailed descrip- 
tion of these systems generally requires a treatment of the electron-electron interaction 
that goes beyond the one-particle (mean-field) theory. On the other hand, there have 
been observed g-factors, intra-atomic (d-d) transition energies and ionisation energies 
which are reduced considerably compared with the free-ion values, indicating that the 
wavefunctions still hybridise substantially with the surrounding matrix of atoms and 
become delocalised. 

Density-functional theory has proved very useful as a tool for gaining insight into the 
electronic structure of atoms, molecules and solids in general. Because of the tendency 
of atomic states to delocalise in the solid, one expects the local-density theory to give a 
reasonable, on-the-average description also of the electronic structure of 3d impurities 
in semiconductors. In this paper the full consequences of this assumption are studied: 
we report a self-consistent calculation on tetrahedral interstitial 3d transition atom 
impurities in silicon within the local-density approximation, and predict the 
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‘breathing-mode’ relaxation of the surrounding lattice. Electron paramagnetic reso- 
nance (EPR) studies suggest (Ludwig and Woodbury 1962, Weber 1983) that most 
transition atom impurities in silicon occupy the tetrahedral interstitial (TI) site, preseru- 
ing the Td symmetry of the host crystal. A brief description of the electronic structure of 
these systems (without lattice relaxation) has been given earlier (Zunger and Lindefelt 
1982). In § 3 of the present paper we give a more detailed account, especially of those 
features in the electronic structure which govern the lattice relaxation. 

Previous calculations on defect-induced relaxation were done mainly on ionic solids 
(see Stoneham (1982) and references therein). In semiconductor physics, progress in 
this field has been hampered by the lack of methods for performing reliable electronic 
structure calculations on impurities in extended host semiconductors. Recently, a simple 
model was proposed for studying the symmetry-conserving relaxation of the lattice 
(Lindefelt 1983, Lindefelt and Zunger 1984). The input to the model consists of the 
impurity-induced change in charge density before relaxation, which can be obtained to 
a very high degree of accuracy from the quasi-band crystal-field (QBCF) method (Lin- 
defelt and Zunger 1982). The relaxation model is briefly reviewed in § 2, and its appli- 
cability is discussed. Apart from the simplicity, one of its main advantages compared 
with, for instance, total-energy calculations is that the physical mechanism behind the 
relaxation is easily analysed and clarified. In 0 4 we use this model and predict the pattern 
of relaxation for the impurities Cr, Mn, Fe, CO and Ni in the 3d series, and relate this to 
the results of the electronic structure calculations. In short, this paper represents an 
attempt to give, within the local-density approximation, a unified account of the elec- 
tronic structure and symmetric lattice relaxation of tetrahedral interstitial 3d impurities 
in silicon. 

2. The relaxation model and its accuracy 

Consider a host crystal containing N atoms in their equilibrium positions R;, ,U = 
1 , 2 ,  . . . , N .  If an impurity atom is introduced at the TI position R I ,  then the host atoms 
will in general move to new, distorted equilibrium positions R ,  # R;. Choosing arbi- 
trarily RI  = 0, the atomic positions in the defect crystal and in the host crystal are 
described by the 3N-dimensional vectors 

respectively. The new position vectors R ,  are those which minimise the total energy, E ,  
of the system, which, in the density-functional theory, can be written 

where p(r,  Q) denotes the total charge density. For an arbitrary vector Q one can define 
the quantum-mechanical force 

With an all-electron charge density, Fp(Q)  will be the force acting on the nucleus of the 
pth atom, whereas for a pseudo-charge density, Fp(Q)  represents the force acting on the 
pth (pseudo) ion. Using local host atom pseudopotentials and the electrostatic 
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Hellmann-Feynman (HF) theorem, the force acting on thepth host ion is then given by 

Fp(Q> = 1 ( - Vpups(Ir - RPl))p(r9 QP3r  

where 22 denotes the valence of the host atom at site R,  and z1 the valence of the 
interstitial impurity atom. The reason for working in the pseudopotential picture is 
twofold: (i) it simplifies the calculation of p considerably and (ii) the errors in the force 
when calculated with the HF theorem, which are caused by errors in p, are generally 
much smaller in the pseudopotential case than in the all-electron case (Harris et a1 1981). 

Next we split up the total pseudo charge density according to 

p(r7 Q )  = pH(r7 Q )  + AP(C Q ) ,  ( 5 )  
where p” denotes the charge density in the (impurity-free) host crystal and A p  the 
change in charge density caused by the impurity. We can further split up each term in 
equation ( 5 )  to isolate the dependence on relaxation: 

p(r, Q )  = pH(‘, Q? + 6pH(r, Q - Q? + A d r ,  Q? + 6Ap(r ,  Q - Q?.  (6) 
The first approximation in the model consists of neglecting the term 6Ap(r ,  Q - eo). 
Substituting the resulting expression for p(r, Q )  into the HF theorem, equation (4), 
gives 

Fp(Q> = F,”(Q> + AFp(Q). (7) 

Here the driving force AF,(Q) caused by the impurity is given by 

while F,”(Q) is easily seen to be the restoring force from the host crystal. The second 
approximation consists of calculating the restoring force, not from the H F  theorem, but 
from an empirical valence force (VF) model: 

F,”(Q> = - V P W Q ) ,  (9) 

where @(e) is the potential energy of the vibrational motion. This can be determined 
by fitting an appropriate analytical expression to experimental phonon spectra for the 
host crystal, and has been done for silicon (Solbrig 1971, Larkins and Stoneham 1971a, b, 
Lindefelt 1983). 

For the purpose of analysing the way in which Ap(r,  Qo) affects the driving force, it 
is convenient to make a change of origin of the integrand in equation (8) and introduce 
the density fluctuation relative to the pth host atom: 

An@)(r)  = Ap(r  + R,) (10) 

where we haveused the abbreviatednotation Ap(r)  = Ap(r,  Qo) forthe impurity-centred 
change in charge density. Each function An@)(r)  can be expanded in a Kubic harmonics 
series, 

r 
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where I@(?) denotes a Kubic harmonic of order 1 transforming as the Ath partner in the 
cuth irreducible representation of the group Td. If we define the I = 1 projection n@)(r )  
of the charge-density perturbation around the pth atomic site as a three-component 
vector function 

n@’W = - (4d3>Wn?’, , ,x(r) ,  AnE,.y(r>, A n ? ! , * m ,  (12) 

where x,  y and z label the three partners in the irreducible representation t2, equation 
(8) can be written rigorously as 

Thus, only the 1 = 1 term in the Kubic harmonic expansion of Ap(r) around the pth 
atomic site in equation (11) contributes to the driving force. This makes it possible to 
examine rather easily how details in Ap(r) influence the driving force and hence the 
relaxation. 

In order to examine the nature of the approximations in the relaxation model, we 
note first of all that, since the approximations concern only the Q-dependence in p(r, Q) 
(i.e. the value of p(r,  Q) for Q # eo) ,  they will not affect the predicted direction of 
distortion, only the amount by which the atoms are displaced. Secondly, we observe 
that the use of the VF model for the restoring forces, which was obtained by fitting to 
experimental phonon spectra, presumably limits the model to small distortions, but, to 
within the limitations of the VF model, the effect on the forces from the host charge 
density p(r, Q) is in principle treated with its full Q dependence. It is then clear that as 
long as we do not question the validity of the VF model, the basic approximation in the 
relaxation model is that the Q dependence in p(r, Q) is approximated by the Q dependence 
in p(r, Q). Thus, for substitutional impurities, the relaxation model is expected to give 
accurate results for the magnitude of the distortion when the impurity atom is not too 
different from the atom it replaces. This indicates, for instance, that the relaxation 
model should be more accurate for substitutional Si : S than for the vacancy. 

For interstitial defects, it is more difficult to give a similar rule of thumb. We observe, 
however, that around the TI position, the host charge density is very low, while, at the 
same time, stable bonds between the host atoms, away from the interstitial site, already 
exist. One would therefore in general expect that impurities in the TI position interact 
weakly with the host. As a matter of fact, it will be seen later (§ 3) that this is indeed the 
case. Therefore, in the neighbourhood of the TI position, both f ( r ,  Q) and Ap(r,  Q) 
should be rather insensitive to the exact positions of the surrounding atoms. Since, 
furthermore, the displacement of the nearest shells of atoms turns out to be quite small 
in these systems (typically around 4% of a Si-Si bond length), the lowest term neglected 
in the Q dependence in p(r,  Q), i.e. 

is expected to be of minor importance. 
Although it is difficult to give a good quantitative estimate of the absolute errors in 

the predicted distortions, it is possible to give a simple argument why the predicted 
trends for a series of impurities should be correctly described by the model. We will see 
later (§ 4) that there is always a one-to-one correspondence between the strength of the 
forces on the undistorted atoms (referred to as the initial forces), and the distance by 
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which they are displaced: the larger the initial force is on a given atom, the more it is 
displaced. This feature is reasonable, especially since the distortions are small. The 
initial forces are, of course, not affected by the two approximations in the relaxation 
model, but their chemical trends depend only on the relative accuracy by which Ap(r)  
can be calculated, which is very high in the QBCF method. 

3. Some results from the electronic structure calculations 

In this section we shall give a brief description of some of the main results from the 
self-consistent electronic structure calculations on TI Cr, Mn, Fe, CO and Ni impurities 
in silicon (point symmetry group Td). The calculations are self-consistent within the 
pseudopotential local-density approximation with Slater’s exchange parameter LY = 1 .O. 
For the silicon host atom we employed the local semi-empirical pseudopotential of 
Louie et a1 (1976), and for the impurity atoms we have used the first-principles non-local 
atomic pseudopotentials of Zunger and Cohen (1978,1979). 

In the QBCF method (for full details, see Lindefelt and Zunger 1982), all wavefunc- 
tions are expanded in a crystal-field-like manner: 

yrA(r) = I Gg(r)K?(f) .  (15) 

Here the subscript i denotes a particular one-particle state. The radial functions G$(r) 
are expressed in termsof some conveniently chosen set of basis functions {F$(r)}  (usually 
a mixture of Coulombic and atomic wavefunctions): 

where the expansion coefficients are determined numerically. The expansion in equation 
(15) is required to hold only in the central cell (cc) region, i.e. in a sphere centred at the 
impurity site and with a radius Rcc extending out to the nearest-neighbour host atoms. 
In silicon Rcc = 4.44 au both for the substitutional and tetrahedral interstitial sites. As 
a measure of the amount of localisation for a particular state Ii) we use the quantity 

1 yfA(r)12 d3r = lRCc (G?(r))*? d r  
1 0  

qi i,, 
Each term in equation (17), denoted qil, i.e. 

qil = cCc (G$(r))2? dr ,  

is then a measure of the degree of /-character in the wavefunction within the CC. 
Furthermore, equation (15) leads naturally to the very convenient, impurity-centred 
expansion 

Ap(r )  = 2 / Apl(r)Kla’(i) (19) 

of the defect-induced change in charge density inside the cc, and, of course, to a similar 
expression for the total charge density p(r). In equation (19), al denotes the totally 
symmetric representation in Td. The explicit expression for the three lowest lrpl(3 are, 
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in Cartesian coordinates, 

a'(?) = (4n)-Y2 K$'( i )  = (105/4~)%yz/r~ 

~ i y i )  = ( 2 1 / 1 6 ~ ) ~ ~ [ 3 ( ~ ~ ~ ~  + x2z2 + y 2 2 )  - (x4 + y4 + z ~ ) ] / ~ ~ .  (20) 
Because of the high symmetry, the only non-zero /-components compatible with the al 
representation in Td are 1 = 0 , 3 , 4 , 6 , 7 , 8  etc. In most cases, the defect gives rise to 
partially occupied states. When this happens, the charge density contains, in principle, 
components with symmetry lower than al together with the al-symmetric component in 
equation (19). However, in mean-field calculations the charge density is al-symmetrised, 
i.e. only the al-symmetric component of Ap(r )  is retained (cf mean-field atomic calcu- 
lations where the charge density is spherically symmetrised). This is achieved by popu- 
lating each of the partner functions of the partially occupied states by equal amounts of 
electronic charge. We shall follow this conventional procedure here. 

The defect energy levels introduced into the band gap by the neutral impurities are 
shown in figure 1. The occupation numbers (in parentheses) have been chosen to be 
consistent with observed EPR data (Ludwig and Woodbury 1962), i.e. to favour high- 
spin states. We see that Ni is predicted to be electrically inactive in the ground state 
since there are no partially filled gap states, and that for CO and Fe only the one-particle 
levels of e symmetry are electrically active. Furthermore, the crystal-field splitting of 
the gap states, defined as the energy separation between the bound e and t2 states, 
increases slightly towards the lighter end of the series, reflecting a decreasing localisation 
of the corresponding wavefunctions. Actually it is the gap states of e symmetry that 
become more delocalisedfor the lighter elements (qe = 0.58,0.55,0.44 and 0.23 for CO, 
Fe, Mn and Cr,  respectively) whereas the tzgap states have roughly the same localisation 
(qt2 =0.36 for Mn and 0.38 for Cr). As to the amount of d character in the gap-state 
wavefunctions inside the cc (measured by qidqi for i = gap and 1 = 2), we find that the 
e states have almost 100% d character and that the t2 states have more than 90% d 
character. As an example of a wavefunction we show in figure 2 the gap-state wave- 
function of e symmetry for Si : Fe in the * (1, 1 ,O)  crystal directions. The shaded area 

Conduction 

1 0 -  

- 
2, 
> 05- 
P 
- 
c Y 

0 -  

- 0 5 -  

N ,  CO F e  Mn Cr 

Figure 1. Defect energy levels around the band gap introduced by n 3d impurities in silicon. 
The numbers in parentheses are the occupation numbers. 
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Figure 2. Bound-state wavefunction of e symmetry for Si: Fe in the f (1,1,0) directions. 
The shaded area corresponds to 50% of the normalisation integral. 

indicates the part of the wavefunction which corresponds to around 50% of the nor- 
malisation integral. The wavefunction is clearly very atomic-like in the inner cc (almost 
100% atomic d character as mentioned earlier), but with an amplitude that, inside the 
core, is reduced by a factor 0.7 compared with the free atom. Around 50% of the 
wavefunction must thus reside outside the cc, where its amplitude is seen to be relatively 
small. This indicates that the wavefunction can be regarded as being rather delocalised, 
with a large atomic-like peak near the origin. It can therefore be expected that this state 
shows features which are characteristic for both localised states, e.g. multiplet splitting, 
hyperfine interaction, and delocalised states, e.g. many charged states in a narrow 
energy region, like the band gap, and reduced g-factors. Both these features have been 
observed experimentally, as mentioned in the Introduction. 

Even though the gap-state wavefunctions of, for instance, e symmetry typically have 
as much as 50% of their total charge outside the cc, A&) is nevertheless essentially 
localised within this region of space. This is illustrated in figures 3 and 4 for Si:Fe. 
Figure 3 shows the spherically symmetric component Apo(r) of (the impurity-centred) 
Ap(r) ,  and in figure 3(a) the anisotropic component Apd(r) is also shown. At first sight, 
there is a surprisingly large anisotropy in Ap(r) close to the Fe nucleus. The reason is 
that in a mean-field calculation of the charge density for the free 3d atom, the 1 = 4 
component of the charge density for the atomic 3e state cancels that of the atomic 3t2 
state to produce a spherically symmetric charge density, because (i) the two states have 
the same radial function and (ii) the occupancy of the e state (ne) relative to the dimension 
of the e representation (de) is the same as for the t2 state, i.e.nJde =ntJdt,. In the solid, 
however, we have for Fe nJde = 1 andn,Jd, = 2. Therefore complete cancellation does 
not occur, but there is a residual 1 = 4 component of Ap(r) which consists of a product 
of the sharply peaked 1 = 2 components of the wavefunctions. In the case Si:Ni, the 
condition (ii) is fulfilled, but the e and t2 states in figure 1 have somewhat different radial 
I = 2 functions, so that not even in this case does complete cancellation occur, although 
now the residual 1 = 4 component is much smaller than for the other impurities. In figure 
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2 . 0  
0 1.0 
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Figure 3. (a) Radial components of the change in charge density for Si : Fe. The 1 = 3 
component is too small to be seen in this scale. ( b )  Spherically symmetric component of the 
change in charge density for Si : Fe around the first and second nearest neighbours. 

density around the TI position 
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4 we show the three lowest radial components of the total charge density p(r) (full 
curves) together with the radial components of the host charge density around the TI site 
(broken curves). In the direction towards the 1" at (a/4) (1,1, l), where a is the lattice 
constant, the Kubic harmonics are all positive. Therefore, figure 4 shows that charge 
has been displaced towards the impurity, mainly through the spherically symmetric 
component but also through the anisotropic components. In the direction towards the 
2" at a/2(1,0,0), El(?) = 0 and Q(3) is negative. The spherical 1 = 0 component 
again describes the largest displacement of charge towards the impurity, whereas there 
is an anisotropic depletion of charge through the 1 = 4 component close to the nucleus 
and a minor depletion of charge also at the 2". Except for the peaks in A h ( r )  and 
Ap4(r), which are both inside the impurity core, the defect-induced charge rearrange- 
ment is seen to be small. In this sense the TI 3d impurities interact weakly with the host, 
as pointed out in 0 2 .  We can therefore picture an interstitial 3d impurity as being 
essentially a spherically symmetric cloud of charge, filling out the rather empty region 
around the tetrahedral interstitial position out to the nearest-neighbour atoms, without 
affecting the bonds (or the charge distribution in general) in the rest of the crystal. This 
is to be contrasted to substitutional transition atom impurities and the vacancy (Zunger 
and Lindefelt 1983) for which again the impurity-induced charge rearrangement is 
localised to the cc, but where there is a substantial perturbation (weakening) of the 
bonds due to the deficiency in the number of valence electrons that can repair the broken 
bonds (Lindefelt 1983). 

By analysing the quantities qil, which can also be interpreted as describing how the 
various l-components of the occupied wavefunctions contribute to the total charge 
around the impurity (see equations (17) and (18)), we find that when the atomic 3d shell 
is not completely filled, the atomic 4s electrons go into the 3d shell, i.e. the atomic d"s* 
configuration becomes effectively a d"+mso configuration in the solid. This s-d population 
inversion (Zunger and Lindefelt 1982) compared with the free atom was envisaged 
already by Ludwig and Woodbury (1962) in their classical model. The s-d population 
inversion suggests a simple explanation of the high diffusion constant D for Ni in silicon 
(D - cm2 s-') relative to the lighter TA impurities (D - loT8 to lo-'' cm2 s-'). In 
the solid, the Ni atom effectively assumes a closed-shell, noble-atom-like d" configur- 
ation. One would therefore expect Ni to diffuse easily through the solid. 

4. Impurity-induced symmetric relaxation of the lattice 

It is a well known fact that the evaluation of forces using the electrostatic HF theorem 
requires a highly accurate charge density (see for instance Deb 1973), even though the 
use of pseudopotentials to a large extent makes this requirement less pronounced, as 
mentioned earlier. In calculations like those reported here, there are mainly two sources 
of errors, namely incompleteness of the basis set (cf equation (16)) and departure from 
self-consistency. The first of these will affect the degree to which a wavefunction is an 
eigenfunction to the Hamiltonian. Sufficient variational flexibility is achieved by using 
a very large and impurity-related set (192 s ,  p, d ,  f and g functions) of optimised basis 
functions (Lindefelt and Zunger 1982). The self-consistency requirement should gen- 
erally be an order of magnitude more stringent than what is needed in electronic structure 
calculations. In the calculations reported here, the difference between input and output 
potentials is typically 1-2 mRyd (a difference of about 10 mRyd is usually sufficient to 
give converged energies). Another input parameter that has to be specifiedis the number 
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of atoms around the impurity that are allowed to relax. In these calculations we let the 
first nine shells around the impurity, corresponding to 82 atoms (or all atoms within a 
sphere of radius 15 au around the impurity), relax freely while all other atoms are kept 
in their original positions. We then calculate the equilibrium configuration Q = Q* of Td 
symmetry from the condition that the total force F,(Q*) in equation (7) vanishes sim- 
ultaneously at all 82 sites, corresponding to finding that particular arrangement of atoms 
which minimises the total energy. This difficult optimisation problem is solved efficiently 
and elegantly by the Jacobian update method (Lindefelt 1983). The restriction to the 
fully symmetric (al) distortions is imposed by the omission of other components in 
Ap(r )  than those having full Td symmetry, in accordance with the mean-field theory 
(§  3), while symmetry-lowering (Jahn-Teller) distortions necessarily require a charge 
density of symmetry lower than al .  From figure 1 it is seen that Ni has no partially 
occupied states, and therefore these calculations predict that there is no Jahn-Teller 
distortion induced by the TI Ni impurity, so the breathing-mode displacements calculated 
here give the complete distortion. There is also experimental evidence from spin-reso- 
nance measurements that the impurities Cr, Mn and Fe in silicon (which are believed to 
be TI) show no sign of Jahn-Teller distortions (Weber 1983 and private communication). 

The results of the calculations of the al-symmetric (‘breathing-mode’) relaxation 
around the TI 3d impurities in silicon are summarised in figure 5. We observe four shells 
with a relatively large distortion, containing altogether 26 atoms. The four first-nearest 
neighbours ( ~ N N ) ,  which in their undistorted positions are located at 4.44 au from the TI 
site, move away from the impurity. Averaging over the different impurities, we find the 
averaged outward displacement to be around 0.14 au. For the six atoms in the second 
shell (2NN),  which in the perfect crystal are 5.13 au from the TI site, the displacement is 
opposite to that of the first shell, i.e. the atomsmove towards the impurity. The averaged 
inward displacement is in this case around 0.18 au. Thus the distance between the two 
shells has, on average, decreased from 0.69 au to 0.37 au, i.e. by a factor two, leading 
to an approximately tenfold-coordinated transition atom. As an interesting comparison, 
we note that all three metallic bulk disilicide structure types, the TiSiz (orthorhombic), 
CrSiz (hexagonal) and MoSiz (tetragonal) structures, avoid the conventional close- 
packing coordination of 12, and assume an approximately tenfold coordination around 
the transition atom (Wells 1975). 

The driving forces caused by the defects are non-zero only on the first two shells of 
atoms. The contribution to AF, from Apo(r) is cancelled by the ion-ion repulsion term 
in equation (8) for atoms outside the range of Ap(r ) ,  whereas the driving force due to 
the anisotropic components of Ap(r )  in principle extend to infinity. However, this 
contribution to the force turns out to be very small on the third shell (at 8.51 au) and 
beyond. These shells have therefore moved only because of the displacement of the two 
inner shells. The fourth shell (at 8.9 au) is seen to have a relatively large distortion, 
which, with respect to the chemical trends, closely follows that of the first shell, appro- 
priately scaled. The reason for this is that each atom in the fourth shell is directly attached 
to an atom in the first shell with a bond which is pointing along the common direction of 
displacement of the two atoms. This bond is thus compressed only slightly (around 0.04 
au). The situation is depicted in figure 6, which shows the distortion around the Fe 
impurity in the (0, T, 1) plane. The length of the arrows indicate roughly the relative 
amount of displacement. Not too surprisingly, we find a rather strong coupling between 
the displacement of the first two shells (those with non-zero driving forces) and the rest 
of the crystal in the sense that if all but the first two shells of atoms are kept in their 
undisturbed positions the first two shells relax only by about 2/3 of their unconstrained 
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relaxation. We note that the rather small but extended displacements are favourable to 
the present relaxation model. The small displacements make the basic approximation 
in the model less questionable, as discussed in § 2, while the extended nature of the 
distortion (four shells containing 26 atoms with non-negligible displacements) is treated 
simply and accurately by the VF model. 

In order to find out what controls the driving force and hence the relaxation pattern, 
we examine the factors in the integrand in equation (13). Outside the core region, the 
host atom pseudopotential is the same as for a point charge. Inside the core, both ups(r )  
and du,,(r)/d r deviate substantially from the coulombic behaviour, owing to the kinetic 
energy versus potential energy cancellation effected by the pseudopotential. This is 
illustrated in figure 7 both for the ‘soft’ potential used here as well as for a ‘hard-core’ 
pseudopotential (Harris and Jones 1978). This non-coulombic behaviour describes the 
effect of an atomic core of finite dimension and leads to a pattern of relaxation which 
differs from that induced by point ions. The projected charge density n@)(r )  around the 
pth host atom contains contributions both from the isotropic and anisotropic parts of 
Ap(r ) .  It is convenient to study first the contributions to n@)(r)  from Apo(r) only. Thus, 
excluding any contributions to the projected charge density perturbation from the 
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Figure 6 .  Schematic representation of the displacement of atoms in a (0.7, 1) plane. The 
length of the arrows indicate roughly the relative magnitudes of displacement of the different 
atoms (cf figure 5 )  and the integers denote the shell number in increasing distance from the 
TI impurity. 
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Figure 7. Radial derivative of the soft-core pseudopotential used here (curve A), of a 
hard-core pseudopotential (curve B) and of a point ion. 

anisotropic parts of Ap(r), we define the magnitudes 

njf=”(r) = - (4~r)”*An(f{~ .~(r)  

and 

n,@=*)(r) = - (4n/3)”*An\~),,,,(r) (21b) 

of the 1 = 1 projected charge density perturbation corresponding to the atoms at ( 4 4 )  
(1,1, 1) and (a/2) (1 ,0,0)  (1” and 2NN), respectively. These functions are plotted in 
figure 8 for Si : Fe. The notable feature of these curves is that the I = 1 projected density 
for the 1” is positive for all values of r ,  whereas for the 2” it starts out with a negative 
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value and becomes positive at around r = 1.5 au. It turns out that this feature controls 
the opposite displacements of the 1” and the 2”. In figure 9 we have plotted the 
integrand in equation (13) using the 1 = 1 projected density corresponding to the 1”. 
For comparison we have also plotted the integrand using a point-ion potential (broken 
curve). The areas under these curves give the electronic force AF, (the first term in 
equation (13)) acting on the respective host ion (i.e. pseudo- or point ion) in its undis- 
torted 1” position. The integral from the silicon core radius to infinity gives the same 
attractive contribution to the electronic force for the two potentials. Inside the silicon 
core, however, the contribution to the integral is seen to be less negative for the 
pseudo-ion than for the point ion. Adding the positive (repulsive) ion-ion interaction 
term AFi (the second term in equation (13)), then, for the point ion, the negative 
(attractive) AF, overwhelms the positive AFi ,  resulting in a net inward relaxation, 
whereas for the pseudo-ion the less negative AF, is overwhelmed by AFi ,  producing a 
net outward relaxation. Since for the 2” atoms the magnitude of the corresponding 
1 = 1 projected density has a sign in the inner core region which is opposite to that for 
the ~ N N ,  the non-coulombic behaviour in the pseudopotential will have just the opposite 
effect, i.e. increasing the attractiveness of AF,, leading to an inward relaxation when 
balanced against AFi .  Thus, the opposite directions of relaxation for atoms in the 1“ 
and 2NN shells are dictated by the different behaviour in the 1 = 1 projected charge 
density perturbation in the silicon core region shown in figure 8. 
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Figure 8. Magnitude of the projected density per- 
turbation (equation (21)) for Si:Fe around the 
1NS and 2h” atoms. The full circles represent the 
impurity atom seen from the I N N  and 2” atoms. 

Figure 9. The integrand in equation (13) for Si : Fe 
around a 1” atom when the host ion is rep- 
resented by the pseudopotential (full curve) and 
by a point-ion potential (broken curve). 
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Figure 10. Chemical regularities in the spherically 
symmetric component of the impurity-induced 
change in charge density around the first- and 
second-nearest neighbour host atoms. 

Figure 11. (a) The strength of the initial forces on 
the 1" atoms for the various impurities (total) 
together with the contribution to the initial forces 
from the different I components in Ap(r).  ( b )  
Same as in ( a )  but for the ~ N K  atoms. 

To see how the details in the 1 = 1 projected density inside the silicon core are related 
to details in Apo(r), one can construct a simple model. In figure 10 we show Apo(r) for 
the different impurities in the neighbourhood of the 1" and 2". The 1 = 1 projected 
densities are just these functions viewed from the respective atomic sites, retaining only 
the 1 = 1 component (equations (10)-(12)). If we approximate the negative portion of 
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a curve in figure 10 by a parabola, the 1 = 1 projected density magnituden,@)(r) can be 
calculated analytically. We find that for small r ,  n$”(r) = M where CY > 0 if the atom is 
situated to the left of the minimum of the parabola and CY< 0 otherwise. For larger r ,  
n$’)(r) must become positive because of the positive peak in A&(r). But we have just 
seen how apositive (negative) value of atends to favour an outward (inward) relaxation. 
In this way it is seen how the direction of relaxation is determined by the position of the 
atoms in the antibonding (negative) part of Apo(r), as well as by the non-coulombic 
behaviour of the pseudopotential, and how the chemical trends in figure 5 are reflected 
into the relaxation pattern in figure 10: the heaviest impurity (Ni) induces the largest 
outward displacement of the 1” but the smallest inward displacement of the ~ N N ,  
whereas the lightest impurity (Cr) does just the opposite. These trends reflect the fact 
that in going from Cr to Ni the bonding area increases in magnitude, whereas the 
antibonding area in figure 10 decreases. Although these considerations concern only 
the initial forces (which determine the direction of distortion), we expect them to be 
approximately correct also for the forces acting on slightly distorted atoms, simply 
because the antibonding structure in A&(r> extends on a length scale which rather much 
exceeds that of the calculated displacements. 

In order to see the effects of the anisotropic charge rearrangement left out from the 
analysis so far, we show in figure 11 separately the contributions to the initial driving 
forces on 1” and 2NN from the isotropic and anisotropic components in Ap(r ) ,  For both 
shells the anisotropic parts of Ap(r) give rise to forces which tend to pull the neighbouring 
atoms closer to the impurity. This contribution is, however, not strong enough to change 
the direction of distortion for the 1”. In contrast, substitutional transition atom impur- 
ities reduce (weaken) the existing bonds (Zunger and Lindefelt 1983) leading to an 
overall outward relaxation of the lattice (Lindefelt 1983). 
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