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Abstract-The truncated crystal method is used lo describe the band gap, work function, repulsive ground state 
crystal potential, Davydov excitons and defect states due lo H and NI impurities, in molecular Pa3 hydrogen crystal, 
utilizing a simplified minimal basis set and semiempirical quantum chemical methods. Favorable results are achieved 
regarding experimental optical data. 

1. tRTRODtKtlON 

The truncated crystal approach to the description of 
electronic properties of covalent solids, has been success- 
fully applied in recent years to a large variety of 
problems[1-6]. This method, characterized by solving for 
the eigenvalues of a finite cluster of atoms either by 
LCAO representation or by Slater’s Xa method[7j and 
seeking convergence of some properties as a function of 
cluster size, when the conditions imposed on the 
boundaries are either periodic connections[5,8,9] or 
chemical substitution satisfying the valence of the 
dangling bonds[2], has proved to be useful in several 
respects: 

(1) when convergence limit is reached, it is possible to 
describe localized point defect states as well as electronic 
states of the infinite ideal crystal by the same method, 
thereby providing an intermediate scheme between band 
theory[ lo] and defect molecule[l I] approaches to the 
defect problem. 

(2) the use of charge iterative SCF-LCAO methods 
accounting for charge redistribution between the atoms 
forming the cluster, permits calculation both as a function 
of density and of properties of clusters where a guest 
atom or molecule with different electronegativity than the 
host crystal, has been substituted[5]. 

These advantages of the truncated crystal approach are 
used in this paper to calculate various electronic 
properties of molecular hydrogen crystals. 

Much theoretical effort has been devoted lately to the 
investigation of properties of compressed solid hydrogen 
at low temperatures, mainly due to the interesting 
possibility of producing a high pressure phase of metallic 

hydrogen in the laboratory[l2,14], and because of 
interest in laser production of hydrogen plasma from cold 
solid hydrogen, for use in thermonuclear reactions[l5]. 
The former problem, treated from the point of view of 
metal-insulator transition, requires the knowledge of the 
equation of state[l6,17] and also the variation of 
one-electron energy states in the molecular phase with 
density[l3]. The latter phenomenum, involving in its first 
stage bound-bound absorption processes of photons at 
optical frequencies by the cold solid hydrogen, which is a 
high band gap insulator (E, - 11 eV), offers likewise 
questions involving the density dependence of electronic 
properties, namely: to what extent it is possible to lower 
the ionization potential and the lowest singlet-singlet 
excitation energy (band gap) of the solid (which are both 
much higher than the energy of the photons impinged on 
it) by increasing its density. Another practical approach 
suggested to lower the energy of the first electronic 
transition, to a conducting state is to introduce simple 
impurities (H, N1, etc.) into the molecular solid, thereby 
creating states in the gap. In this connection it is 
interesting to inquire into the nature at these impurity 
states and their separation from the bottom of the 
conduction band. 

In Section 2 we describe the molecular cluster method 
and specify the quantum mechanical methods that are 
used with it. In Section 3 we treat some one-electron 
states in the crystal (corresponding to energies of 
ionization and edge of conduction band) and in Section 4 
the Frenkel exciton states are discussed by the same 
method. In Section 5 we present some model calculations 
on impurity states in solid hydrogen. 
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2. DlSS(‘RIPTION OF THE MOLECI!LAR 
CLUSTER MODEL 

The electronic wave functions of a crystal in the LCAO 
approach are given by: 

d, = $, CL& i=1,2...iV (1) 

where xv denote the atomic orbitals on site Y. The C, are 
the solutions to the one-electron Hartree-Fock equations 
for the crystal, given by: 

$ (F,” - Let )C, = 0 i=l,2...N. (2) 

The e, are the one-electron crystal orbital energies, F,. 
are the matrix elements of the one-electron effective 
Hamiltonian in the frame of the atomic orbitals and S,, 
are overlap integrals between these atomic orbitals. We 
are interested in the solutions of (2) both for the case of a 
defect placed in the crystal, and for the crystal 
maintaining perfect translational symmetry. We would 
also be interested in correlating the properties of the 
crystal orbitals belonging to the localized defect state with 
states of the ideal crystal. Therefore, instead of factoriz- 
ing the secular problem (2) by considering translational 
symmetry, we propose to solve (2) directly under some 
simplifying assumptions on F,,, as a function of JV, for 
known crystal symmetry, and to examine the convergence 
of some electronic properties both of the ideal cluster and 
the one perturbed by a point defect, as N as increased. 
The convergence of each property is examined for 
various densities, through a charge self-consistent solu- 
tion of (2), thereby providing a simple density description 
of these properties. This truncated crystal approach was 
previously applied to lattice dynamic properties of atomic 
solids[ 18,191 and to electronic properties of atomic[ l-61 
and molecular [20] solids. 

The matrix elements F,. are approximated either by the 
Cusacks approximation[21,22] or by the SCF-LCAO 
INDO approximation[23]. In the former case, the off 
diagonal matrix element are given by: 

F,v = s,,,[H,,(Q,)+H,,(Q,)lx(l -O%wl, (3) 

where the diagonal elements are taken to be charge 
dependent through the relation 

H,,(Q,) = HZ,+ Qy& (4) 

and H”,, is the Hartree-Fock free atom one-electron 
orbital energy for the pth orbital, and Ar is the change in 
orbital energy per unit charge. A minimal basis set of 
Slater orbitals is employed. For hydrogen Is state, H”,,, is 

taken as -13.6eV and A,, as -14.0eV[22]. S,, are 
calculated using Slater orbitals with the best variational 
exponent of 1.2. After obtaining an initial guess for the 
charges Q,, for all atoms, the matrices S,, and F,,, are 
constructed and equation (2) solved for a chosen N 
assuming the experimental Pa3 structure. The clusters are 
formed by taking a central molecule and adding succes- 
sive shells of neighbours (13, 18, 43, 55, 77 molecules for 
I, 2, 3, 4, 5 orders of neighbours, respectively). Since we 
are not interested in the properties of the small clusters 
themselves, the intermolecular distances are taken to be 
the bulk values with no relaxations allowed. The 
coefficients C,,. are then used to calculate the net atomic 
charges Qc for all the atoms and the cycle repeated until 
convergence of 0.005 e is obtained between successive 
iterations. The atomic charges are computed from one and 
two center contributions to the charge moments by a 
procedure that leaves the projection of the centroid of 
charge, onto the line connecting the two atoms, 
unchanged[22]. This avoids the usual procedure of 
dividing the bond charge equally between the atoms 
involved, a procedure that yields erroneous results when 
the atoms involved have different electronegativities. 

The one-electron energy levels obtained, are populated 
with N electrons and the band gap is defined as the 
difference between highest occupied and lowest vacant 
cluster states, while the Koopman’s cluster ionization 
potential is taken as the negative of the energy of the 
highest occupied state. The derivation of the Mulliken 
approximation for the off diagonal matrix element F,., 
closely related to the Cusacks approximation employed 
here from Hartree-Fock equations[24,25], shows that for 
systems with relatively homogeneous charge distribution, 
this method provides a reasonable approximation. In the 
limit of an isolated HI molecule, at experimental 
equilibrium internuclear separation, this procedure yields 
a ionization potential of 15.38eV compared with the 
experimental[26] value of l5,43eV, an X11,, to B’XI,, 
one-electron energy gap of IO.965 eV as compared with 
the experimental value of ll.l8eV[26], while the 
dissociation energy calculated by this method yields a 
value of 4.66 eV as compared with the experixntal value 
of 4.474 eV [26]. 

In the INDO approach, the off diagonal matrix element 
is taken as 

F,,, = &S,u - !Pwy~” (5) 

and the diagonal elements are 

F,, = U,, +(I’** - fP*&‘)YAA + & (Psey~B - VAB) 

(6) 

where the bonding parameter piB is determined empiri- 
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tally to give an overall best fit to accurate LCAO-SCF 
calculations for diatomics[23], P,,. is the bond order 
matrix, P,, and Pss are total charge density on atoms A 
and B respectively and TAB and T~., are electron repultion 
integrals calculated directly. The core Hamiltonian 
element U,, is taken as -13.06 eV while the interaction 
element of an electron on atom A with the core of atom B, 
VM, is calculated according to formulas given by 
Roothaan[27]. When the electron repulsion integrals are 
not parametrized, the agreement for Hx properties with 
experiment is quite poor[23]. We followed the original 
formulation (equations 5-6) of Pople et al. [23], and used 
the INDO approach in truncated crystal calculation only 
to a limited extent, due to its failure to account reasonably 
for the free molecule properties (although different 
parametrization schemes could produce a better agree- 
ment). 

3. RAND GAP AND IONlZATION POIWIUL 
IY SOLID P&l HYDROGEN 

Figure 1 represents the calculated band gap and ioniza- 
tion potential for Pa3 clusters of increasing number of 
molecules as obtaind in the t~ncat~ crystal c~c~ations 
with IEXH calculations. For 3 orders of neighbours, 
convergence is obtained even for the highest density 
considered (V = 9.6 cm’lmole). The band gap (defined 
here as the difference between lowest vacant and highest 
occupied crystal orbital energies) and ionization potential 
are shown to decrease from their free molecule values, due 
to band structure effects, as molecules are accumulated to 
form clusters, and further decrease is obtained as the 
density increases. Since the relatively delocalized empty 
band is probably not adequately described by the minimal 
basis set employed, and since this description becomes 
even poorer as the conduction band approaches the 
valence band, no attempt was made to further increase the 
density of thecluster towards the metal hydrogen limit. 

The convergence of the band gap and ionization 
potential as a function of cluster size, as obtained by 
applying the INDO approximation to the matrix elements 
in equations (5-6), is shown in Fig. 2. Since this procedure, 
as already noted, yields poor a~eement even with isolated 
molecule experimental data for these properties, the values 
obtained for cluster calculation are not of much interest, 
and we will proceed with the IEXH approximations to 
further discuss cluster properties. It is however worth 
mentioning that the relative decrease in ionization 
potential and band gap, as a function of cluster size, is 
similar in both methods, indicating that cluster models of 
this size are probably sufficient to describe these properties 
in the bulk. 

Since the charge distribution over the atoms in the 
molecular cluster was relatively homogeneous even at the 
clusters surface (contrary to the situation in clusters 
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Fig. 1. Variation of ionization potential (LP.) and band gap (E,) 
with cluster size for two volumes (V in cm’lmole) as calculated 

for IEXH clusters. 

representing atomic solids such as graphitefSb], boron 
nitride [5a] and diamond[f 41 where the bonded atomic 
interactions tend to accumulate excess charge on the 
unsaturated atoms at the surface), no attempt has been 
made to apply periodic boundary conditions to suppress 
charge inhomogeneity. This however would probably be 
important in similar studies on atomic hydrogen 
crystals (283. 

In Fig. 3, the density dependence of some calculated 
electronic properties of solid Pa3 hydrogen is revealed, as 
obtained in the cluster calculation with IEXH approxima- 
tion. The limiting values obtained for low densities 
corresponding to the free &olecule vahres, coincide with 
the vahtes obtained by the same method of calculation for 
a single molecule. For the experimental eq~lib~um 
volume (V = 22.47 cm’/mole, a = 5.2875 A) the band gap 
in the cluster is IO.7 eV, as compared with the lower edge 
of the singlet-singlet absorption of solid DZ obtained by 
Baldini[29] in the U.V. spectrum, of lO+SeV. For the 
highest density considered (V = 9.6 cm31mole), the gap 
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Fig. 2. Variation of ionization potential (Z.P.) and band gap (E,) 
with cluster size for two volumes (V in cm’/mole) as calculated 

for INDO clusters. 

decreases to 9.2 eV*. It is also observed that the decrease 
in the band gap is mainly due to the decrease of the energy 
of the upper edge of the valence. band with density while 
the edge ofthe first empty baud is only slightly affected by 
density. The width of the valence band is I.22 eV at 
equilibrium volume and rises to 494eV at V = 
9.6 cm”/mole. 

An attempt to calculate electronic energy changes in 
solid molecular hydrogen due to density changes, was 
previously made by Chapline[l3]. The change in one- 
electron energy from that in a hydrogen molecule was 
determined by a Wigner-Seitz model, considering the first 
order perturbation contibution due to the electronic wave 
function outside the molecular Wigner-Seitz sphere. 
Extending this calculation to lower densities, shows that 
the Wigner-Seitz model results in one-electron energies 

*This decrease in excitation energy upon compression is 
probably too low for increasing signiticantly the absorption 
efficiency of Neodimium laser photons (hw = I.17 eV) by cold and 
compressed hydrogen targets via bound-bound absorption 
mechanisms, in experiments of laser produced plasma. 

0. 8 

Fig. 3. Density dependence of several electronic properties at the 
convergence limit, calculated by IEXH method. BP.: bond popu- 
lation, I.P.: ionization potential, E,: band gap, D.S.: Davydov 

splitting, R.S.: Red shift of the center of the band. 

that are lower than those obtained by the molecular 
cluster approximation, reaching at the limit of very low 
density to an overestimation of S-6 eV of the experimen- 
tal ionization potential. This large deviation both from 
experimental results at very low densities and from the 
cluster model at intermediate densities would probably 
have a large effect on the point of energy crossing 
obtained with the Wigner-Seitz model for molecular and 
metallic forms[l3,14]. 

The binding energy per molecule, is calculated in the 
cluster model by summing the one-electron energy levels 
of all occupied states. Since LCAO treatment of closed 
shell systems reveals only the repulsive potential [30,3 I] 
(unless configuration interaction is introduced), the excess 
energy per molecule as compared to the free molecule, is 
positive. Comparing the results for this interaction energy 
of our cluster cakulation with the phenomenological form 
of pair interaction 

r#kP = 4e(;0J2 (7) 

we get for 3.70 8, < r < 3.80 A, taking the accepted value 
of No’= 15.6 cm’[32] a value of l -43°K for the 77 
molecule cluster, and c - 42°K for the 55 molecule cluster, 
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as compared with the experimental value of the bulk 
crystal of 36.7”K deduced from compressibility and 
second virial coefficient &ta[32]. Reasonable agreement 
between the repulsive part of the phenomenolo~c~ 
interaction potential and that calculated from LCAO 
cluster approximation, was previously obtained also for 
Nz-N~ mteractton[20]. 

A different representation of the interaction in the 
crystal could be obtained by calculating the change in 
bond population[22] of the central molecule in the cluster, 
versus cluster density (Fig. 3). This ~pulation, describes 
the strength of the molecular bond at various crystal 
densities. It is evident that upon compression of the unit 
cell, keeping the molecular bond length constant, this 
bond is weakened due to extraction of electronic charge 
from the region between two bonded hydrogen atoms. 
Such a behaviour was previously postulated for descrip- 
tion of metal-insulator transitions due to destruction of 
diatomic bonds by pressure [33,34]. 

4. FRRNKEL EXCI’IONS IN HYDROGEN Pa3 

CRYSTAL 

We next consider the energies of the Frenkel exciton 
states in molecular solid hydrogen by the same LCAO 
approach. 

The low temperature Pa3 ordered phase of hydrogen 
crystal has 4 molecules per unit cell and belongs to the Tbh 
factor group. A group theoretical analysis reveals that the 
free molecule (point group D-h) ground state ‘Z,# yields 
in the ThL factor group a totally symmetric representation 
A,,, while the lowest free molecule singlet excited state 
B’P,, (lo, la.) state gives rise to a T. t A, representa- 
tion in the factor group. The A, state is optically inactive, 
while the transition to the triply degenerate T. state is 
dipole allowed and polarized along the x, y, z unit cell 
directions. The transition to the free molecule zero 
vibrational state of I?‘&. occurs at il.235 eV[26] and at 
11~181 eV in D2 and HZ respectively. The crystal spectrum 
of solid D at 6”K[29] reveals an absorption edge at 
lOq8eV originating from the same molecular transition, 
followed by a relatively broad absorption band peaking at 
about 12 eV. At higher energies this abso~tion overlaps 
with the lower part of the 2p’II, absorption. The energy 
loss spectrum of solid HI in the range of II-16eV was 
measured by Schmidt, and exhibits similar behaviour[35]. 

Denoting the wave function of the molecule occupying 
siteiofunitcelln(i=1,2,3,4,~=1,2...N)by~~~and 
#$ for the lowest excited singlet and the ground 
electronic state respectively, a straight forward Frenkel 
formalism yields for the Pa3 group, the energies of the 
exciton states at R = 0 relative to the crystal ground state, 
as 

dE,” = de’ + D’ + L:,o, + EL&, I L:1,,:L...,,) (8) 

where 

Ahe” is the free molecule excitation energy to state s and 
V,,, is the intermolecular potential (in equation IO the 
double indices are suppressed). Molecule I at the origin of 
the unit cell was chosen as a reference. The state with 
A = 1 is of A. symmetry while the states h = 2,3,4 belong 
to the triply degenerate T. representation. Since for 
dipole allowed states in the Pa3 structure, all L,,,o, are 
equal, we denote J’ = LO, for A = 2, 3,4 and .f = Lnl.~lt 
adopting the notation of Iiexter for vibrational 
excitons[36]. The splitting between the 2’” and A. states 
(Davydov splitting) is 25’ while the shift of the center of 
the band relative to the free molecule transition is 
(D’ •t- J). 

The energies of the exciton states will be evaluated in 
two ways: (a) evaluation of the matrix elements L&$ from 
direct solution of the LCAO problem for H2 dimers 
oriented mutually as pairs in the crystal; (b) expansion of 
the L iiol matrix elements in multipole series and retention 
of the tirst non zero (dipole) term which could in turn be 
evaluated from the transition dipole to the free molecule 
excited state. 

(a) The splitting between the excited states of a HZ 
dimer formed from molecules 1 and 2, is twice the 
summand in equation (9). These splittings are computed for 
Hz dimers oriented mutually as pairs in the Pa3 structure, 
and the sum in equation (9) evaluated directly for n 
ranging to 6 orders of neighbours. The dimers one- 
electron energies are computed by IEXH method 
(equation 3) with the atomic parameters mentioned in 
Section 2. This yields at normal density, a splitting of 
044 eV. The ground state Darydov splitting (between A, 
and T, states at K =0) is similarly calculated to be 
1.22 eV. 

The additivity of pair interactions is checked, in the 
nearest nei~~ur approximation by comparing the 
splitting yielded by equation (9) when n is extended to 
nearest neighbours only, with the splitting obtained from 
the LCAO solution of one unit cell (4 molecules) weighted 
according to the number of neighbours. The results thus 
obtained agree with each other within 2%-4% in the 
density range between 22.47 cm3~mole and 17.5 cm’lmole. 
This is a measure for non additivity corrections in this 
model. 

The tirst order contribution to the shift of the center of 
the band relative to the free molecule transition is 
computed both by summing pair interactions calculated 
for Ht dimers, according to equations (9) and (IO) and by 
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performing a cluster calculation on one molecule sur- 

rounded by 5 orders of neighbours and analyzing the 

resultant one-electron energy levels to obtain the shift of 

the band. The result of the first calculation is -O.lOeV 

while the cluster calculation reveals a shift at -0.093 eV. 

Higher order perturbation terms corresponding to differ- 

ent polarizations of the crystal by the ground and excited 

state are difficult to calculate and could be important in 

determining the Davydov shift. The experimental shift of 

the center of the absorption band in D?[29] is approxi- 

mately 0.05 eV. 

(b) A different approach to evaluate the energies of the 

dipole allowed exciton states rests upon expanding the 

interaction potential in multiple series and retaining only 

the first non zero moment. Equation (9) in this approxima- 

tion becomes 

where & = r, - R and R is the vector from a molecule on 

sublattice i to the nearest molecule on sublattice j and 

rr = Z hia, is a lattice vector where a, are unit cell vectors 

and h are integers. if we denote the orientation of each 

sublattice by unit vectors L, the angles are defined by: 

1 - 

cos e = (6, x 6,) cos 6, = f$ 6. xii 
cos e,, = (RI 

(12) 

and M’ is the molecular electronic transitjon dipole 

related to the absorption oscillator strength f by 

(13) 

where m, is the electron mass and 6 is the frequency at 

the center of the band. For an f.c.c. lattice, the sum in 

equation (1 I) can be easily evaluated by the Nijboer and de 

Wette procedure[37, 381. Taking G as the experimental 

frequency and f as the gas phase total oscillator strength 

0.281391 and summing equation (I l), we get as a splitting 

between A, and T, a value of 0+15eV which is 

considerably lower than the value obtained by the LCAO 

cluster calculation, employing the full interaction. Split- 

ting calculated according to dipole transition moments 

were shown in other cases to underestimate the experi- 

*The overall splitting of the X’E+ A’ll transition in solid CO, 
calculated from the experimental oscillafot strength (401 (not by the 
one postulated by Hexter[38]), yields in the dipole approximation 
a value of 820cm ’ as compared to experimental values of 
2YMcm~‘[41]. 

mental value by a factor of 2-3, due to the neglect of other 

than dipole interactions and relaxation effects.* 

Mixing of the 7’” exciton component with other T, 

states originating from the free molecule dipole allowed 

‘H, state or the octupole allowed ‘A. state are possible via 

second order crystal field effects, but will probably affect 

the splitting only to a small extent due to the large value of 

the oscillator strength to the B’B,, state. 

When the calculation of the splitting in the semiempiri- 

cat LCAO approach is performed for various crystal 

densities, it turns out that the splitting depends on the unit 

cell dimension a as a-” (Fig. 3) over the range 5.2~ a 

4.9 .% which is a much stronger dependence than that 

anticipated by pure dipole interactions. This short range 

character results from the description of intermolecular 

potential by overlap interactions[31] which fall quite 

rapidly with distance. Similarly, the Davydov splitting 

between the F, states of the X’& -+ ‘[I, transition in ~LN? 

crystal, calculated by the same LCAO method[20] yielded 

a dependence of a -I” which is also much shorter range 

than the quadrupole u-’ potential usually employed to 

discuss this transition. It seems that both in a-N> and in 

H?, the splittings discussed need to be considered by more 

general potentials, than the pure quadrupole and dipole 

potentials, respectively. 

The number of pairs of states joining the valence and 

conduction levels respectively in the energy between ho 

and hw + hdw, are calculated from the one electron energy 

spectrum obtained for the largest molecular cluster 

considered. Since we treat finite clusters, only a histogram 

description is possible. Figure 4 describes this joint 

density of states, as obtained by sampling the clusters 

orbital energies. The edge of the absorption is now of 7’” 

character and appears at 10.5-106eV as compared with 

the experimental value of Baldini[29] for D2 crystal, of 

10.8eV. The region above -11.3 eV, is of A,, character 

and the transition to it is forbidden. The qualitative overall 

shape of the spectrum is similar to the observed 

absorption, though quantitatively the ~lculated spectrum 

is slightly narrower, probably due to the neglect of the 

atomic 2p states that contribute to the high energy part of 

the spectrum. 

The difference in ionization potential between an 

isolated HZ molecule and the solid, was estimated from 

the electronic spectrum of large radius Wannier impurity 

states in X,/H? system1421 and in pure H?f43]. The 

impurity ionization potential in solid inert medium 

fP,,(s), is related to the gas phase impurity ionization 

potential IP,,,(g), when the width of the hole state can be 

neglected, as in the case of Wannier type impurity states 

in doped solids, by the relatian[44]: 

P,,,(s)=IP,,(g)+P. + v., (14) 

where P.. corresponds to the positive hole polarization 
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Fig. 4. Transition density of states (number of states connecting 
valence and conduction bands, respectively within energy range 
from E to E + AE) as a function of energy, as calculated by IEXH 

for the t10H and lS4H clusters. 

energy of the medium and V, is the energy of the quasi 
free electron state co~esponding to the bottom of the 
conduction state relative to the vacuum level. Similarly, 
the pure solid ionization potential P(s), is related to the 
ionization potential of its free constituents P(g), by[42]: 

The relatively large band gap and ionization potential of 
solid HZ even at molar volumes as small as IOcm’fmole, 
almost exclude processes such as simple bound optical 
transitions to conduction or ionized states, under condi- 
tions of irradiation with laser photons of energy in the 
range of 1-2 eV, as desired in experiments of laser heating 
of solid H2[ 15,481. Multiphoton mechanisms]491 or 
generation of antistokes radiation inside the target [SO] are 
not sufficient to enhance these absorption processes 
sufficiently. Another possible way of lowering the 
effective energy gap for such transitions, is intr~uction 
of impurities inside the solid target, thereby creating 
allowed electronic states in the otherwise forbidden gap. 
The truncated crystal method described in Section 2 was 
demonstrated to be suitable for calculation of such states 
in covalent crystals[2-6] because it provides a simple 
means of correlating the one-electron energy states of 
localized impurities with respect to the band edges. 
Employment of charge self-consistent methods to calcu- 
late the one-electron energy states of a cluster containing 
an impurity with different electronegativity than that of 
the host atoms, and the allowance made for small lattice 
distortions and relaxations around the center, provide 
useful mechanisms for introducing charge and energy 
redist~bution effects that are impo~nt in problems of 
deep impurity states f4,51. 

(15) 

where E, corresponds to the energy difference between 
the center of gravity and the upper edge of the valence 
band. Experimental determination of IPt,,,(s) for the 
X,/H2 system[42] together with the knowledge of the 
experimental value of I&,,,(g) for X, suggests that 
-(P+ + Vo) - 1-2 eV in solid HZ, which yields, throu~ 
equation (IS), taking P(g) = 15.43 eV[26], on a ioni~tion 
potential for the solid of f 13‘5-14-f+ E,.] eV = 
14.1-15.1 eV. Evidence for a possible convergence limit 
of the Wannier series at 14.4eV in pure solid HJ43] 
suggests that P(s) - 14.5 eV should be a better guess. 

We chose to discuss here some model calculations for 
two impurities that may enter unpurified solid hydrogen: 
an isolated hydrogen atom and a nitrogen molecule. The 
procedure of calculation goes in the following steps: (a) 
We choose a large enough hydrogen molecular cluster so 
that the examined (Section 3) electronic properties 
characterizing the bulk solid are already present in it. The 
molecular cluster of 43 molecules (1 central molecule at 
the origin +3 shells) exhibits a band gap, ionization 
potential, average charge per atom and overlap population 
between two bonded atoms, very close to that of the 
convergence limit defined as that of the largest cluster 
considered (Fig. I), 

Simple theoretical calculations of P+ [42] based on the 
Mott-Littleton] relation for static polarization energy 
and on charge-quadrupole interactions, yields P+ - 
-0.8 eV, while a simple pseudopotential calculation[40] 
yields V, = + 2.2 eV. This disagrees both with the value 
of V, s 0.5 eV measured by Halpern and Gomer [47] for 
liquid Ht. and with the spectroscopic value of V,= 
-(1*2-O-2)eV, mainly due to the overestimation of the 
repulsive pseudopotential that was taken to depend 
semi-empirically on the scattering length. 

(b) The central Hz molecule at the origin is then 
replaced by the chosen impurity and the calculation of the 
new eigenvalues of the cluster, are repeated by increasing 
the cluster size from 3 to 4 and 5 shells of HZ molecules 
around the impurity, seeking convergence for the new 
one-electron levels. 

(c) Once the one-electron energy levels associated with 
the impurity and the band edges have stabilized for a 
given molar volume of the cluster, we allow symmetric 
small (A = O-I-O.2 A) relaxations of the lattice around the 
guest molecule, in directions parallel to the body 
diagonals of the Pa3 unit cell, in order to examine the 
effect of model distortions on the defect states. 
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I. Hydrogen atom impurity 
Table I summarizes the main results obtained for the H 

atom defect. 
The energy of the impurity states is shown to become 

stable relative to the band edges, resulting in a net 
destabilization of the atomic 1 s state of hydrogen relative 
to the free atom. The one-electron energy state corres- 
ponding to hydrogen impurity is highly localized in the 
vicinity of the atom, exerting only small perturbation on 
the charge distribution of the neighbouring molecules. 
The guest atom acts as a slight charge acceptor, and 
accumulates a net electron density on it of the order of 
-0.02 e. Inward relaxations of the lattice result in a 
relative destabilization effect on the defect state, while 
outward relaxation tend to stabilize it. It should, however, 
be kept in mind that the cluster model suggested does not 
represent adequately the real restoring forces of the 
covalent molecular crystal due to the lack of second order 
polarization forces in this closed shell LCAO picture. 
Calculations of equilibrium positions of the surrounding 
molecules are therefore not possible. 

As the unit cell dimension of the crystal is decreased, 
(Fig. 5) the impurity level approaches the edge of the 
conduction band being for instance, already 8.7 eV from it 
at a = 5.0 A. The net charge accumulated on the defect 
atom rises also with decreasing unit cell dimension, and 
becomes -044le for a = 5.0 A. The ionization potential of 
the crystal increases by 0.02 eV on the average, due to the 
presence of the defect atom. 

2. Nitrogen molecule impurity 
An isolated N1 molecule is described in the IEXH frame 

(free atom orbital energies taken from Hartree-Fock 
calculation on the ‘S ground state[51] and charge 
dependent energies form the work of Rein et al.[22]) to 
have an equilibrium internuclear distance of I.15 A 
(experimental value l498[26]) a 2~~ ionization potential 
of 16. IO eV (experimental value I560 eV [52]), a dissocia- 
tion energy of 9.9 eV (experimental value 9,756 eV [26]) 
and a bond population of 1.675. The lowest vacant orbital 
is a doubly degenerate or, orbital at I I .I eV. The NZ 
molecule is placed at the origin of the Pa3 molecular 
hydrogen cluster and calculation steps (a)-(c) performed. 
The results are shown in Table 2. 

The r, orbital remains unsplit in the crystal and 
appears in the band gap. The lowest 2~7, + q molecular 
transition is blue shifted relative to the transition in the 
isolated molecule by 0.18 eV at normal density. Both 2uZ 
and the n, levels are stabilized in the crystal relative to 
their free molecule positions while smaller stabilizing 
effects are manifested in the inner 2u#,, 20, and IT” 
molecular orbital energies. 

Again the guest molecule has only a small perturbative 
effect on the charge distribution around it, at normal 
density, and the nitrogen molecular bond population 
decreases slightly with respect to the free molecule value. 
As the density of the cluster is increased, the defect n, 
level exhibits only small changes under compression of 
the crystal (Fig. 5) and the charge on each nitrogen atoms 

Table 1. Energy states of conduction and valence band edges and impurity 
state for relaxed (A = 0.2 A) and unrelaxed lattice for the H-impurity clusters 

Impurity state (eV) 

Conduction Valence No Inward Outward 
Cluster edge (eV) edge (eV) relaxation relaxation relaxation 

I + 36 4.451 15.098 13.419 13.398 13.578 
It42 4.455 15065 13.418 13.399 13.580 
I-54 4.456 15.065 13,417 13.399 13.580 
I+76 4.456 15.063 13.417 13.399 13.580 

Table 2. Energy states of conduction and valence band edges and impurity state 
for relaxed (A = 0.2 A) and unrelaxed lattice for the N, imouritvclusters 

or, Impurity state (eV) 

Conduction Valence No Inward Outward 
Cluster edge (eV) edge (eV) relaxation relaxation relaxation 

I t 36 4447 15.094 11@99 I 1.030 12.050 
1t42 4.455 15+66 II@8 I I.032 12.052 
It54 4.456 15.065 I I .098 I I.033 12.054 
I+76 4.456 15.065 Il.098 I 1.034 12,054 
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lack of configuration interaction in the calculation, which 
are both presently excluded due to limitation in computer 

storage. 
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Note added in proof 
After this paper has been accepted, two papers on the band 

structure of solid Pa3 Hydrogen have appeared: the work of L. A. 
Gomez,G. P. Parravicini, L. Rescaand R. Resta [J. Phys. C. 6,1926 
(1973)j using a tight-binding procedure with nearest-neighbor 
interactions, neglecting three and multicenter integrals and 
employing a Slater Is minimal set, and the simplified KKR 
calculations of R. Monnier, E. L. Pollock and C. F. Friedli [J. Phys. 
C’. 7, 2467 (1974)] using a spherical approximation to the Cotimb 
molecular potential including three forms of exchange (Slater’“‘. 
Lundqvist-Lundqvist”“and Khon-Sham“‘) in a non-self-consistent 
treatment. The following table summarizes the results: 

Property Monnier et al. Gomez et al. Present work Expt. 

IP (solid) eV 

Band width eV 

Eg eV 

IP (molecule) eV 
Dissociation Energy 

(molecule) eV 

19.1’” 12.82 15.1 14.5”’ 

15Sh 
14.2’” 

0.369”’ I.1 I ,22 - 

0.825”” 
0~945”’ 

12.02P’ - IO.7 z 10.8’d’ 

9.276”” 
8.789”’ 

15.0 16.135 15.38 15.43” 

3.488 3,488 4.66 4.474”’ 

(a) Slater exchange [J. C. Slater, Phys. Rev. 81, 385 (19Sl)l. 
(b) Lundqvist-Lundqvist exchange [B. I. Lundqvist and S. Lundqvist, Computationul Solid 

Slale Physics (Edited by F. Herman, N. W. Dalton and T. R. Koehler) p, 219. Plenum, New York 

(1972)]. 
(c) Kohn and Sham exchange [W. Khon and L. J. Sham, Phys. Rev. 14OA, II33 (1%5)]. 
(d) Ref. 29. 
(e) Ref. 26. 
(f) Ref. 43. 

In this table, IP (solid) denotes the negative of the highest 
occupied valence band state (r, in the notation of Gomez et al. and 
X, in the notation of Monnier et 01.) and Es denotes the transition 
between the r, and r: states (X,+X, in the notation of Monnier 
and T. + T. in the notation of the present paper). The 
Lundqvist-Lundqvist local exchange correlatior?” is argued by 
Monnier et al. to be the ‘best’ one judging from the properties of the 
free molecule. Reasonably good agreement is obtained between the 
present work and the works of Gomez et al. and Monnier et 01. In a 
recent OPW calculation for the conduction bands of solid H, [G. P. 

Parravicini and M. Vittori. unpublished], using a nonlocal exchange 
potential in the zero-overlap approximation and a Coulamb 
potential from the Slater Is charge density, the lowest conduction 
state was calculated to be of l’, symmetry and this state was 
separated by a gap of 13.8 eV from the top of the valence band. The 
energy of the first allowed transition was calculated to be 16.3 eV in 
contrast with the work of Monnier et al. (E. > 9.28 eV), the present 
work (E, = IO.7 eV) and the observed edge of the absorption edge 
of Baldini, IO.8 eV [29]. 


