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The excitation energies of impurities in semiconductors, as well as their donor and acceptor ioni-
zation energies, represent a combination of one-electron and many-electron multiplet effects, where
the latter contribution becomes increasingly significant as localized states are formed. Analysis of
the absorption and ionization data for 3d impurities is often obscured by the inability of contem-

porary multiplet theories (e.g., the Tanabe-Sugano approach) to separate these two contributions and

by the inadequacy of mean-field, one-electron theories that neglect multiplet effects altogether. We
present a novel theory of the multiplet structure of localized impurities in semiconductors that cir-
cumvents the major shortcomings of the classical Tanabe-Sugano approach and at the same time
separates many-electron from mean-field effects. Excitation and ionization energies are given as a
sum of mean-field (MF) and multiplet corrections (MC): AE =hEMF +AEMc. We determine EEMc
from the analysis of the experimental data. This provides a way to compare experimentally deduced
mean-field excitation and ionization energies AEMF ——AE —AEMc with the results of electronic-
structure calculations. The three central quantities of the theory —the e- and t2-orbital deformation
parameters and the effective crystal-field splitting —can be obtained from mean-field electronic-
structure calculations, or, alternatively, can be deduced from experiment. In this paper, we analyze
the absorption spectra of 3d impurities in ZnO, ZnS, ZnSe, and GaP, as well as those of the bulk

Mott insulators NiO, CoO, and MnO, in light of the new approach to multiplet effects. These
mean-field parameters are shown to display simple chemical regularities with the impurity atomic
number and the covalency of the host crystal; they combine, however, to produce interesting non-

monotonic trends in the many-electron correction terms AEMC. These trends explain many of the
hitherto puzzling discrepancies between one-electron (AEMF ) theory and experiment (hE). This ap-
proach unravels the chemical trends underlying the excitation and donor or acceptor spectra, pro-
vides predictions for unobserved excitations and donor or acceptor energies, and distinguishes the re-

gime where one-electron theory is applicable (EEMc small) from the region where it is not
(aEMc-aE)

I. INTRODUCTION

The absorption spectra of transition-atom (TA) doped
semiconductors show a series of rather sharp transitions
at sub-band-gap energies (e.g., Refs. 1—20) that bear little
resemblance to the single-particle excitations predicted by
one-electron models (e.g. , Refs. 21—29). For example,
Fig. 1 depicts the absorption spectra of Co + impurity in
a variety of tetrahedrally coordinated systems of varying
covalency. Three well-resolved electronic transitions la-
beled in the figure, T2, T&(F), and 1'&(P), are observed
with their attendant fine structure. One-electron
models, ' ' ' on the other hand, predict the existence
of e and t impurity levels in the lowest quarter of the
band gap (or even inside the valence band in GaP), as-
suming the configurations e t and e t in III-V and II-
VI semiconductors, respectively. The excitation energies
predicted by such models (e.g., in II-VI semiconductors
e r ~e t and e t ~e t ) are at odds with experiment.
The same is true for other 3d impurities. Table I provides
a compilation ' of some of the best-established d~d
transition energies for 3d impurities in ZnO, ZnS, ZnSe,
and GaP. Attempts to correlate these transitions with
differences in one-electron energy levels (or even with

total-energy differences) available in the literature2'
have met with little success. Similarly, the one-electron
intraband d~d excitations associated with the band
structure ' ' of Mott insulators such as bulk CoO and
NiO (the stoichiometric limit of 3d impurities) bear little
resemblance to the low-energy optical spectrum of these
materials, as band theory predicts these wide-band-gap
insulators to be metals (at least above the Neel tem-
perature ).

Substantial discrepanci. es between theory and experi-
ment also exist regarding the ordering of ionization ener-
gies' and the total spin of the ground-state wave functions
determined by electron paramagnetic resonance (EPR).
The former problem is manifested in the data for the ioni-
zation spectra from the valence band (VB), e.g. ,
(VBpt"—+(VBp 'r" +' (single acceptors), and for the ion-
ization spectra to the conduction band (CB), e.g.,
(CB) t "~(CB)'r" ' (single donors). Table II [Refs. 3, 4,
6, 7, 10, 13, 14, 15(c), 17, and 33—46] provides a compila-
tion of the most reliable donor and acceptor activation en-
ergies for TA impurities in GaP, ZnS, and ZnSe. These
activation energies show a clear nonmonotonic trend with
the impurity atomic number, with a local minimum at
Mn and a maximum at Fe. In contrast, the calculated en-

30 3430 1984 The American Physical Society



30 MANY-ELECTRON MULTIPLET EFFECTS IN THE SPECTRA. . . 3431

(CoCI4)

'T, lFI

(a)

ZnO:Co
Eg= 3.35 eV

T = 298K

C

Co
~~

o
Ch

I

ZnS:Co
Eg= 3.87 eV

T, IFI
I I

ZnSe:Co
Eg= 2.82 eV

Zn

T =298K {c)

I I

QaP. Co T = 5K

Eg = 2.35 eV

4 T, IFI

PI

4T, lpl

I

2.5

ergies of the one-electron impurity levels e and t2 show a
clear monotonic decrease in binding energy with increas-
ing atomic number. ' The same monotonic trend per-
sists in the calculated total-energy differences correspond-
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FIG, 1. Observed absorption spectra of the Co + impurity in
tetrahedrally bonded semiconductors and in 3d coordination
compounds, drawn in the same energy scale, extracted from (a)
(CoC4)2, Ref. 20; (b) ZnO:Co, Ref. 19; (c) ZnS:Co, Ref. 19; (d)

ZnSe:Co, Ref. 12; (e) ZnTe:Co, Ref. 12; (fj GaP:Co, Ref. 14.

ing to donor or acceptor transitions. ' ' Furthermore,
if one orders the various e~t" configurations calculated in
one-electron theory ' according to their total energies,
one often finds that the predicted ground-state configura-
tion corresponds to a low-spin state, whereas EPR data
indicate a high-spin configuration (e.g., for a d impurity
the calculated ground state corresponds to the configura-
tion e4t2 with spin S = I, whereas the experimental
ground state corresponds to the configuration e t with
S =2). All of these discrepancies with experiment have

long been suspected to be related to many-electron
multiplet effects left out of one-electron theory. Denoting
by P'o the bare-ion Hamiltonian (i.e., that of a single un-
paired electron, such as in Fe +), by A

&
the interelectron-

ic interactions, and by (A ~) their mean-field average,
one-electron theory in its standard space- and spin-
restricted version [denoted here as the mean-field (MF)
approach] provides solutions to the A o+ (A &) problem,
leaving out the multiplet corrections (MC) that corre-
spond to the A ~

—(A &) problem. In one-electron MF
theory, there is no place for the splitting between multi-
plets evident in the spectra of 3d ions in solids (e.g., Fig
1). Although contemporary mean-field calculations do in-
clude average correlation effects in (M&) (e.g., electron-
gas correlation potentials in the local-density formalism),
spatial correlations associated with the anisotropy of
A ~

—(A ~) are excluded. In fact, band theory of simple
metals and covalent semiconductors, as well as impurity
theory of shallow defects, owe much of their success to
the smallness of such multiplet effects in systems that sus-
tain only extended and delocalized states. %'bile it has

TABLE I. Observed excitation energies {in eV) in transition-atom-doped semiconductors used in this work for theoretical fitting of
the spectra. The assignment of multiplet states is based on the present work.

d state
urity Ti

4T

V
5T

Cr Mn

5E

Fe
4A,
Co

ZnS 0.533' ( T2)
1.141' (4A, )

1.389 (4T,')

0.645" ('E)
1.364" ( T2)
1 748 ( TI)

2.338' ('T, )
2.529' ( T2)
2.666' ('E)

0.442 (5T2)
2.073d( 3A )

2.138 ( A])

0459' ( T )
0.769' ( Ti)
1.761' ( T))

0.543g { T2)
1.130g ( A2)
1.536~ (3T) )

ZnSe 0.738" ( Tl)
1.223" ( T1)

0.500 (4T, )

1.085' ( A2)
1.240' ( TI)

0.685' {E)
1.606' ( T2)

2.309' ( T, )

2.4673 ( T2)
2.666' ( E)

0365"( T2)
1.26' ( TI)

0434'" ( T )

0 781 '" ( T))
1.674~'" (4T) )

0.502" ( T2)
]09h (3A

1.464h ( T )

GaP 0873 ( E) 1 34 ( T])
1.53 (max)

0.413'( T2) 0.559I' ( Tg)
1.051~ ('T, )
1.500" ( Tl)

0.5S3qt
070s' f
1.24o'1 3

1 426, J'( T), A2)

ZnO

'Reference 3.
"Reference 4.
'Reference 5.
References 6(a) and 6(b).

'Reference 19.

"Reference 12.
'Reference 13(a).

Reference 15(a).
"Reference 16.
'Reference 17.

~Reference 7.
~Reference 8.
"Reference 9.
'Reference 10.
'Reference 11.

0.505' ( T2)
0.843' ( Ti)
2.041' ('T, )

~Reference 14.
qReference 15(b).
'Reference 18.
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been recognized on general grounds that multiplet ef-
fects decrease in importance in going from localized exci-
tations (e.g., in Mott-insulating 3d oxides supporting lo-
calized magnetic moments or in 3d impurities in insula-
tors) to itinerant excitations (e.g., the metallic and weakly
magnetic 3d silicides or sp-electron impurities in co-
valent semiconductors ' such as Si:S and Si:Se), existing
multiplet approaches have not separated multiplet effects
from mean-field contributions as they have usually

parametrized the A o+A &
problem directly. Indeed, con-

temporary approaches to the multiplet problem for impur-
ities ' " have devised, with varying degrees of success,
a number of phenomenological schemes for fitting the ob-

served excitation spectra in terms of bare-ion energies

(e.g., the "crystal-field parameter" hcF ——{t
~
~0

~

t )
—{e

~

A 0~ e)) and the large perturbation to it associated
with the full interelectronic repulsions underlying 9'i. In

treating the A o+A ~ problem directly, these approaches
have provided little help in establishing a connection with
the results of MF electronic-structure calculations that

treat the A 0+{~i) problem. The interplay between
theory and experiment has often been obscured by state-
ments on agreement or disagreement between the two (see,
for example, the illuminating review of Ref. 32), when, in

fact, the quantities extracted from experiment were not
directly comparable with MF calculations.

In this paper we present an approach to the multiplet
theory of impurities which separates MF from MC ef-
fects. We will seek to express the excitation or ionization
energies ~ as a sum of a MF energy bE~& and the
many-electron multiplet correction bE&e. Its three cen-
tral quantities are the effective crystal-field energy

ff( m, n; m 'n '), which separates the total MF energy of
two one-electron configurations e t" and e t", and the
orbital deformation parameters A,, and A,„which represent
the ratio between the two-electron repulsion integrals in
the solid and the free ion for the e and ti representations,
respectively (i.e., hybridization and covalency). These
three quantities can be calculated from MF electronie-

structure theory, or, alternatively, they can be deduced by
fitting the observed excitation spectra. In the present
work we determine them from the absorption spectra of
all 3d impurities in ZnO, ZnS, ZnSe, and GaP for which
sufficient data are available (Table I), as well as for the
bulk Mott insulators MnQ, CoO, and NiO establishing
the extent of MC underlying the data. Our analysis quan-

titatively isolates &E~c from bENtF in excitation and ion-

ization, revealing the regular chemical trends (e.g., for
donor or acceptor energies, AE~F is monotonic while hE
and &&~c are not), removes hitherto unexplained con-
tradictions between MF calculations and experiments, and
predicts the energy of some unobserved transitions.

II. MEAN-FIELD ONE-ELECTRON
APPROACH TO IMPURITIES

impurities, and core holes), one is constructing the one-
body electronic charge density from the one-particle wave
functions by a procedure equivalent to assuming equal
populations of all partially filled degenerate spin orbitals.
For example, if the sixfold-degenerate systems of a p shell
in an atom, a tz impurity level in a solid, or a I 25 band in
a crystal are to be occupied by two electrons, their contri-
bution to the one-body charge density is calculated by
means of a procedure equivalent to assigning 6 of an elec-
tron to each of the six degenerate partner levels. By
Unsold's theorem this projection produces a totally sym-
metric a i (spherically symmetric in free ions and atoms)
charge density and one-body potential. (Although in
muffi-tin ' or other spherical approximations this
ai symm-etric density is further approximated by a spheri
cally symmetric density, this simplification is generally
not necessary and will not concern us here). The or-
bital energies obtained from the corresponding MF
Schrodinger equation retain their original degeneracy (i.e.,
a self-consistent solution is obtained). These energies have
in common a constant term (the Racah parameter A) re-
flecting the interelectronic repulsion energy in this ai-
symmetric potential. While it is common to all degen-
erate partners, it is different for various space configura-
tions [e.g., for impurities A (m, n)&A (m', n')], reflecting
variations in the spatial and angular extent of different
self-consistent orbitals.

This spin- and space-restricted MF approximation con-
stitutes an enormous computational simplification since
different arrangements of electrons (e.g., excited states)
experience potentials with the same (ai) symmetry, i.e.,
that underlying the nuclear framework. In crystals, this
approach permits the use of Bloch-periodic, one-electron
orbitals adapted to the symmetry of the primitiue unit cell.
While not mandated by any physical principle (only the
total wave function must be Bloch-periodic), this approxi-
mation is nevertheless a computational panacea in band
theory. At the same time, this approach deprives the sys-
tem from gaining much of the spatial correlation energy
since it does not allow different electron orbits to get out
of each other's way by occupying spatially distinct and
variationally independent orbitals (e.g., p„and ps in the

p configuration, or different orbitals for different spina).
This ai symmetrization of the charge density is common
to all MF contemporary approaches to the electronic
structure of impurities. '

8. Calculation of excitation and ionization energies
in MF approaches

For the system of localized impurities that concerns us
here, modern calculation techniques ' * ' allow accu-
rate solutions for the self-consistent mean-field problem
characterized by the sum of the bare-ion Hamiltonian

A. Averaging the charge density

In electronic-structure calculations of systems with in-
complete one-electron levels (e.g., open-shell ions, diatom-
ic m.olecules such as 02, bulk metals, Mott insulators, 3d

and the a &-averaged interelectronic Hamiltonian

Here V,„,(r) and V„,(r) represent the periodic host (H)
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crystal external (ext) potential (e.g. , pseudopotential) and
screening (scr), respectively, whereas b.V,„,( r ) and
6V,«( r ) denote the impurity-induced perturbations in the
external potential and screening, respectively. Often,
V„,[pH( r )] and b, V„,[pH( r ), hp( r ) ] are calculated
within the local-density formalism from the charge densi-

ty pH(r ) of the host crystal and the impurity-induced den-

sity hp( r ). Both A 0 and (A i ) are restricted to the total-
ly symmetric ai representation of the impurity s point
group (whether the lattice is relaxed or unrelaxed), al-

though the corresponding impurity orbitals (as well as the
sum of their squares) can belong to a lower-symmetry rep-
resentation. Within this restriction, mean-field theories
are able to produce excitation and ionization energies as
differences in the corresponding total energies ET (i.e., in-

cluding orbital relaxation). For example, for a 3d impuri-

ty on a cubic site sustaining e and tz impurity-induced or-
bitals, the energy b;,tt(m, n;m', n') that separates two con-
figurations is obtained as

b„tt(m, n;m', n') =ET(e t" ) Ez (e t")—, (3)

EM'F(0/+ ) = E(r(C )8't" ') —ET((CB) t"),

EM'F(0/+)=ET((CB)'e ') —Er((CB) e ) . (7)

Acceptor transitions analogous to Eqs. (4) and (5) can also
exist for transference of a conduction-band electron to the
impurity (electron capture), and similarly, in an analogy
with Eqs. (6) and (7), donor transitions can involve
transference of a valence-band hole to the impurity (hole
capture) For equ. ilibrium transformations [pertinent to
deep-level transient spectroscopy (DLTS) experiments],
the total energies in Eqs. (4)—(7) are to be calculated for
the lattice- and wave-function-relaxed systems, whereas
for vertical (optical) excitations, the energy in Eq. (3) is to
be calculated with wave-function relaxation, but for an

where the occupied VB is calculated self-consistently for
each arrangement of electrons. This permits the calcula-
tion of MF excitation energies and the identification of
the ground-state configuration by ordering h,tt( m, n;
m', n') for various configurations (m, n) and (m', n') For.
sp-electron impurities such as Si:S and Si:Se, this ap-
proach closely reproduces the observed excitation ener-

gies; however, as we will see below, it fails completely
for d-electron impurities. One can further calculate in
mean-field theory the single-acceptor energy HMF( —/0)
relative to the valence band in the process where a neutral
impurity A is transformed to a negatively charged im-

purity A by transference of a VB electron to a t level

[hole (H) emission],

HMF( —/0) =ET((VB)" 't"+') —ET((VB)"t" ), (4)

or to an e level,

HM„( —/0) =ET((VB)F 'e +')—ET((VB)ee~) . (5)

Analogous expressions exist for the single-donor energies
relative to the conduction-band EMF(0/+), where 2 is
transformed into a positively charged impurity A+ by
transference of an e or a t2 electron to the conduction
band (electron emission):

or

EMF(0/+ )—(eCB et )(CB)0.5tn —0.5 ~

(~)

Variations in the orbital energies e(t"+ ), and e(e + ' ),
or e(t" ), and e(e ), with the impurity's atomic
number, can thus be used to predict trends in the MF
donor and acceptor energies, respectively. For sp-electron
impurities, this approach reproduces the observed accep-
tor or donor energies; however, as indicated below, it
fails for the more localized d-electron impurities.

The Mott-Hubbard Coulomb repulsion energies U~p
and UMF (the energy required to ionize an e or t electron,
respectively, from a given site, and place the electron in a
similar level on a distant site) can be obtained from the
difference between the single-donor and single-acceptor
energies (referred to the same band edge), e.g.,

UMF =EMF(o/+ )+HMF( —/o) —Eg

U(MF) =E(M)F(0/+)+HM(')F( —/0) —Eg
(10)

where Eg is the energy gap, if the energies of the
itinerant-host band edges remain unaffected by the addi-
tion or removal of a single electron. These Coulomb
repulsion energies can be calculated in the transition-state
approximation as

e(tn+0. 5) e(tn —0.5)

e(etn+0. 5) (
nt —0.5)

If lattice relaxation is absent, mean-field theory will al-

ways give UMF &0 (i.e., donor excitation energy is below
the acceptor excitation energy), since the difference in Eq.
(11) represents the reduction in binding energy attendant
upon increasing the occupation and hence interelectronic
repulsions. Tight-binding approaches, ' as well as other
non-self-consistent methods that neglect occupation
response, produce UM„—:0. Negative-effective- U systeins
(i.e., acceptor below donor ) can exist if lattice relaxa-
tions stabilize the A system (relative to A ) more than
they stabilize the A+ system. In the work of Masterov
et al. , ' ' U~z is viewed as a many-electron correction,
although it is already present, as we have seen, in MF cal-
culations. While it is first estimated '"' from a simplified
Hartree-Fock argument, it is then surprisingly argued that
it should not be included in impurity calculations. All the
results given ' ' hence pertain to bare (single-electron) im-

purity ions, a rather unphysical system.
If we now include multiplet effects as a correction to

MF results, there is a correction AE"(m, n) to each
many-electron multiplet i derived from the one-electron
configuration (m, n), which reflects the energy change as-
sociated with anisotropic electron repulsions A i —{Pt', ).

unrelaxed (i.e., ground-state) lattice geometry. In local-
density calculations the transition-state approximation
can be further used to obtain approximations to Eqs.
(4)—(7) directly from the orbital energies e, e.g., for a t2
level,

HMF( /0) —(et &VB)(VB)tt 0 S—tn. +0.5 s
(t)
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The multiplet-corrected ground-state energy E~z, ~
is now

E~s, )
——Ez (m*,n') +bE"(m', n*),

and hence the energy-minimizing configuration (m, n*)
can change relative to that obtained in MF theory. Owing
to many-electron multiplet effects, the excitation energy
between multiplets

I

i & and
I j & of Eq. (3) is replaced by

the excitation energy

E,„,=b,,tt(m, n;m'n')+[bE'J)(m', n') b—E"(m,n)] . (13)

The single-acceptor energy of Eqs. (4) and (5) changes to

H'"'( —/0) =H'"„'( /0)+—[bE"'(A ) —bE"(A )],
—:H ~p( —/0)+ bH( —/0), (14)

where AE'J'(A ) and bE "(A ) are the multiplet correc-
tions to the ground state

I j & of A and the ground state

I
i & of A, and )u stands for e or t2 The d. onor energy of

Eqs. (6) and (7) changes, correspondingly, to

E'"'(0/+ ) =ENtp(OI+ )+[b.E' '(A+) bE "(A —)]
=ENip (0!+)+b.E(0/+ ), (15)

and the Coulomb energies of Eq. (10) are replaced by

U'») = U'~g) + [bE(0/+ )+bH( —/0)]
—U(yy) +b Ut») (16)

The significance of the many-electron correction terms
in Eqs. (12)—(16) can be assessed by comparing the results
of contemporary MF calculations ' to experiment.
The situation can be summarized as follows: (i) Ordering
the MF total energies for various impurity configurations
incorrectly predicts low-spin ground-state configurations
for the d to d substitutional impurities in Si, GaAs, and
GaP, in contrast to the high-spin configuration evident
from EPR studies [viz. , the hE "(m, n) correction of Eq.
(12}]. (ii) Calculated d —+d excitation energies are too
small for all but the lowest-lying transitions [viz. , the
correction term in square brackets in Eq. (13}]. This is
true both for 3d impurities and the intraband transitions
in 3d oxides. ' ' (iii) MF theory predicts for unrelaxed
impurities a monotonic decrease in donor energies and a
similarly monotonic increase in acceptor energies as the
impurity's atomic number varies from Ni to V, whereas
experiment (cf. Table II) exhibits a clear, nonmonotonic
behavior in both cases [viz. , the corrections bH( —/0)
and b,E(0/+) in Eqs. (14) and (15)]. For instance, in
III-V -semiconductors the observed Mn single-acceptor
state is always lower in energy than that of Fe, whereas
the calculated MF levels ' ' ' of Mn are higher than
those of Fe. Note that these discrepancies in trends could
be identified only because both experiments and theory
were performed on series of impurities. We note that all
of these discrepancies appear to be considerably smaller
for sp-bonded impurities such as Si:S and Si:Se, or the
antisite defect in GaAs, for which excellent agreement
exists between recent MF calculations and experiment.

Our objective here is to develop an approach that would
enable us to separate multiplet corrections from MF ef-
fects as in Eqs. (12)—(16), providing guides to the success

and failures of electronic-structure calculations on local-
ized impurities and clarifying the chemical trends in the
many-electron corrections. We first review the traditional
approach to the problem.

III. CONTEMPORARY MULTIPLET APPROACHES

Whereas the spin- and space-restricted mean-field ap-
proach distributes X electrons in a single fixed way in
M-fold —dJe,enerate spin orbitals ( N/M electrons in each),
there are (&) distinct ways (one for closed-shell systems) to
do this. These ( ~)-independent Slater determinants
represent charge densities with symmetries equal to or
lower ("broken symmetries") than the totally symmetric
a i representation underlying the nuclear framework.
Whereas they belong to the same eigenvalue, they may
have different total energies, as both the interelectronic
repulsion and the exchange interactions depend on the
orientation of the occupied orbitals. These determinantal
states can couple through interelectronic interactions to
form new combination states i = +'I' (multiplets of spin
S and space symmetry I ) having the correct global sym-
metry mandated by the point group, total spin, and orbital
momentum. In standard multiplet approaches one is
tacitly assuming that there exists a small subset of one-
electron orbitals (e.g. , e and t2 orbitals for d-electron im-
purities on cubic sites) that carry the multiplet correc-
tions; the coupling channel to the entire system is includ-
ed implicitly, as the MF energies of these orbitals depend
on the occupation and screening exerted by all other
relevant states (e.g., valence-band resonances). The ath
diagonal element of the 4 o+A i matrix in this deter-
minantal basis is given for the I"th representation as

rD (m, n)=Esc(m, n)+k«bcp ~ (17)

where the single-configuration (SC) energy Esc(m, n) is
the matrix element of P i and the crystal-field parameter
b,c„ is the difference in diagonal elements of the bare-ion

Hamiltonian A 0 taken with respect to the partner states
Pi, . . . , P6 of the tz representation and the partner states
P7, , bio of the e representation:

(18)

The numerical factor k« in Eq. (17) arises from the fact
that the diagonal elements are taken with respect to a
fixed configuration [often, ' k bcp is replaced by
(6m 4n)Dq where "1—0Dq" is the crystal-field parameter
in the point-charge model]. Using e t" with m+n =2 as
an example, the Ti multiplet arising from the configura-
tions e t and e't' gives rise to a 2&&2 matrix with diago-
nal elements ( +'I'= T) ):

and

Dii(e t )=(t
I
A i It &+2($, IPt'oI P, & (19)

D»(e't')=&e't'
I ~i

I

e't'&+ &0 I
~o

I et &

+&4. I
~o

I 4, & .

When referred to the bare energy of the configuration
e t, one subtracts froin the diagonal eletnents of Eq. (19)



3436 A. FAZZIO, M. J. CALDAS, AND ALEX ZUNGER 30

the term 2&/, I
4 0 I P, ) pertinent to this reference con-

figuration, yielding

Dii(e't') =
&
t'

I ~,
I
t')+2hcF ~

Dzz(e't') = &e't'
I
~i

I
e't')+hcF

and hence in Eq. (17) k» ——2 and kzz ——1. The off-
diagonal elements of the interaction matrix represent con-
figuration mixing (CM) between two configurations,
(m, n) and (m', n'), that belong to the same multiplet,
given as

D ti ——EcM(m, n;m', n') .

For the T& multiplet, we have

D lz &
t'

I
~i

I
e 't '

&

and

(21)

Dzi=&e t l~i lt & .
If the partner orbitals Pi, . . . , Pio are taken as general

bases that span the representation e and tz of the system's

point group, the elements Esc and Ec~~ are specified by
10 independent interelectronic integrals (Slater-Condon
integrals) of the form &P;PJ I

1/riz
I PkPt). While these

can be calculated in a straightforward manner from the
impurity orbitals (the calculation is particularly easy when
single-site orbitals are used ), such a 10-parameter prob-
lem is not well suited for comparison with experiment as
typically only 2—4 transitions are observed (cf. Table I).
If, on the other hand, it is assumed that the e and tz orbi-
tals share the same radial part and each have a single Ku-
bic harmonic with l =2, these 10 integrals collapse to
three independent ones, denoted as the Racah parameters
A, B, and C, where A corresponds to the a&-symmetric
part of the electron repulsion, and 8 and C correspond to
anisotropic interactions. ' This is, in fact, a rather
drastic approximation since modern mean-field calcula-
tions ' reveal that the hybridization with host orbitals,
orthogonality at ligand sites, and screening by the host
states lead to distinctly different radial functions for e
and tz orbitals. This approximation of neglecting "dif-
ferential hybridization" of e relative to tz can be im-

proved ' ' by scaling the group integrals A, B, and C
by the orbital deformation parameters A,, and A,„reflect-
ing the ratio between interelectronic repulsions in the solid
(sol) and the free ion (ion):

&ee I I
ee)„i

&dd
I ldd)...

These integrals can be evaluated from mean-field
electronic-structure calculations using the l =2 projection
of the fully hybridized, self-consistent orbitals. The
mixed deformation parameter A,„can be calculated in
analogy with Eq. (23), or estimated ' as A,« ——(A,,A, , )'
In this approach, the single-configuration energy
Esc(X„A,„A,B,C) depends also on A, whereas the config-
uration mixing Ec(MA,„A,„,B)Cdoes not. For the Ti
multiplet used as an example, we have

D»(e t )=A,,A(0, 2) —5A,,B+25c„,
(24)

Dzz(e't')=A, ,A,,A (1,1)+4BA,,A,, +bcF,
whereas the off-diagonal configuration mixing is given as

D»(e't', e 't ') = —68K,,A, (25)

Here we have used the notation A (m, n) to emphasize the
configuration dependence of the ai-symmetric interelec-
tronic repulsion energy.

Expressions (17)—(25) can be used to discuss the prop-
erties of a few contemporary multiplet approaches. In the
atomic (Racah s) limit (e.g., discussion in Ref. 47), the e
and tz orbitals unite to form the free-ion d orbital; hence
b cF——0, A,,=A,, = 1, and A (N) appears identically in all
diagonal terms and as such does not affect the mutliplet
splitting. The observed transitions can be fitted in terms
of 8 and C, yielding the free-ion values Bo and Co col-
lected in Ref. 47.

In the classical Tanabe-Sugano-Kamimura treatment
for ions in solids, differential hybridization is neglected
(A,, =A, , ). The mutliplet energies should still depend on
A (m, n); since A is by far the largest of all interaction in-
tegrals [A=(10—100)B; C=48], even a weak depen-
dence on ( m, n ) can alter the results significantly.
Nevertheless, in analogy with the free-ion case, the config-
uration dependence of A has been neglected in this ap-
proach (the configuration dependence of 8 and C is
negligibly small), leading to a common A in all diagonal
elements. The observed transitions are then fitted to 8, C,
and hcF (hence the term the "8, C, and b,cF approach").
Since hcF is configuration independent, this approach
does not provide a channel for coupling the impurity orbi-
tals to the host crystal. This approach, the cornerstone of
numerous applications in the past 30 years (e.g., see the
reviews in Refs. 20, 47, 48, 51, and 54), has led to many
successful interpretations of spectra. At the same time, it
has not been free of difficulties. First, if the number of
observed transitions exceeds the number of parameters,
the unfitted transitions are often poorly predicted (see the
discussion in Ref. 53). Second, the results of the fit do
not lend themselves to clear comparisons with electronic-
structure studies, because implicit in the latter are the
configuration dependence of A and differential hybridiza-
tion, which are neglected in the B, C, and ECF approach.
Indeed, the chemical trends in the fitted hcF (e.g., the S-
shaped curve for 3d impurities in II-VI semiconductors'z)
are rarely matched by state-of-the-art electronic-structure
calculations. Third, accidental degeneracies are predicted
by the fit that do not seem to exist in the data.

The Hemstreet-Dimmock (HD) approach [see also
Refs. 21(b), 25, and 28j represents a pioneering attempt to
bridge the classical B, C, and ACF approach with the con-
tent of electronic-structure calculations. First, differential
hybridization is introduced through the orbital deforma-
tion parameters A, , e.g., the ratio between two interelec-
tronic repulsion integrals,

k k

~.'= f, f, 0.(ri)0,'(rz), +, 0,(ri)0,*(rz)«i«z f, f, A(ri)&'(rz), +, 4d(ri)4d(rz)«i«z (26)
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where RMT is the muffin-tin (MT) radius (usually half of
the bond length of the host crystal). While intuitively ap-
pealing, it is not obvious whether Eq. (27) forms a reason-
able approximation to Eq. (26) since the interelectronic
operator of Eq. (26) (sensitive to small ri-r2 regions) is re-
placed by unity in Eq. (27) (weighing all space equally}.
Second, the bare-ion parameter hcF is replaced by the
t —e eigenvalue difference from a mean-field calculation
of the actual ion [in a recent modification, the energy
b,,tt(m, n;m', n') was used instead]. Third, the configura-
tion dependence of A (m, n) is neglected, and a common A

is calculated by assuming that a MF calculation for a
fixed configuration e t" incorporates in it the average
multiplet effects of all configurations I e +"t,
e +" 't', . . . , e t +"I. In the limit A,, =A,, =1, this as-
sumption gives A =(14BO 7CO)!9-Notic. e that while a
MF calculation for e t" indeed includes some average
multiplet effect, it does so only for the single configura-
tion energies that correspond to the configuration e t"
being considered and not others. Using this expression for
A and the free-ion integrals Bo, and Co, this model
expresses the multiplet energies in terms of X„X„and
ACFe

While it has been appreciated previously that the con-
figuration dependence of A (m, n) greatly affects the mul-
tiplet spectra, ' and that ACF is not interpretable in
terms of MF energies, it was not recognized that the
problem can be simply transformed to a form where the
explicit calculation of A (m, n) becomes unnecessary and,
at the same time, the disposable parameter hcF is replaced
by a well-defined, mean-field energy b,tt that implicitly
contains A (m, n). This will be demonstrated in the next
section.

IV. EFFECTIVE CRYSTAL-FIELD APPROACH

The present approach is based on Slater's ansatz that a
mean-field electronic-structure calculation for a fixed con-
figuration e t" includes in its total energy ET the average
effect of all single-configuration energies that originate
from the configuration (m, n) There . is no place in
mean-field calculations for configuration mixing [Eq.
(21)], or for single-configuration energies that do not be-
long to the configuration e t", for which a self-
consistent MF solution is sought.

We define the single-configuration average energy
E(m, n) as the weighted average of all Es'c(m, n) for mul-
tiplets i that evolve from the configuration e t", i.e.,

E(m, n) =g co,Es'c(m, n), (28)

where the weights are taken over spin (S) and space (gr )
degeneracies:

co; =(2S+1)gr g (2S+1)gr . (29)

that are, however, replaced by the square of the fraction
of 1=2 charge enclosed in a sphere of radius RMT,

+MT 00f P, (r)P', (r)r dr f Pd(r) g(r)r dr

(27)

Interestingly, E(m, n) has the same universal form for all
d arrangements, i.e.,

E(m, n) =f „(A.„A,, )A (m, n)+g „(A,„A,, )(2B —C), (30)

where f~ „(A,„A,, ) and g~ „(A,„A,, ) are fixed coefficients
given in the Appendix. If we were to ignore differential
hybridization (A, =A,, =A,, ), we would have

"D (m, n) =E(m, n)+EEsc(m n)+k«bcF (31)

The usefulness of this partitioning lies in the fact that all
dependence on the symmetric contribution A (m, n) is ab-
sorbed into E(m, n) of Eq. (30), and the single-
configuration shift bEsc(m, n) depends only on A,„A,„
Bo, and Co, much like the off-diagonal eleinents of Eq.
(21). Referring the average single-configuration energies

E(m, n) to some standard configuration E(m, n ),

E(rn, n)—:E(m, n )+b(m, n;m, n ),
the diagonal element of the interaction matrix is

rD (m, n) E(m—,n ) =bEsc(m, n)

+[b(m, n;m, n )+k«bcF],

where E(m, n ) is common to all diagonal elements and
hence does not affect the multiplet splitting. The term in
square brackets in Eq. (32) is denoted as the "effective
crystal-field splitting" b,,tt(m, n;m, n ) and represents the
average energy separation between the configurations
( m, n ) and ( m, n ), including both bare-ion (A 0) and
mean-field ( (A i ) ) effects. It equals, therefore, the
mean-field energy difference of Eq. (3), i.e., the total ener-

gy that separates the configurations ( m, n) and ( m, n ).
The diagonal and nondiagonal elements are given, there-
fore, as

D (m, n)=bEsc(m, n)+b, ,tt(m, n;m, n ),

D p=EcM(m, n;m', n },
(33)

respectively, and depend on Bo, Co, A,„and X, alone. The
solution to the multiplet problem provides, therefore, the
multiplet correction bE"(m, n) to the MF total energy
relative to the reference configuration ( m, n ).

If we choose the e configuration as reference, the com-
plete matrix for our illustrative Ti case is

f,„(A,) = [N (N —1)/2]A,

and all A's would appear identically in all diagonal ele-
ments of d, as is the case in Racah's limit and in the
Tanabe-Sugano-Kamimura approximation. g „(A,), how-
ever, is not a constant even in this limit.

We can now express the single-configuration energy

Esc(m, n) of Eq. (17) relative to the average E(m, n) de-
fining thereby the single-configuration shift bEsc(m, n):
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—A,,(3Bo—Co ) + [6(0,2;2,0)+26 cF] —6X,A,,BO

—6A,,A,,BO A,,A, , (5Bp ——,
' Cp)+[A(1, 1;2,0)+bcF] (34)

The diagonalization of this matrix will yield results that differ both from the Tanabe-Sugano-Kamimura results derived
from Eq. (24),

—5B+26CF —6B
—6B 4B+hcF

and from results of the Hemstreet-Dimmock approach,

(35)

9 A, )(31Bp—7Cp ) +26 cp

—6A,,A, ,Bp

—6A,,A, ,Bp

9 X e A, )(50Bp —7Cp ) +&cp
(36)

The striking difference is that in the Tanabe-Sugano-
Kamimura formalism the separation between these multi-
plets does not depend on C at all, while in the present for-
malism it always has a contribution from Cp.

The central point here is that our transformation identi-
fies both bare-ion (b,c„)and average multiplet effects (b, )
in the effective crystal-field splitting b,,rf of Eq. (32), and
that the configuration dependence in A (m, n) is renormal-
ized in 6 in a way that permits direct comparison with
electronic-structure calculations.

The three central quantities in our approach —A,„A,„
and b,,ff "an be computed from electronic-structure cal-
culations directly from their definitions. Together with

I

the free-ion values of Bp and Cp (Ref. 47), these can be
used to obtain the multiplet structure. Alternatively, it is
possible to reverse the process and determine A,„k„and

ff from experiment by fitting the spectra. In the follow-
ing section we discuss the results of the latter approach, in
which we analyze the spectra of 3d impurities in ZnO,
ZnS, ZnSe, and GaP, for which sufficient data exist, as
well as for bulk oxides. In view of the availability of only
a small number of observed transitions per ion (cf. Table
I), we have used a single, average h, rf parameter so that
the theory has only three independent quantities: h, ff A„
and I, We have not attempted to obtain the best possible
fit for any given system (presumably, this is possible if
one were to use a few different jeff parameters and the

1.0)
Q)—06- +--
&I jeff

'(a) TABLE III. Mean-field parameters deduced from the ab-
sorption spectra of divalent impurities in ZnS, ZnSe, and GaP.
A range is given when less than three transitions are available.

0.2
System

ZnO:Co 0.897 0.914

b„g (eV)
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0.8—

0
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FIG. 2. Mean-field parameters obtained by fitting the d~d*
absorption spectra of 3d impurities in heteropolar semiconduc-
tors (Table I). (a) The effective crystal-field separation A,ff, (b)
e-orbital deformation parameter A,„(c) t2-orbital deformation
parameter A,„and (d) multiplet corrections to the ground-state
energy for free ions, bulk oxides, and 3d impurities in semicon-
ductors.

ZnS:V
ZnS. Cr
ZnS. Mn
ZnS:Fe
ZnS:Co
ZnS:Ni

0.876
0.950
0.967
0.930
0.883
0.806

ZnSe V
ZnSe Cr
ZnSe Mn
ZnSe:Fe
ZnSe:Co
ZnSe:Ni

0.830
0.975
0.970

0.93+0.04
0.890
0.800

GaP:Cr
GaP Mn
GaP Fe
GaP:Co
GaP:Ni'
GaP:Njb

0.863+0.08
0.860+0.08
0.843+0.08

0.831
0.748

0.814+0.0004

'Using data of Ref. 18.
"Using data of Ref. 15(b).

0.897
0.923
0.938
0.913
0.852
0.870

0.870
0.940
0.926

0.91+0.04
0.849
0.854

0.790+0.08
0.858+0.08
0.828+0.08

0.759
0.714

0.800+0.003

0.670
0.540
0.402
0.430
0.453
0.520

0.666
0.540
0.40

0.41+0.03
0.459
0.510

0.64+0.03
0.52+0.03
0.45 +0.03

0.608
0.789

0.69+0.01
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spin-orbit parameters), but we have instead aimed at
achieving a good global fit for many systems, so that re-
gularities can be identified.

V. CHEMICAL TRENDS IN THE MEAN FIELD

A. Trends in A,„A,„and 6,,ff
Before describing some of the details of the optical

spectra of 3d impurities in heteropolar semiconductors
(Sec. VI), we shall discuss the overall trends in the mean-
field parameters A,„A,„and b,,tt (Figs. 2(a)—2(c) and Table
III). All results are assumed to pertain to substitutional
impurities taking up the cation site, as has been the tradi-
tional assumption in this field. ' In cases in which the
number of observed transitions is smaller than the number
of parameters in the model (cf. Table I), we provide the
range of parameters (Table III) consistent with the data.
All transitions occur in the 2+ oxidation state of the im-

purity: In II-VI semiconductors this corresponds to the
neutral impurity A, whereas in III-V semiconductors the
2+ oxidation state corresponds to the negatively charged
impurity A . Accordingly, we use the free-ion values
of Bp and Cp that correspond to the 2+ oxidation state.

Figure 2(a) displays a simple chemical regularity in the
effective crystal-field splitting b,,tt. a minimum at Mn
and a maximum at the high-Z end of the series. A simi-
lar general trend was obtained in recent electronic-
structure calculations for Si, GaAs, ' and GaP.
Interestingly, the existence of a minimum hoF at Mn was
also observed in tetrahedrally coordinated 3d complexes
in solution in comparing the series [(C6H5)3AsO]2NiClz,
(CoC14), and Cs2MnC14, yielding b,cF ——0.52, 0.4, and
0.25 eV, respectively. The simple trend of A,ff exhibited
in Fig. 2(a) is in contrast with the complex S-shaped trend
obtained previously with 8, C, and b,cF fits, ' a trend that
is unmatched by any calculation. The ordering of A,ff i.".
an elemental sequence (often referred to as the "spectro-
chemical series") shows an increase in b,,ff with increasing
covalency C ( Co,p & CzDsz & Czars ), as expected from sim-
ple chemical considerations. It conflicts, however, with
the expectation from the point-ion crystal-field theory
that predicts a scaling of the splitting 10Dq with the
fourth moment (3d

~

r
~

3d) of the bare-ion 3d orbital
(hence, a monotonic decrease with atomic number) and a
rapid (l ) decrease of 10Dq with the impurity-ligand
bond distance l [hence, 5(ZnO) & h(ZnS)].

The trends in the orbital deformation parameters A,,
and A,, in Figs. 2(b) and 2(c) (often referred to as the
"nephelauxetic series") are likewise very simple: a max-
imum at Mn (except ZnSe:Cr, which is slightly higher
than ZnSe:Mn) and a decrease with an increasing covalen-
cy of the host crystal (i.e., increased hybridization). In all
cases, except for V and Ni in ZnS, and ZnSe, we find
A,, & k„suggesting a stronger hybridization of the t2 orbi-
tals (which form in tetrahedral-coordination o bonds with
the nearest-neighbor ligands) relative to the e orbitals
(which form o bonds only with the next-nearest ligands
and weaker m bonds with the nearest neighbors). The
same trend is evident in electronic-structure studies of 3d
impurities in Si, ' GaAs, ' and Gap. We note that
the orbital deformation parameters obtained here [cf. the
definition in Eqs. (23) and (26)] are substantially larger

0.9

0.7

0.5

0.3

0.1

0.1 0.3 0.5 0.7 0.9

FIG. 3. Dependence of the multiplet correction {in eV) to the
T2 state of the Cr + impurity (d ) on the e- and t2-orbital de-

formation parameters A,, and A,, {dashed lines). The solid lines

map the ground state of the system for a range of h, ff values {in
eV).

than those approximated by the d-orbital charge enclosed
in a sphere ' ' ' [charge localization of Eq. (27)], sug-
gesting that the interelectronic repulsion in an impurity is
closer to that of a free-ion than the charge localization is.

In the past ' ' ' much emphasis has been placed on
the decisive role of d orbitals, as opposed to p-d hybridi-
zation, on the spectra of 3d ions in complexes and in
solids. The present calculation highlights the importance
of the small but highly significant hybridization with
ligand orbitals. We find that the energy of the multiplets
is extremely sensitive to small reductions of A,, and A,,
from unity. Hence, even a small radial expansion of the e
orbital, or a p-d hybridization in the t2 orbital, sensitively
controls the spectra of the system. This is illustrated in
Fig. 3, where we plot the multiplet correction for the
Cr +(d ) impurity in a T~ site. The dashed lines corre-
spond to the value of the multiplet correction (in eV) asso-
ciated with the T2 state of e t (the correction does not
depend on b,eff). The solid lines map the symmetry of the
ground states for different A,„A,„and b,,tt for a range of

ff. Each of these phase diagrams is labeled by the ap-
propriate value of b,,tt, also in eV. We see that for small
values of b,,tt ( =0.3—0.5 eV), if A,, deviates from unity by
as little as 5%, the ground state switches from T2(e t )

to E(e 't ), notwithstanding the large multiplet correction
(2.7 eV) affecting the T2 state. Moreover, for large
values of b,eff and moderate hybridization (A,„A,, =0.8),
the low-spin multiplet 'Ai(e ) becomes the ground state.
As we approach the itinerant limit (small A,, and iL, ), mul-
tiplet corrections decrease rapidly and mean-field theory
becomes an adequate representation.

B. Trends in ground-state multiplet corrections

Figure 2(d) depicts the multiplet correction bE "(m, n)
[Eq. (12)] to the ground state of the 3d impurities. It also
includes results for the bulk Mott insulators NiO, CoO,
and MnO, as well as for free 3d ions in their 2+ oxida-
tion state obtained by fitting their spectra. While these
corrections are extremely small on the scale of the total-
energy scale E~, in all cases they are sufficient to stabilize
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Substitutional Co Impurity
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FIG. 4. Variations in the effective crystal-field energy A,ff
and e- and t2-orbital deformation parameters A,, and I,, with the
host crystal for the substitutional Co + impurity in various
semiconductors. Solid circles indicate the results of the present
study; open circles are results obtained with the O' Neill and Al-
len method (Ref. 4S). All crystals except ZnO (the wurzite
structure) have a cubic zinc-blende structure.

the high-spin (Hund's-rule) ground state (the multiplet no-
tation is given later in Figs. 12—14). Chemical trends are
again very transparent. First, the largest multiplet stabili-
zation occurs for Mn with its highest spin (S=—,), and it
decreases monotonically (but not symmetrically) as we go
to either side of Mn in the 3d series. Second, the multi-
plet correction decreases rapidly with covalency in going
from the free ions to oxides, sulfides, and phosphides
(presumably, for Si:TA, for which no absorption spectra
have yet been recorded, the corrections are still smaller).
Introduction of a 3d impurity into a covalent crystal re-
sults, therefore, in a larger loss of multiplet-stabilization
energy relative to an impurity in a more ionic system.
This will be discussed further in Sec.. VII. Third, the
correction for the impurity system ZnO:Co is virtually
identical to that obtained for bulk CoO, suggesting that
much of the multiplet effect is confined to the nearest-
neighbor ligand cage. Fourth, the octahedrally coordinat-
ed bulk Mott insulators NiO, CoO, and MnO fit the gen-
eral trend observed for dilute impurities.

Since the spectra of Co + were observed in a number of
host crystals, this provides an opportunity to inspect the
chemical trends in A,„A,„and Ad~ with the host crystal.
Figure 4 depicts this information (solid circles) for ZnO,
ZnS, ZnSe, and Gap. It is evident that A,f~ is very small
in a highly ionic system such as ZnO (0.340 eV, although
it has the smallest lattice parameter); is similar in ZnS
(0.453 eV) and ZnSe (0.459 eV), which have nearly identi-
cal anion electronegativities, and increases in going to the
covalent Gap (0.61 eV). The deformation parameter A,,
varies slowly with the covalency of the host crystal,
whereas the deformation paraineter A, , discriminates one

host crystal from the other. This is understandable6 in
light of the fact that the d part (1=2) of the e orbital can
mix only with a g orbital ( l =4) in tetrahedral symmetry.
On the other hand, the d part of a t2 orbital can mix in
tetrahedral symmetry already with p states; hence, A,,
varies from one host crystal to the other, reflecting the
position of the atomic d state relative to the host t2 densi-
ty of states. We notice that the trends obtained with the
method of O' Neill and Allen (open circles in Fig. 4),
showing b,,rf(ZnSe) & h, ff(ZnS) and A,,(ZnO) & A,,(ZnS),
appear at odds with the simpler chemical trends obtained
here. In a similar analysis within the B, C, and b,cF
theory, Hennel studied the dependence of the Racah pa-
rameter B on the electronegativity of the host anion. He
concluded that B is nearer its free-ion value Bo when the
electronegativity of the hosts anion increases, in agree-
ment with the trends obtained here for the deformation
parameters. Our analysis suggests further that the values
of B for Co + in ZnS and ZnSe would be very similar.

VI. OPTICAL TRANSITIONS IN 3d IMPURITIES

In this section we analyze in some detail the optical
transitions of 3d impurities, comparing the present as-
signments with those suggested previously. Figures 5 and
6 display the multiplet structure obtained in the present
work, together with the observed transitions for TA im-
purities in ZnS and ZnSe, respectively. For the latter, we
used the labels given in the experimental work. We used,
wherever possible, energies for the maximum of the ab-
sorption band as opposed to zero-phonon energies. The
experimental energies denoted by asterisks were used to
obtain our fits to A,„A,„and b,rf. The others are predict-
ed.

A. Ni + in ZnS and ZnSe

The ground state of the substitutional neutral Ni + ion
is supposed to be Ti(F), originating predominantly from
the configuration e t . We associated the three main lines
detected experimentally with the spin-allowed transitions
Ti(F)~ T2, Ti(P), and A2. The experimental data

were obtained froin the work of Roussos and Schulz for
ZnS, and of Wray and Allen for ZnSe. Our overall
analysis matches the analysis of Roussos and Schulz car-
ried out within the 8, C, and AcF theory in the assign-
ment of the P band to the transitions to the ('T2, 'E)
states, the band 5 to the 'Tq state, the band g to the 'Ti
state (except that here the state 'A i also contributes, con-
trary to the B, C, and b,cF results), and, lastly, the band i1

to the 'E state. It is worth noting that our results differ
from the experimental spectrum for the q band, whereas
the remaining transitions are in good agreement. The
analysis of the ZnSe:Ni + spectra is similar to that of
ZnS:Ni +. We note, however, that contrary to the 8, C,
and AcF analysis, we predict the excited A2 state to be
below the 'T2 state.

B. Co + in ZnS and ZnSe

The ground state for substitutional neutral Co +(d ) is
supposed to be A2, originating from the configuration
e t3. We performed a fit to the absorption spectra associ-
ating the three observed lines with the transitions
A2~ T2, Ti(F), and T&(P). The experimental data
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were taken from Refs. 7, 12, and 19, and are also shown
in Figs. 5 and 6 along with the theoretical spectra. Noras,
Szawelska, and Allen have recently reported the absorp-
tion spectra for Co + in these two compounds in the re-

gion of -2.5 eV. For the system ZnSe:Co2+, three lines
were observed in the region 2.363—2.577 eV, in agreement
with our results (we obtain three doublets, T„E, and
T2, in this region). Robbins, however, does not identify
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multiplet methods: the Hemstreet-Dimmock (HD) approach
(Ref. 23), the O' Neill-Allen (OA) method (Ref. 49), the

Tanabe-Sugano B,C, and hcp method (Ref. 48), and the present

method. Note the differences in the crystal-field energies 6 ob-

tained by the various methods.

these three lines with intra-d excitations. In the case of
ZnS:Co + only two lines were detected at 2.545 and 2.72
eV, again in agreement with our results; however, the two
doublets we obtain lie very close to each other compared
with the absorption data.

The results for ZnSe:Co + obtained by fitting the same
experimental data with four different multiplet ap-

proaches are compared in Fig. 7. The spectra obtained by
the Hemstreet-Dimmock (HD) and the O' Neill-Allen

(OA) methods are almost identical, although they corre-

spond to widely different crystal-field parameters. Notice
that we find an excitation gap, argued by O' Neill and Al-

len to be essential to an explanation of the absence of non-

radiative decay in this system.

C. Fe~+ in ZnS

Liro. "We interpret the M band as being formed by the
transition to the state Tj, although there is a discrepancy
( -0.08 eV) with the experimental results. The transitions
to the states Ti, T2, and E form the N band, and the S
band is composed of transitions to the states Ti, T2, and
'E (in the B, C, and b.cF analysis the 'E state is not in-
cluded in this band). Interestingly, the S band around
2.2—2.3 eV was shown "to have an asymmetric form,
suggesting that it overlaps with the donor photoionization
(Fano resonance). This suggests that E(OI+) is around
2.1 eV (cf. footnote e to Table II).

D. Mn + in ZnS and ZnSe

The neutral Mn + impurity in II-VI semiconductors
has the A

&
ground state. This case (d ) is unique in that

all transitions are spin forbidden. We based our study on
the optical-absorption data of Gumlich et al. for
ZnS:Mn +, and the data collected by Wray and Allen for
ZnSe:Mn +. %"e present in Fig. 5 our theoretical spec-
trum along with the results of Gumlich et al. For this
case, the significant differences between the B, C, and hcF
approach and the present one are manifested in the rela-

tive position of the E and Ai levels. In the B, C, and

hc„approach those states are always degenerate for any
value of the parameters; in our treatment, they split due to
the covalency effects included via the deformation param-
eters A,, and A,

In a recent work, Blanchard and Parrot studied the
covalency effect on the pair E (G), A i by inserting a
multiplicative factor r in the Coulomb integrals involving
the impurity t2 orbital for the states Ai, E, and A, . In
this way, v is a measure of t2 covalency, whereas the e

impurity orbital is still considered to be a pure-d state.
For a value of 2=0.92, they found a splitting E Ai of-
about 10(M cm '. As shown in Fig. 2 and Table III, we

obtain values of A,, =0.938 and A,, =0.967, which shows

that for Mn + in ZnS there also exists a finite covalency
of the e orbitals, so that we obtain for the splitting a value

of 390 cm '. In Fig. 8 we plot the dependence of the

splitting of the two levels on the parameter A4t, maintain, -

ing A,,=1. The results show that the transition to the
state 2

&
is always energetically higher than that to the E

state. Two other absorption lines (around 2.77 and 3.22
eV) were observed experimentally, which we associate
with transitions to the states T2, and T&.

It is known from optical measurements that the
ground state of the Fe + impurity in ZnS is E, the ab-

sorption energy for the transition to the first excited state
T2 being around 0.422 eV (3400 cm '). In a recent

work, Skowronski and Liro "performed a detailed study
of the spin-forbidden transitions in this system. In their
analysis of the absorption lines (see Fig. 5) they associated
the line labeled P (16707 cm ', or 2.071 eV) with the
transition E~ A2, and the line labeled R (17217 cm
or 2.134 eV) with the E~ Ai transition. In Fig. 5 we
present the spectrum obtained by the present method, fit-
ting the same three transitions used by Skowronski and

E. Cr + in ZnS and ZnSe

The chromium impurity in II-VI compounds is found
in the high-spin configuration e t, with ground state T2.
The symmetry around the impurity is lowered, however,
to D2d by a static Jahn-Teller effect, and it is well estab-
lished that the spin-allowed transition B2( Ti )

~5& ( E) occurs around 5525 cm ' in ZnSe. The experi-
1

mental data used here are obtained from the work of
Grebe, Roussos, and Schulz' for ZnSe:Cr +, and that of
Grebe and Schulz for ZnS:Cr +. We will discuss the
first system in more detail.
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FIG. 9. Comparison of the multiplet structure for the 'AI,
E, and T2 states of the Cr + impurity using the 8, and C, b,cF

approach and the present method. We set the ground state of
T2 at the same energy for comparison.

spond to the average total energies (B, C, and b,cF method
and the present method, respectively) of each configura-
tion, and the center columns correspond to the energies of
the multiplet states, already including configuration mix-
ing. What is apparent from the figure is that the energy
separation between the configurations e and e t is strik-
ingly different; this is a consequence of the way the two-
electron interactions are treated in the two models, namely
that the contribution of the symmetric part of the interac-
tions [the A (m, n) energies] to the multiplet splitting is ig-
nored in the B, C, and ACF method, so that the greater
stability of the e configuration in the solid has to be ac-
counted for only by the one-electron parameter hcF cou-
pled to a reduction of the parameter 2B —C that deter-
mines the initial separation of configuration energies.
There are bounds to the variation of these parameters, set
by the other transition energies, so that it is not feasible to
bring the 'A~ state down in the 8 C, and hcF approach.
In this particular case, the explicit dependence on dif-
ferential hybridization in our approach is not the main
factor affecting the 'Ai- T2 splitting. Instead, the main
contribution comes from the configuration dependence of
the Racah parameter A, that is, A (e ) differs consider-
ably from A(e t ).

F. V + in ZnS and ZnSe

The oxidation state of the vanadium impurity in II-VI
and III-V semiconductors is still the subject of serious
controversy, ' particularly concerning the assignment of
the observed intra-d optical transitions to V +, V +, or
V+. Here we have assumed that the oxidation state V +
pertains to the experimental spectra of ZnS:V and ZnSe:V
observed by Hoang and Baranowski, following these au-
thors. For the fitting procedure, we assumed Ti symme-
try for the ground state.

The symmetry assignments for the observed lines are
very similar for both compounds, and an interesting

For ZnSe:Cr +, Grebe, Roussos, and Schulz' detect
transitions at 2.033, 1.854, 1.606, 1.426, and 1.110 eV
(16400, 14950, 12950, 11500, and 8950 cm ', respective-
ly). The authors analyze the spectrum within the B, C,
and hcF approximation, which fails to describe the transi-
tion at around 8950 cm ', that is, it is not possible to ob-
tain a good fit of the other transitions and simultaneously
obtain a band at this energy, for both compounds. In a
first interpretation, the authors associated the excitation
in the region —10000 cm ' in ZnS with the T2~'A&,
transition but if they leave out this strongly spin-
forbidden transition, they obtain a better fit to the remain-
ing lines.

An analysis of the experimental spectra shows that the
intensity of the transitions is higher for the higher-energy
region. Thus, we based our fitting procedure for
ZnSe:Cr + on the value for the spin-allowed T2 +E—
transition (5525 crn '), searching at the same time for
lines at 12950 and 14950 cm '. Our results (Figs. 5 and
6) can be summarized as follows: The line at 16400 cm
is associated with a transition to the state E, the line at
14590 cm ' with one to T], and the line at 12950 cm
with one to T2. We find, at lower energies, a TI state
that we relate to the line at 11500cm ', and the 'A& state
also appears at 9680 cm ' and can be related according to
our results to the line at 8950 cm '. The relative position
of this 'A

i level is an interesting case for a comparison of
the B, C, and ECF and the present methods because it is
the only state produced by the configuration e [hence
b,Esc=O in Eq. (17)], and it comes from the lowest-
energy configuration (hence h, tt=O). Thus, its energy can
be affected only by configuration mixing with the other
'A i states, and this is a relatively small effect. The state
T2 has no configuration mixing, but its energy is affected

both by b,,tt and A,„A,, (through b,Esc). In Fig. 9 we show
a comparison of the energy diagrams for the states 'Ai,
E, and T2 obtained by the two models. First, for the B,
C, and ACF diagram, for which we used the values from
Ref. 10, we have separated, for clarity, the contribution
from E(m, n). Second, we show the results of the present
approach. The extreme left and right columns thus corre-
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feature is the position of the E state originating mainly
from the e configuration. In both cases, this E state ap-
pears close to the ground state (0.1 eV above the Ti state
for ZnSe and 0.21 eV for ZnS), indicating that the impuri-
ty system is already near the low-spin regime. These re-
sults disagree with previous B, C, and AcF analyses of
ZnSe:V +, which assign the E state to the broad absorp-
tion band around 0.78 eV (we interpret this band as being
formed by two states, T, and Tz). We suggest that in
more covalent materials such as III-V compounds e.g.,
GaP), where we would have smaller A,, and A,„and a
larger A,~~, the V + impurity will probably present a low-
spin (zE) ground state.

G. Absorption spectra of transition-atom impurities in GaP

In Table I we present the experimental data for the
d —+d optical transitions used in this work for substitu-
tional TA impurities in GaP. Notice that only for the im-
purities Co and Ni are there three observed lines for the
2+ oxidation state. For the remaining ions, Fe, Mn, and
Cr, only one transition was observed. We give, therefore,
the ranges of the mean-field parameters (Table III) con-
sistent with the data. For the 3+ oxidation state (neutral
impurity), only a single d —&d' transition has been ob-
served for V + (Ref. 71).

Our fitting procedure for Ni and Co is similar to that
of the II-VI host crystals; assuming the ground-state sym-
metry A2 for Co + and Ti for Ni +, we search for the
set A,„A,„and b,,tt that provides the best fit for the ob-
served lines, subject to the constraint that the transitions
involve high-spin states.

Our results for Co + are consistent with the analysis of
Baranowski et al. ' and Weber et al. , where the broad
band around 0.89—1.03 eV (1.4—1.2 pm) is assigned to
the transitions Ai~[ Ti(F), E, T, ]. The situation with
GaP:Ni is more complex. If we assume, following
Baranowski et al. , ' that the three observed transitions
for GaP:Ni at 0.705, 1.24, and 1.426 eV correspond to ex-
citations of the negatively charged impurity (i.e., Ni +,
d ), we obtain a good fit with A,, =0.748 eV, A, , =0.714
eV, and h, tt=0.789 eV. This fit identifies the three tran-
sitions as Ti(F)~ T2, Ti(P), and Az, respectively.
Recently, Kaufmann et al. ' ' ' suggested that the lowest
transition at 0.705 eV is related to the doubly negative im-
purity (i.e., Ni'+, d ), and that the correct first excited
state of the negative impurity is located at 0.583 eV
[zero-phonon line (ZPL)] rather than at 0.705 eV. We ex-
amine this suggestion by attempting to fit the three exci-
tation energies, 0.583, 1.24, and 1.426 eV, in the Ni +
model. The best fit indicates that the order of transition
is different: Ti(F)~ T2, A2, and T, (P). Nevertheless,
the center of the first transition occurs at energies equal
or larger than 0.65 eV (i.e., the maximum would be at 0.07
eV above the ZPL) in the investigated range of b.,ff. This
best fit corresponds to the parameter set A,,=(0.814
+0.004); A,, =(0.800+0.003), and b,,tt=(0.69+0.01) eV.

In the cases of Fe and Cr, we assume that the observed
lines correspond to a transition between the high-spin
states E and T2, and ground-state symmetries E for
Fe + and 5T2 Cr +. We find Cr to be already close to

the low-spin regime (Fig. 3). For the Mn + impurity we
assumed the ground state to be 3&. For a reasonable
range of A,„A,„and b,,tt, the line at 1.34 eV is associated
with the transition 3

~
~ T]. Recent MF calculations

for 3d impurities in GaP show good agreement with the
mean-field portions of the experimental data as analyzed
here.

VII. CRYSTAL-FIELD STABILIZATION ENERGY

In this section we use the experimentally deduced
crystal-field energies h, tt [Fig. 2(a)] and ground-state mul-

TABLE IV. Observed and fitted absorption spectra of CoO.
In parentheses we designate the final excited stated obtained in
the present calculation and in the 8, C, and 6&F fit of Ref. 73.
Our results correspond to 80 ——0. 1382 eV, Co ——0.5413 eV,
5 ff—0.7430 eV, A.,=0.94, and 1,, =0.70. Experimental results
from Ref. 73. Note the substantial differences in assignment of
states in the present approach relative to a 8, C, and A~F fit.

Observed lines
(eV)

0.9—1.033

1.610
2.026
2.053
2.137

2.26—2.33
2.50—2.56

2.605

Present
fit

0.93 ( E)
1.11 ('T2)
1.570 ( Ti)
2.008 ( Ag)
2.080 ( T2)
2.231 (2A))
2.31 (4T))
2.43 ( Ti)
2.601 ('T, )

8, C, and ~cF
fit

1.033 ( T )

1.212 (2E)
1.927 ( T, )

2.054 ( T2)
2.201 ( A2)
2.300 ( Tl )

2.659 ( T()
2.803 ( Ai)

H. The Mott insulator CoO

The same procedure used to analyze the multiplet struc-
ture for 3d impurities can be extended to the
stoichiometric limit of transition-metal compounds.
Here, we discuss the case of the Mott insulator CoO; a
more complete discussion of the series NiO, CoO, and
MnO is deferred to a planned future publication. We use
here the data of Pratt and Coelho.

For the octahedrally coordinated CoO, the ground state
is supposed to be Ti, originating predominantly from
the configuration e t Tabl.e IV shows the results of ap-
plying the present method to the observed spectra of CoO,
along with the traditional B, C, and Acp assignment.
Note that the E excited state appears near the T2 state
in the band ranging from 0.9 to 1.033 eV, considerably
lower than the B, C, and hcF value. The value

ff—0.743 eV is considerably lower than that obtained
by a 8, C, and hcF fit and removes the hitherto unex-
plained discrepancy with a high-quality molecular-orbital
study producing h, tt=0. 691 eV. The orbital deforma-
tion parameters A,,=0.94 and A,, =0.70 indicate that the
t2 band is considerably more hybridized than the e band,
which remains nearly atomic. A similar situation occurs
for NiO, where a 8, C, and b,cF fit yields a crystal-field
splitting of 1.13 eV, markedly higher than the calculated
value, ' 0.724 eV, whereas the present approach pro-
duces in the fit heft=0. 75 eV, in excellent agreement with
the results of electronic-structure calculations. 7 '
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tiplet corrections &E" [Fig. 2(d)] to discuss the "open-
shell contributions" to the cohesive energies of 3d coordi-
nation compounds. The binding energy of a guest atom to
a host lattice is composed of closed-shell and open-shell
cohesive interactions. In the absence of both multiplet ef-
fects and e-t2 crystal-field splitting (e.g., for compounds
of closed-shell ions such Ca +, Zn +, Sc +, and Ga +),
the bonding is decided by closed-shell, one-electron effects
such as covalent hybridization, increase in kinetic energy
upon compression, orthogonality at ligand sites, electro-
static interactions with the other nuclei, and interelectron-
ic repulsions. Experimental evidence suggests that these
sources of bonding Ei, usually vary smoothly and mono-
tonically with the position of the atom in the row of the
Periodic Table. This evidence consists of the observed
smooth increase in the lattice energies of chalcogen and
halide compounds of closed-shell ions with the cation's
atomic number, similar variations in the heat of ligation
(e.g. , with H20), and in bond distances of such bare-ion
coordination compounds. The smooth variations of Eb
also underlie the concept of smooth variations in atomic
or ionic radii of atoms having complete shells in their
bonding state. ' If, on the other hand, both crystal-
field-splitting effects and multiplet corrections exist (e.g. ,
guest ions with open 3d shells), the variations in cohesive
properties are no longer smooth or monotonic (e.g. , the
cohesive energies of Ti, V, Cr, Fe, Ni, and Co chal-
cogenides and halides are substantially smaller than those
expected from interpolating between the cohesive energies
of closed-shell ions such as Ca + and Zn + chalcogenides
and halides ). These deviations have been attributed to
crystal-field-splitting effects, ' ' ' i.e., the excess ener-

gy gained in the solid by occupying e and t2 levels whose
baricenter lies below the free-ion 3d level. This energy is
depicted by the dashed lines in Fig. 10 where we have
used the experimentally deduced effective crystal-field
splitting jeff for the various impurities (Table III). This
crystal-field stabilization energy (CFSE) [(2n —3m)b, /5
for e~t" configurations in tetrahedral fields, or the neg-
ative of this quantity for octahedral fields] vanishes for
Mn + (where the baricenter of the half-filled d shell in
the e t configuration coincides in the simple crystal-field
model with the energy of the free-ion 3d level), and in-
creases as one moves away from Mn to either side of the
3d series. These variations in the CFSE (except that less
reliable values of h, rf have been used) had been widely
used ' ' ' in the past to explain a large body of chemi-
cal data pertaining to excess stability of compounds with
open-shell ions relative to compounds with closed-shell
ions, or the relative stability of octahedral- versus
tetrahedral-coordination compounds. ' We wish to
point out that this classical argument is at best incomplete
as it leaves out the multiplet effects associated with open-
shell atoms. These corrections have the opposite effect of
the CFSE and offset its contribution.

The open-shell contribution to the cohesive energy con-
sists both of a CFSE term and of a multiplet correction
term b,E" (solid) —b, E( t amo) that reflects the loss in
many-electron stabilization energy in going from the more
localized free ion to the more extended states in the solid
[compare the difference between the two multiplet correc-
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tions in Fig. 2(d)]. The dotted-dashed lines in Fig. 10 de-
pict this loss of multiplet energy in the solid relative to
the free ion. This repulsive multiplet contribution to the
cohesive energy is seen to be large for covalent host crys-
tals such as GaP [e.g. , 2.5 eV/atom for GaP:Mn; cf. Fig.
10(c)], since much of the multiplet stabilization is lost in
the solid due to delocalization of the orbitals. It is sub-
stantially less repulsive in the more ionic host crystals
such as ZnS [e.g., 1 eV/atom in ZnS:Mn; cf Fig. 10(a)].
Hence, we predict from this analysis that the solubility of
a 3d ion would increase rapidly as the covalency of the
host crystal is reduced in going from Si to III-V and II-VI
semiconductors. Few observations are in line. We note
that the multiplet destabilization is larger than the
crystal-field stabilization, so that sum of the two contribu-
tions (solid line in Fig. 10) is positiue, having, hence, a net
destabilizing effect. Open-shell contributions are thus
more properly termed "crystal-field destabilization" ef-

2.5 —
,

y'+ Ct'+ M/2+ Fe + Co + g 2+

FIG. 10. Variations in the crystal-field stabilization energies
(CFSE, dashed lines), multiplet contribution to the cohesive en-

ergy (dashed-dotted line), and their sum (total open-shell contri-
bution to binding, solid line) for TA impurities in (a) ZnS, (b)

ZnSe, and (c) GaP. Notice that the destabilizing multiplet
correction to cohesive energy outweighs the CFSE.
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FIG. 13. Multiplet corrections for 3d impurities in ZnSe. See
caption to Fig. 12.

VIII. CHEMICAL TRENDS FOR EXCITATION
AND IONIZATION ENERGIES

A. d ~d excitation energies

Having obtained the mean-field parameters A,„A,„and
b,,rr from the absorption spectra, we are in a position to
evaluate the multiplet correction

AE'~'(m', n') —bE "(m, n)

for excitation energies calculated in MF approaches [e.g.,
Eq. (30}] between states i and j [cf. Eq. (13)]. Figures
12(a), 13(a), and 14(a) display this correction for the three
lowest excited states of TA impurities in ZnS, ZnSe, and
GaP, respectively. The symmetries of the final states are
indicated in each case. The symmetry of the initial
ground state is given in Table I. We note the following
salient features. First, the lowest excited state has a very
small multiplet correction in all crystals for all impurities
but Mn, for which the multiplet correction in the ground
state ( 3& with spin —,

'
) far exceeds that in the excited

state ( T& with spin —,
'

) because of the decrease in total
spin attendant upon excitation. Hence, mean-field theory
may work well for the first excitation energy of all impur-
ities except Mn as a result of an effective cancellation be-
tween the many-electron corrections in the ground and ex-

FIG. 14. Multiplet corrections for 3d impurities in GaP. (a)
Corrections to the three lowest high-spin d ~d excitation ener-
gies of the negatively charged A impurity [cf. Eq. (13)]. The
multiplet labels denote the final states. (b) Negative of the
correction to the ground state A (i.e., TA impurity of charge
state 3 + ), positively charged A (i.e., TA impurity of charge
state 4+ ), and negatively charged A (i.e., TA impurity of
charge state 2+ ) impurities [cf. Eq. (12)]. Only the results for

are fitted to experiment. (c) Multiplet corrections for accep-
tor [bH ( —/0), cf. Eq. (14)] and donor [bE(0/+ ), cf. Eq. (14)]
ionizations. The labels e or t refer to the one-electron orbital
being ionized.

cited states. Second, the multiplet corrections have a
maximum at Mn for all three excited states, and they de-
crease monotonically on both sides of the 3d series. These
corrections can be substantial even if the spin is conserved
in the excitation process. Third, multiplet corrections for
excitations can be both positive (increasing the energy rel-
ative to the MF results} and negative (producing a lower
excitation energy relative to the MF results, e.g., the
second excited state of Co). Fourth, there is no overall
trend in the multiplet correction with the excitation ener-
gy; however, the corrections are reduced with the covalen-
cy of the host crystal. Nevertheless, the corrections for
the second and third excited states are substantial on the
physically relevant scale of the band gap (up to 80%%uo of
the gap even in GaP). We conclude that with the excep-
tion of the first excited state in all impurities but Mn, a
correct mean-field electronic-structure calculation cannot
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TABLE V. Multiplet correction energy for the ground and the three lowest excited states of divalent impurities in ZnS. Some of
the multiplets involve a single one-electron configuration (e.g., ground state of Cr, Mn, Fe, and Co). Others involve configuration
mixing. We list separately the contribution to the total multiplet energy from such interconfigurational interactions. This effect ac-
counts for all of the multiplet corrections in some cases (e.g., second excited state of Cr +).

Impurity
Predominant

Multiplet configuration

Total
multiplet
correction

(eV)

Configuration-
mixing
energy

(eV)
Predominant

Multiplet configuration

Total
multiplet
correction

(eV)

Configuration-
rnixing

energy
(eV)

V2+
Cr2+
Mn+
Fe'+
Co2+
Ni2+

4T
'T2

5E
4W,

1

Ground state
e't'
e2t2

e t
e t
e4t'
e4t4

—1.012
—2.414
—4.43
—2.636
—1.511
—0.701

—0.101
0.0
0.0
0.0
0.0

—0.130

'T

'T
Ti

4T

e lt2

e4
t3e2
e4t'
e2t5
e't'

Second excited state
—1.100
—0.295
—1.4901
—0.827
—1.646
—0.640

0.0
—0.295
—0.320
—0.266
—0.295

0.0

V2+
Cr'+
Mn+
Fe'+
Co2+
Ni+

2E
5E
4T
'T2
'T
'T

—0.119
—2.330
—1.684
—2.410
—1.436
—0.609

First excited state
3

e't'
e 3t2

e't4
e't4
e t

—0.119
—0.0
—0.170

0.0
0.0
0.0

'T
Tj

4E

E
2E
'T2

e2t1
e3t1

2t 3

e t
e4t'
e4t4

Third excited state
—0.071
—0.763
—1.7.91
—0.783
—0.202

0.464

—0.359
—0.203
—0.219
—0.307
—0.202
—0.108

legitimately reproduce the observed excitation energies of
3d impurities.

Table V gives the multiplet corrections for the ground
and first three excited states of the TA impurities in ZnS.
We show separately the configuration-mixing contribution
to the multiplet correction. In the ground state, the mul-
tiplet correction for all impurities but V + and Ni +
arises purely from anisotropic interelectronic interactions
within a single configuration, whereas for V + and Ni +

the configuration mixing contributes only 10%. On the
other hand, configuration mixing becomes progressively
more dominant in the excited states; for the 'A

i excited
state of Cr + and the E excited state of Co +
configuration-mixing constitutes all of the multiplet
correction. In cases where interconfigurational many-
electron interactions dominate, one-electron theory is
clearly inapplicable.

B. Donor and acceptor ionization energies

Since the observed excitation processes for 3d impuri-
ties pertain to the A 'charge state in II-VI semiconductors
and the A charge state in III-V semiconductors (in both
cases the oxidation state of the impurity is 2+ ), the fit to
the excitation spectra produces just the mean-field param-
eters for these states. In what follows we will estimate the
chemical trends in the other charged state by assuming,
for lack of better information, that the orbital deforma-
tion parameters k, and A,, that pertain to the 2+ oxida-
tion state are approximately valid also for the oxidation
states 3+ and 1+. Notice that the multiplet correction
does not depend on b.,rf in the absence of configuration
mixing and has only a weak dependence on it otherwise.
Using this procedure, we find that the ground-state sym-
metries agree with the assignments from EPR and optical
techniques where available, i.e., in III-V semiconductors
for Fe + (Ref. 40), Ni + (Ref. 86), and Cr+ and Cr +

[Refs. 2, 15(c), and 87].
Figures 12(b), 13(b), and 14(b) depict the multiplet

corrections to the ground states of A, A+, and A in
ZnS, ZnSe, and GaP, respectively. In all cases the largest
correction occurs for the highest spin state, 3 ~. Note
that the ordering of the correction is interchanged in the
low-Z limit (A &A &A+), relative to the high-Z limit
(A+ &A &A ). Exactly the same trend occurs in the
calculated exchange splitting in free ions (Fig. 15), sug-
gesting that much of the rnultiplet stabilization is due to
spin correlations.

Using the multiplet corrections to the ground states of
A, A+, and A, we can further calculate their differ-
ences; i.e., the multiplet correction AFAR( —/0) for the
A ~A acceptor transitions [Eq. (14)] and the correc-
tion bE(0/+) for the A ~A+ donor transitions [Eq.
(15)]. These corrections to the mean-field predictions for
donor and acceptor activation energies are displayed in
Figs. 12(c), 13(c), and 14(c). We have labeled each point
by the symbol e or t, denoting the orbital being ionized in
the transition. The corrections are seen to be substantial
on the scale of the band gap. For the V and Cr acceptors,
the correction is negative in II-VI and III-V materials
[shifting the acceptor level obtained in MF calculations
towards the maximum (VBM)]. The opposite is true for
Ni, Co, and Fe having positive acceptor corrections. The
largest corrections occur for the Mn states in II-VI semi-
conductors and the Mn acceptor in III-V semiconductors,
reflecting the combination of large deformation parame-
ters [Figs. 2(b) and 2(c)] and small effective crystal-field
splitting [Fig. 2(a)].

By subtracting the multiplet corrections b,M( —/0) and
b,E(0/+) [Figs. 12(c)—14(c)] from the observed acceptor
and donor energies, respectively (Table II), we can obtain
[cf. Eqs. (14) and (15)] the corresponding ionization ener-

gy expected from MF theory. By the transition-state ar-
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FIG. 15. Calculated exchange splitting (difference between
spin-up and spin-down 3d orbital energies) of 3d ions in the
local-spin-density approach. Note that the ordering and trends
resemble those of the multiplet corrections to the ground states
of Ao, A+, and A impurities [Figs. 12(b), 13(b), and 14(b)],
suggesting that the latter are dominated by spin correlations.

gument surrounding Eqs. (8) and (9), this energy corre-
sponds to the distance from the valence-band maximum
(VBM) (for acceptors) or the conduction-band maximum
(CBM) (for donors) of the transition-state e or t2 level
from which the ionization occurs. Having obtained the e

or tz level position in this way, we can apply the experi-
mentally deduced crystal-field energy b.,tt [Fig. 2(a)] and
find the approximate position on the partner level. How-
ever, only the position of the levels deduced directly from
experiment is reliable. Figure 16 displays the observed
(thick horizontal lines) single-donor (in II-VI materials)
and single-acceptor (in GaP) transition energies, along
with the positions of the transition-state levels e and t2

deduced in this analysis. We indicate in each case the
one-electron configurations which correspond to each
transition in our analysis of the data. The partner levels
(e.g., e for Cr, Mn, and Ni in GaP) are included only to
guide the eye. Since no donor levels are observed with
certainty for ZnS:Mn and ZnSe:Mn, we predict these lev-
els by the reverse process of extrapolating the transition-
state t2 levels of the adjacent elements and applying the
experimentally deduced multiplet correction b,E(0/+ ) of
Figs. 10(c) and 11(c). We similarly predict the unobserved
donor level in ZnSe:V using the ionization data for
ZnSe:Ti (Ref. 34). The value of the donor level in ZnS:Ni
is an estimate (see subsection C following). The donor
level in ZnS:Co is still controversial: compare Noras
et a/. , in which it is suggested that the doublets at
2.3—2.6 eV in ZnSe:Co and 2.5—2.7 eV in ZnS:Co are ob-
served in absorption since they are degenerate with the

2.0—
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(c)-
Gap
H (-10)

1.0— e. . . .' --~:—:—.-J i e2t3 e3t3
2 e't' —e't'
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FIG. 16. Observed donor activation energies in ZnS and
ZnSe [(a) and (b), respectively] and acceptor activation energies
in GaP [part (c}],both denoted by thick horizontal solids lines.
See Table II for references to the experimental work. The thin
solid lines denote the positions of the transition-state one-
electron levels deduced from the data. Note that the observed
activation energies are nonmonotonic, whereas the deduced
one-electron levels (from which the multiplet correction has been
substracted) are monotonic. The dominant one-electron config-
urations involved in the transitions [Eqs. (4)—(9)] are given, as
predicted by the model. The partner level not involved in the
transition is shown by the dashed-dotted line, only to guide the
eye. T denotes tentative, I denotes interpolated, and P denotes
predicted.

et' —et

conduction bands, and hence borrow oscillator strength
from them, with the recent interpretation in O' Neill and
Allen of the occurrence of a "gap" in the multiplet spec-
tra, and the suggestion of Robbins that the onset of the
continuum in ZnSe:Co occurs at -2.55 eV. We hence
omit this data (shown by us previously ) from Fig. 16.
Similarly, the older value of E(0/+ ) for ZnS:Fe
displayed by us before has now been replaced by the
more recent values [cf. Refs. 6(a) and (b) and Table II].

The trends observed in Fig. 16 are revealing. First, we
see that the strong nonmonotonicity exhibited by the ex-
perimental donor and acceptor energies result from simi-
lar nonmonotonicities in the multiplet corrections
XH( —/0) and b,E(0/+ ). Hence, mean-field theory
should exhibit a simple monotonic trend of the e and t2
levels. This is indeed the hitherto unexplained trend ob-
served in MF electronic-structure calculations for 3d im-
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TABLE VI. Calculated multiplet corrections (in eV) to the
Coulomb repulsion energies for the neutral (A ) impurities. In
parentheses we denote the one-electron levels e or t2 from which
both donor and acceptor ionizations occur.

on
ate

ZnSe
2+

ZnS
2+

GaP
3+

Ni
Co
Fe
Mn
Cr
V

—0.29 (t, )

—0.88 (e)

—0.72 (t, )
—0.20 (t, )

—0.31 (t2)

—1.00 (e)

—0.67 (t, )
—0.22 (t2)

—0.69 (e)

—0.29 (t, )
—0.19 (t, )

purjtjes jn GaAs, ' GaP, and ZnS. The trend jn the
one-electron levels for a fixed impurity and changing host
crystal is an increase in the binding energy as the ligand
(anion) orbital becomes more tightly bound
(Ezns) Eznse &Eznre) Eo'p}. This trend was explained
previously. Second, this analysis predicts that the donor
state of ZnS:Mn and ZnSe:Mn will reside inside the VB,
clarifying the fact that, despite persistent attempts, its
determination still remains elusive. ' Third, the analysis
explains why Mn forms a shallow acceptor in III-V ma-
terials (EvnM+0. 4 eV in GaP and EvBM+0. 14 eV in
GaAs) in terms of its large multiplet correction [Fig.
14(c)] associated with its large orbital deformation param-
eters [Figs. 2(b) and 2(c)]. Fourth, the theory predicts that
the e level will disappear from the gap into the valence
band in going from Fe to Co impurities in GaP and for
the Fe impurity in ZnSe. It also predicts the position of
the yet unobserved donor level in ZnSe:V.

C. The Mott-Hubbard Coulomb energies

The present analysis makes it possible to calculate the
multiplet correction to the mean-field approximation for
the Coulomb repulsion energy UMF [Eqs. (10) and (16)].
Table VI depicts the results for those systems that have a
common one-electron level in both donor and acceptor
transitions. It is seen that multiplet corrections tend to
reduce Coulomb energies by substantial amounts, in par-
ticular at the center of the 3d series. Hence, the stability
of many charged states of transition-atom impurities in
semiconductors results both from the reduction of U by
nonlinear screening effects (the self-regulating re-
sponse ' ') and from its reduction by many-electron mul-
tiplet effects. If AU [Eq. (16)] is sufficiently negative, it
could outweigh the relaxed UMF, leading to the possibility
of an "exchange-correlation negative effective LP' (likely
to occur in GaAs:Mn).

Experimental data exists for the single-donor ' and
single-acceptor '" transitions of Cr and Ni impuri-
ties in ZnS and ZnSe, as well as for the single- ' and
double-acceptor' ' transitions of Cr and Nj impurities in
GaP (Table VII). Our analysis suggests that all of these
transitions involve excitations of the one-electron t2 level.
Hence, these data directly provide the experimental value
of the t-orbital Mott-Hubbard energy U'"' for the 2+ ox-

idation state of Cr(d ) and Ni(d ) in three materials
(sixth column in Table VII). Using the calculated multi-
plet correction hU'"' for these transitions [Eq. (16) and
seventh column in Table VII], we can further obtain the
mean-field value UMF of the Mott-Hubbard energies (last
column in Table VII). We see that multiplet effects
reduce U'"' by sizable amounts and that these Coulomb
energies in the more covalent host crystal GaP are about
half of their values for the more ionic systems ZnS and
ZnSe. For GaP:Fe, our analysis shows that the first- and
second-acceptor transitions involve the ionization of the e
orbjtals rather than the t2 orbitals. A similar analysis
hence reveals (last line in Table VII) a large Coulomb
repulsion energy for the more localized e orbitals
(UMF ——1.6 eV). Notice also that the Coulomb repulsion
energies could depend on the oxidation state of the impur-
ity. For GaP:Cr we can use the first- (E,+1.12 eV) and
second- (E„+1.85 eV) acceptor energies to find
U"=1.85 —1.12=0.73 eV for the A center (i.e., Cr+).
Using, however, the tentative value of E„+(0.5+0.1) eV
for the first donor of GaP:Cr (Ref. 15(c)] and the value
E„+1.12 eV for the first acceptor, we find U'"'
=1.12—(0.5+0.1)=(0.62+0. 1) eV for the A center
(i.e., Cr +). Within the O. l-eV experimental error, hence,
U"(A ) = U"(A ). Interestingly, this parallels theoreti-
cal observations ' that one-electron binding energies are
approximately linear with occupation numbers (hence
their slope Uis approximately constant).

Recall that, for free ions, the Coulomb energies for Cr
and Ni are around 19—22 eV (Ref. 32 and Fig. 17 follow-
ing), and that for 3d impurities in silicon the calculated
values are as small as 0.2—0.3 eV. Since, however, Table
VII shows that in heteropolar semiconductors U is quite
large, Koopmans theorem (assuming U=0) is clearly in-
valid. It is important to emphasize that the mean-field
values of the Coulomb energies [Eq. (10}]correspond to
total-energy differences for the appropriately relaxed lat-
tice configurations. For example, the T2(d ) ground
state of ZnSe:Cr is known to distort to a D2d site symme-
try through a Jahn-Teller (JT) E mode, and that its first
excited E state can, in principle, show a similar distor-
tion. Further, the Tz~ Ai excitations to the d ground
state of the Cr impurity in II-VI semiconductors are ac-
companied by lattice distortions resulting in relaxation en-

ergies of about 0.3—0.4 eV (compare optical and thermal
values for the first-acceptor energies in Table VII). Ka-
minska et al. obtain a small (about 0.04 eV) JT energy
for Cr(d ) in ZnS and ZnSe (see also Ref. 69). These re-
laxation energies were then ascribed to symmetry-
conserving (i.e., breathing) modes by Godlewski and Ka-
minska.

The role of relaxations for Ni in ZnS and ZnSe is not
clear. In a recent work, Sokolov et al. interpreted elec-
troabsorption and cathode-luminescence results to suggest
a donor transition of Ni(d~d) in ZnSe at
E(OI+)=2.67 eV. Intriguingly, however, Watts re-
ports the production of the Ni(d ) EPR signal already at
illumination with hv=2. 07 eV photons. For ZnS:Nj,
Holton, Schneider, and Estle report that the Ni(d )

EPR signal could be produced by 3.1-eV photons, but the
authors do not give the form of the photostimulation
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TABLE VII. Experimental ionization energy levels for the neutral ( A ) Cr and Ni impurities in ZnS, ZnSe, and GaP, given rela-

tive to the top of the valence band. The experimental Mott-Hubbard energies U"" for the 2+ oxidation state ( A in ZnS and ZnSe,
A in GaP), the corresponding multiplet correction hU, and the mean-field energies UgF are given in eV. Values marked with an
asterisk correspond to equilibrium (i.e., relaxed) configurations. The notation t or e in the last column refers to the type of one-

electron orbital involved in the ionization process.

Host

ZnS

ZnS

Impurity

Cr

Ni

Single
donor

E„+1.0'

E„+0.75'

Single
acceptor

E„+2.78'

E„+2.41b*

E„+2.48'

Double
acceptor

Hubbard energy
U»

(expt. )

1.78

1.41*
1.73

Multiplet
correction

hU»
(calc.)

—0.67

—0.31

Mean-field
UO'F

(calc.)

2.45 (t)

2.08* (t)
2.04 (t)

ZnSe

ZnSe

GaP

GaP

GaP

Cr

Ni

Cr

Ni

Fe

E„+0.46'

E„+0.15'

E„+2.24b

E„+193"*

E„+1.85d

E„+1.12g*

E+05

E„+0.86

E„+1.85

E„+1.55'*

Ev +2.2

1.78*

1.47*

1.70

0.73*

1.05*

1.39

—0.72

—0.29

—0.31

O. 1.8"

—0.24'

—0.21

2.50*(t)

2.49' (t)

1.99 (t)

1.04* (I)

1.23* (t)

1.29 (s)

1.60 (e)

'Reference 4.
bReference 35.
'Reference 88, tentative (see text).
~Reference 46.
'Reference 10.

Reference 36.
I'Reference 38.
"Reference 43.
'Reference 42.
'Reference 14.

"Following interpretation of Ref. 18.
'Following interpretation of Ref. 15(b).

Reference 40(a).
"Reference 45.

curve. Using the results of Sokolov et al. for ZnSe:Ni,
we obtain the Mott-Hubbard energy in Table VII. If we
assume the UMF of Ni(d ) in ZnSe to be approximately
valid also for ZnS (based on the overall similarity of the
two systems), the onset of the donor transition in ZnS is
predicted to occur at about hv=3. 05 eV. This presents
circumstantial evidence that the value of Holton, Schneid-
er, and Estle can be taken as the donor energy of Ni(d )

in ZnS, as indicated in Table VII and Fig. 16. We feel,
however, that the appearance of the Ni(d") EPR signal in
ZnSe (Ref. 93) at much lower photon energies than the
donor energy, as given by electroabsorption, deserves
more experimental investigations, as it could indicate,
among other effects, the occurrence of lattice relaxations.

IX. ATOMIC ANALOG TO ACCEPTOR
AND DONOR TRANSITIONS

In this section we illustrate the fact that the nonmono-
tonic trends in acceptor and donor energies have a simple
atomic origin. Figure 17(a) depicts the observed single-
acceptor energies [Table II and Ref. 43] of 3d impurities
in three different III-V semiconductors. In all cases, the
acceptor energies have a local maximum at Fe and a local
minimum at Mn, as discussed in the preceding section.
The atomic analog of this phenomenon is illustrated in
Fig. 17(b).
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FIG. 17 (a) Experimental single-acceptor energies in III-V
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tonicity in the data (the Mn acceptor being at a lower energy
than the Fe acceptor) is paralleled by the atomic acceptor levels
but not by the atomic single-particle levels.
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We first calculate the positions of the spin-up and
spin-down 3d orbital energies of free 3d ions in their 3+
oxidation state (analogous to neutral substitutional impur-
ities on the cation site in III-V semiconductors) using the
local-spin-density formalism. These levels and their
ground-state occupations are denoted by the thick hor-
izontal lines in Fig. 17(b) and are seen to have a monoton-
ically decreasing binding energy as one goes backwards in
the 3d series, much like the one-electron e and t2 levels
for 3d impurities in Gap [Fig. 16(c)]. Next, we calculate
the change in the total energy U+:Ez.(—A+) Er(—A )

upon ionizing the 3d ion and the change
U =Er(A ) Er(A—) upon adding an electron to the
same 3d ion. In each case we ionize the electron from the
highest occupied level and add an electron to the first
available orbital. The vertical lines denoted U+ and U
indicate the energy involved in each of these respective
processes. Notice that U++ U is the atomic 3d
Coulomb energy U' "', analogous to the impurity
Coulomb energy in Eqs. (4) and (5), except that the extra
electron or hole is placed inside the continuum bands in
the latter case. In free ions, the Coulomb energies U'""',
are seen to range from 19.2 eV in Ni + to 16.8 eV in V +.
Substracting U+ from the orbital energy from which the
electron is ionized produces the position of the ionic
"single-donor" level (open circles), whereas adding U to
the orbital energy to which an electron is added produces
the "single-acceptor" level (solid circles). Free ions are
obviously strongly "positive- U systems" as the donor level
lies well below the acceptor level.

Figure 17(b) shows that although the one-electron levels
are monotonic functions of the impurity's atomic number,
the ionic "single-acceptor" levels are not, showing a local
maximum at Fe and a local minimum at Mn, much like
the situation for the respective impurities [Fig. 17(a)].
The reason for this is obvious from Fig. 17(b): Whereas
both donor and acceptor transitions in Ni and Co occur
from the spin-down (d ) levels, the same transitions in

Mn, Cr, and V occur from the spin-up (d+ ) levels, which
are below the d levels. The separation between them
(exchange splitting) leads to the nonmonotonic behavior.
Two differences relative to the impurity case exist: (i)

While the jump in energy between Mn and Fe is about 3
eV in the free iona, it is only about 0.5 eV for the impuri-
ties; (ii) the data' for the Co impurity show this accep-
tor level to be below that of Ni, whereas this nonmonoton-
icity has no counterpart in the free ions. We conclude
that much of the multiplet corrections deduced experi-
mentally for acceptor transitions in 3d impurities [Figs.
12(b), 13(b), and 14(b)] are the result of spin correlation.

X. SUMMARY

A new approach is proposed for the separation of
many-electron multiplet effects and one-electron, mean-
field effects in the spectra of 3d impurities. Recent-
ly, a number of attempts have been made to con-
struct a theory of multiplets for atoms using local-density
theory. It has become clear that, whereas one could con-
struct single determinantal energies from linear combina-
tions of multiplet energies, the reverse process of con-

structing multiplet energies from sums of single deter-
minantal energies is nonunique. Fundamentally, the
reason for this is that the exchange-correlation energy in
local-density theory is taken to be symmetry independent.
In the present work we avoid these problematics altogeth-
er by using a Hartree-Fock —type approach merely for
separating the total energy into average multiplet effects
and distinct multiplet effects. We then invoke Slater's an-
satz that the total mean-field energy corresponds to an
average over multiplet energies. We do not attempt to
calculate the distinct multiplet energies from local-density
theory, as attempted before. Instead, we identify
differences in mean-field total energies with the corre-
sponding differences in average multiplet energies [Eqs.
(3)—(11)] and correct these differences for distinct multi-
plet effects [Eqs. (12)—(16)] evaluated by analyzing the ex-
perimental data through a Hartree-Fock —type theory, not
local-density theory. In the present method it is no longer
necessary to identify a crystal-field parameter with a
bare-ion energy, ' nor to neglect the configuration
dependence of the a t -symmetric electron repulsion energy
A. ' The method is easier to apply than previous
methods because of the simplicity of the interaction ma-
trices (cf. the Appendix). It can be used either for predict-
ing multiplet structure if the mean-field parameters A,„
A,„and b.,tt are available from calculations, or it can be
used to fit experiment, thereby deducing the mean-field
parameters. Analysis of the spectra of 3d impurities in
ZnO, ZnS, ZnSe, GaP, NiO, MnO, and CoO reveals the
regular chemical trends of the mean-field parameters with
the impurity and the host crystal. This analysis further
permits the separation of many-electron multiplet effects
from mean-field effects in excitation and ionization spec-
tra. This separation reveals the chemical trends in the
many-electron effects, showing their rapid reduction as
the host crystal becomes less ionic. Using the experimen-
tally deduced multiplet corrections, we can then find the
excitation and ionization energies expected from an ideal
mean-field calculation. This shows that many of the hith-
erto unexplained discrepancies between electronic-
structure calculations and experiment are attributable to
many-electron effects. Hence, the region where one-
electron theory is expected to work is separated from the
region where it is not; the corrections to the latter region
are established from this analysis.
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TABLE VIII. Functions f „(A,„A,, ) and g „(A,„k,) that enter in the expressions for E(m, n), for m+n=N and 2&N&5.
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APPENDIX

In this appendix we give the general form of the aver-

age configuration energies E(m, n} for each configuration

(m, tr) of a d+ system, necessary for expressing the in-

teraction matrices of the two-electron Hamiltonian 4 i in
the form developed in this work.

The averages of multiplet energies for all terms within a
particular configuration, E(m, n}, are given in the form of
Eq. (30) in Table VIII, for m+n=N from N =2 up to
N =5. For the complementary configurations d, d,
and d the corresponding average energies can be obtained
by the relation

E(4—m, 6—n) =E(m, n)+[5(3—n)A, , +2(12—3m —2n)A, ,A, , +3(2—m)A, , ]A

+[5(n —3)A,, +(2n+3m —12)A,,A,, +4(m —2)A,, ](28 —C),

(Al)

where a configuration (m, n) corresponds to e t".
An important feature of this method is that the Hamil-

tonian matrices to be diagonalized do not change in going
from d to d', since the diagonal elements do not in-

elude E(m, n). However, to reach the atomic limit in this
method we need the values

h(m, n;m', n')=E(m, n) —E(m', n') .

The atomic limit can be defined as the situation A,, =A,,
=1, A(m, n)=A(d ), and hcF ——0. In this limit, it is
easily seen that

h, tt(m, n;m, n )=h(m, n;m, n )

=[g (1,1)—g 0 0(1 1)](28—C)

(A2)

As an example, for the d system in the atomic limit
we have (choosing the e configuration as a reference)

b,,tt(4, 0;4,0)=0,
b,,tt(3, 1;4,0) = —,(28 —C),

b,,tt(2, 2;4,0)= , (28 —C—),

h, tt(1, 3;4,0)= —,(28 —C),

h, tt(0, 4;4,0) =2(28 —C) .

(A3)

It is interesting to note that, as the quantity 28 —C has a
negative value, the e configuration (spin S =0) has the
higher energy in this limit, followed by the t4 configura-
tion.
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