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Substitutional and displaced carbon impurities and an isolated nitrogen vacancy in hexagonal boron
nitride are theoretically investigated by the "small periodic cluster" approach. The perfect-solid band
structure is calculated from the solution of the eigenvalues of a finite and periodic cluster of atoms

arranged according to the known crystal structure. The linear combination of atomic orbitals
representation of the crystal orbitals is adopted and semiempirical MO (molecular orbital) methods

(extended Huckel, iterative extended Huckel) are used for the solution of the electronic eigenvalue.
problem. Point-defect problems are then treated by introducing the impurity atom or the vacant site
into the otherwise perfect periodic cluster, and repeating the solution. Lattice relaxations are introduced
around the defect site and charge redistribution among the cluster atoms is allowed for via
self-consistent MO treatment. For a substitutional carbon impurity defect, it is observed that two deep
defect levels, mainly localized on the carbon atom, appear (3.2—4.9 eV below the conduction band).
Another level splits from the conduction band as the carbon atom is raised from the layer plane in a
perpendicular direction. This level, 1.0—1.3 eV below the conduction band, has a symmetrical charge
distribution on the three boron atoms surrounding the impurity site. As the distance of the carbon
atom from the layer plane is increased to infinity, a nitrogen vacancy is formed. It is characterized by
a defect level 1, 1—1.4 eV apart from the conduction-band edge which also possesses a three-boron
character. Lattice relaxations were shown to stabilize these defects. The findings agree' semiquantitatively
with the experimental results on these defects.

I. INTRODUCTION

In view of the accumulating experimental evi-
dence indicating the participation of nitrogen va-
'cancies and carbon impurities in determining op-
tical, electron-paramagnetic-resonance (EPR),
thermolumines cence, and photolumines cence prop-
erties of boron nitride (Paper I of this set), a
theoretical calculation of these defects was under-
taken, Based on known experimental data and pre-
vious theoretical studies of deep defects in cova-
lent solids, the main requirements for such a the-
oretical defect model are the following: (i) It
should locate the position of the defect levels with
respect to the band edges. The energy separation
between the defect level and the band edges should
then be compared with EPR and thermolumines-
cence activation energies and with the temperature
dependence of photoluminescence. (ii) It should
provide the electronic wave function of the defect
level, and thus the charge distribution around the
defect site, to be compared with both the EPR as-
signment and the hyperfine splitting. (iii) Due to
both the presence of ionic-covalent bonding in the
perfect crystal and to charge redistribution induced
by the vacancy or the impurity in the defect struc-
ture, the model should provide a self-consistent
picture of the electron distribution relative to the
separated atoms and unperturbed lattice. (iv) Since
o-w coupling effects were shown to modify the band-

width' and the self-consistent atomic charges~*'
significantly, the model should incorporate all the
valence electrons on the same level of approxima-
tion. The o electrons do not behave as an unpolar-
ized core and thus the treatment of m electrons
alone can lead to erroneous results. 5 (v) Since
lattice distortions in covalent solids around the de-
fect site were shown to modify the deep defect lev-
els'7 significantly, the model must provide a way
of introducing lattice relaxations. (vi) In view of
the relative paucity of experimental data on the per-
fect boron-nitride crystal, a reliable model based
on parametrizing the theoretical variables in ac-
cord with experimental band structure" cannot be
employed. (vii) Due to significant charge delocal-
ization in planar m-electron systems, the model
should account for the coupling of the defect elec-
trons with a relatively large portion of the bulk of
the crystal. '

Theories that start from the periodic Bloch states
of the perfect crystal and introduce the defect per-
turbationally" "satisfy conditions (i), (iv), and

(vii) but supply little information on requirements
(ii) and (v). On the other hand, theories that con-
struct the defect levels from the orbitals of the lo-
cal environment (usually nearest neighbors only) of
the defect '0'4"~ meet conditions (ii)-(v) but are de-
ficient in satisfying conditions (i), (vi), and (vii).
Effective-mass theories ' '", that have been shown
I;o be useful in describing shallow traps, fail to ac-
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count for deep levels in semiconductors mainly due
to the neglect of lattice relaxations. Simple
Huckel-type m-electron calculations ' ' satisfy
conditions (ii), (v), and (vii), but grossly neglect
conditions (i), (iii), (iv) and (vi). Point defects in
hexagonal BN have been treated so far. only by this
method.

Truncated crystal models ' ' which use either
semiempirical linear-combination-of-atomic-or-
bitals (LCAO) methods 2 as or the Xn scattered-wave
technique, ~' automatically satisfy conditions (iv)
and (vi), and the practical possibility of incorporat-
ing a relatively large number of atoms in the mod-
el with moderate computer time, satisfies condi-
tion (vii). Its major disadvantage lies in the fact
that the energy bands are not well defined"' and
that due to the presence of many "dangling" bonds
on the cluster's surface significant charge inhomo-
geneity is present over each sublattice. 4'

In recent works of %atkins and Messmer"'" on
diamond and Zunger"" on graphite and boron ni-
tride, different approaches were suggested to
avoid the problems of charge inhomogeneity and
lack of straightforward correlation between the
perfect crystal and defect energy levels. These
methods use a superlattice representation to the
defect structure by either using a reciprocal-space
tight-binding approach with the defect placed at the
center of a, large unit cell, "' or by considering
a finite periodic cluster of atoms with a defect
placed in its center, in a real-direct-space ap-
proach. '" These methods could be implemented
in practice with the aid of large computers and
satisfy the requirements previously stated.

In this paper we treat the problems of substitu-
tional ck,rbon impurity, displaced carbon impurity,
and nitrogen vacancy in hexagonal boron nitride,
using both the truncated-crystal and the "small-
periodic- cluster" methods. The essential features
of both methods are discussed in Sec. II. A crit-
ical examination of them is provided in Sec. III,
where compa, rison with experimental data is made.

Due to the complexity involved with ab initio cal-
culations of such models, semiempirical all-va-
lence-electron methods are usually employed. In
view of the experience gained with these methods
in molecular calculations, it seems dangerous to
adopt exclusively only one of these approximations
in calculating solid- state properties. Consequently
we examine some of the common semiempirical
methods for both the perfect crystal and the defect
structures. Problems regarding the convergence of
the obtained electronic structure are also discussed.

II. METHODS OF CALCULATION

A. Truncated-crystal method

In the truncated-crystal approach, a cluster of

X atoms arranged spatially according to the crys-
tal geometry is considered, A crystal orbital Q;
is represented in the I.CAQ approach as a linear
combination of q atomic orbitals (usually va, lence
orbitals are used) centered on the N atoms of the
cluster:

p=g n"-1

where y„(r -R„) represents an atomic orbital v

centered on site n. . The coefficients C„„;are the
solutions of the one-electron Hartree-Fock equa-
tions, given by

Q(F~„„„S„„,—„„&;)C„„,=0, (2)

where the matrix elements in the atomic orbital
basis are given by

(3)

and I" is the Hartree- Fock one-electron operator.
The perfect-cluster eigenvalues are calculated by
solving Eq. (2) with an atomic valence basis set
()v)='2s, 2P„, 2P„, 2P,) for several values of N, in
order to obtain the convergence limit of the one-
electron eigenvalues. The resultant eigenvalues
for a small cluster generally do not correspond to
energy levels in the Brillouin zone(BZ) of the in-
finite periodic crystal. It was previously shown
however, ~' that for layered hexagonal lattices of
D6„or D» point symmetry, such as in two-dimen-
sional graphite and boron nitride, respectively, it
is possible to select planar geometries in such a
way that each eigenvalue of its electronic secular
determinant corresponds to an energy level in the
BZ of the infinite lattice. This is true provided
the matrix elements of Eq. (3) have already as-
sumed their bulk value due to introduction of suffi-
cient nearest-neighbor interactions, and that sur-
face effects can be neglected. Thus one is able to
calculate approximately the band edges and band
width of the ideal infinite crystal as well as other
high-symmetry K-points, by considering finite
clusters. P oint-defect levels are then calculated
by substituting a guest atom for a particular cluster
atom (substitutional impurity) or rejecting one atom
from the cluster (point vacancy) and repeating the
eigenvalue calculation, The new eigenvalue spec-
trum is analyzed and the defect levels appearing in
the forbidden gap (which have no counterpart in the
ideal-cluster spectrum) are investigated as a func-
tion of lattice distortions around the defect site.
The charge associated with such a level is calcu-
lated from the coefficients (C„„&Jof the correspond-



A. ZUNGER AND A. KATZIR

FEG. j.. Fifty-atom
molecular cluster (sur-
rounded by dashed lines)
and the extracluster atoms
(atoms between dashed and
heavy lines) used to es-
tablish a periodic inter-
action geometry. The
central atom (atom 26,
marked by heavy circle)
has no interaction with an
identical atom in the ex-
tracl uster region.

ing level pq through standard' or modified" popu-
lation analysis. The dangling bonds that appear on
the surface of the cluster, are either saturated by
attaching hydrogen atoms~'~4 or treated as free

2& 23, 36

B. Small-periodic-cluster method

In the small-periodic-cluster (SPC) method, one
constructs a Periodic cluster of fi atoms (refered
here as the molecular cluster) that is arranged
spatially according to the lattice symmetry of the
chosen structure. Since the matrix elements of
Eq. (2) appearing in the Hartree-Fock equations
[Eq. (2)] depend only on the relative orientations of
pairs of atoms, it is sufficient to specify an inter-
atom-distance matrix D' "„' for the X-atom cluster
and three interatom direction- cosine matrices
E„'"„»(x), E'"„(y), and E'"» (z) relative to arbitrary
x, y, and z directions. The absolute atomic co-
ordinates, with reference to a fixed origin, need
not be specified. in order to obtain the solution to
the eigenvalue problem of an isolated molecular
system. This freedom in describing the crystal
structure can be used to construct these matrices
as cyclic matrices appropriate for a "pseudomole-
cule" that is Periodic in space, and keeps the cor-
rect geometry of a given lattice. The range of in-
teraction X(N) in such an X-atom periodic cluster
is determined solely by the symmetry of the lattice
andbyN, e.g. , aclustermadeupof N=2X+1atoms
can be used to represent a periodic one-dimensional
lattice with interaction range X(X), and clusters of
D» or Ds„symmetry with 8, 18, 32, 50 etc. atoms
for example, could be used to present a periodic
hexagonal structure with 1, 2, 3, and 4 orders of
interactions, respectively. Figure 1 shows a 50-
atom hexagonal molecular cluster (surrounded by
the dashed parallelepiped) that is made of 5x 5 hex-
agonal unit cells with 2 atoms per cell. Extension

of this cluster by two rows of hexagonal cells in
the two planar directions (the cells between the
dashed and heavy outer lines) is denoted as the extra-
cluster region. Truncation of the interaction be-
tween each two atoms, either inside the central
cluster or between an atom in the cluster and an
atom in the extra-cluster region, to a range of
X(50)&4, defines a periodic hexagonal "interaction
geometry. " The distance matrix D'"' is construct-
ed to define this interaction geometry in terms of
the nearest-neighbor distance A» while the direc-
tion-cosine matrices define the hexagonal point
symmetry in terms of the hexagonal angle. These
matrices are used to construct the Hartree-Pock
matrix elements E„„„andS„„, for a minimal
basis set of atomic orbitals, generating thereby a
Hermitian eigenvalue problem. The crystal orbit-
als of such periodic clusters are thus constructed
as in Eq. (1), but the lattice vectors R„are now
restricted to represent the periodic finite struc-
ture of interaction range X(N).

The eigenvalues of Eq. (2) are first solved for a
regular perfect lattice. At this limit, the eigen-
values are simply analyzed according to the wave
vector K~ in the BZ by recognizing that the solutions
could be usually represented (by decomposing the
crystal orbital index i to its components i =—ep,
where o. = 1...»i; p=O. ..N —1) as: .

i,K ~ R
C~n) =—Cvnep= C~ope

where K = (2z/Nb)P and b is a primitive lattice vec-
tor. The band structure c (K&) is obtained as a
discrete subset of the infinite crystal spectrum at
X/I» K-values, evenly spread in the BZ, where I»

is the number of atoms in the basic unit cell (I» = 2
for graphite and boron nitride).

The total ground-state energy is obtained in the
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simple one-electron picture as

~Dc N

E„„=:2ZQ &,(Kq)
n Kp

(5)

where 0 denotes the highest occupancy. The sta-
ble crystal conformation under static equilibrium
is then obtained by minimizing E~,~ with respect to
the nearest-neighbor distance R» and by exam-
ining the stability of the total energy against dis-
placement of a specific atom.

The resulting equilibrium value of R» is com-
pared with crystallographic data while the cohesive
energy at equlibrium is compared with the experi-
mental thermochemical determination. The
stretching force constant is obtained by performing
numerical derivatives of the total energy at the
static equilibrium conformation with respect to sym-
metry-stretching coordinates and comparing with
the experimental data from band spectra. The re-
sulting wave functions are subjected to a population
analysis to determine orbital and net atomic charges
to be compared with nuclear quadrupole resonance
(NQR) da, ta.

The convergence problems encountered in the
model are (a) convergence of the matrix elements
in Eq. (3) as a function of the interaction order
X(N) employed [Eq. (5)], (b) convergence of the to-
tal energy as a function of the K grid used for each
cluster size, (c) convergence of the self-consistent-
field (SCF) iteration cycle when the energies are
computed with a self-consistent LCAO method.

Due to numerical difficulties the convergence of
the band structure as a function of the size g of the
atomic set employed will not be examined, and a
valence basis set will be used throughout.

The fact that the 3s orbital energies of free boron
and nitrogen atoms are well separated from the va-
lence orbital energies suggests that no substantial
mixing should occur in the valence bands while the
conducting states could be affected by introducing
virtual orbitals.

The convergence problems (a) and (b) could be
reduced to one, if we use the maximum interaction
range allowed for a cluster of a given size N. In
this case both X (N) and the size of the K grid are
uniquely determined by N. The size of the cluster
is chosen so that one will satisfy the convergence
problems (a) and (b) within a prescribed tolerance
and that the K subset will contain high-symmetry
points that are of interest in analyzing optical and

energy-loss data concerning band-to-band transi-
tions. It was previously shown~ that a 18-atom pe-
riodic cluster arranged in Ds„or D6„geometry con-
tains in its eigenvalue spectrum the I' and P points
(notation of Bassani and Parravicini ) while a 32-
atom periodic cluster also contains the Q saddle

point. Optically allowed transitions in both graph-
ite and boron nitride are related to these high-sym-
metry points.

Employing a self-consistent solution to the N-
atom periodic cluster j,s equivalent to sampling a
maximum of N/h K points in computing the crystal
potential in a self-consistent approach for infinite
crystals. ' ' It has been previously shown' ' that
constructing the crystal potential as a superposition
of free-atom potentials without recompiling it on
the basis of the calculated band structure at sever-
al selected K points, result in a poor approximation
to the self-consistent results in systems exhibiting
some polari. ty (deviations of 1-5 eV in the band en-
ergies of binary II-VI crystals).

In self- consistent orthogonalized-plane-wave
(OPW) calculations, the contribution of only 2-4 states
of the entire BZ to the charge density were shown to
be sufficient to correct in some cases the non-self-
consistent potential. In the small-periodic- cluster
(SPC) approach a larger number of states (in the
nondegenerate case, N/h different states) are in-
corporated automatically in the evaluation of the
potential at each iteration. Moreover, these states
are evenly spread in the BZ and are not subjected
to somewhat arbitrary choice of the K grid, as in
methods that factorize the secular equations utiliz-
ing explicitly the lattice translational symmetry in
constructing the crystal functions.

Since in the formulation of the eigenvalue problem
of the central molecular cluster we do not impose
explicit translational symmetry on the eigenfunc-
tions inside the large Born-von Karman cell, the
SPC method could be easily extended to treat point-
defect structures in the representation of a rather
dilute defect superlattice. This is done by remov-
ing the central cluster atom (e. g. , atom 26 in Fig.
1) to infinity, creating thereby a point vacancy, or
by changing its chemical identity and generating a
point impurity. It should be noted that when the
molecular cluster is composed of an odd number of
hexagonal unit cells (e. g. , 18-atom cluster with
3x 3 or 50-atom cluster with 5x 5 unit cells), the
central atom in this cluster has no direct interaction
with an equivalent atom in the extra cluster region
since the periodicity of the structure is already
satisfied by applying only intracluster interactions
for this atom. This suggests that the superlattice
representation of the defect problem in this model .

should not place a too severe restriction when com-
parison is made with experimental data concerning
dilute defects, since the dispersion of the defect
band is induced only by the relatively small polari-
zation effects of the guest atoms on the charge den-
sity of the host atom. These polarization effects,
being generally of short range, could then be easily
suppressed by increasing the cluster size, thus re-
ducing the interaction range.
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The defect levels, the charge distribution on them,
and their location relative to the band edges are thus
calculated on the same level of approximation as
the perfect crystal bands and charges, enabling
thereby a straightforward comparison between
them,

The main advantages of the small-periodic-clus-
ter approach over the truncated-crystal method are
(a) The one-electron levels of the perfect periodic
cluster are related in a simple way to well defined
points in the band structure of the infinite solid;
(b) Charge homogeneity over each sublattice in the
perfect periodic lattice is guaranteed by the fact
that each atom in the cluster experiences the same
crystalline environment as the others, and no dan-
gling bonds appear. Ad Aoc treatment of the sur-
face is not needed; (c) A self-consistent evaluation
of the crystal potential, involving a relatively large
number of crystal states, is feasible.

The model is preferable to the "defect-molecule"
approach' '" since it allows coupling of the defect
with a relatively large portion of the bulk solid,
thereby allowing for a larger delocalization space
for the defect electrons, and it relates the defect
energy levels to the band levels. The advantages
over the methods that start from perfect periodic
lattice states" ' lie in the fact that lattice relaxa-
tions can easily be introduced here, while in the
previous methods these will cause a significant in-
crease in the perturbative effect induced by the de-
fect on the periodic states. Also the charge dis-
tribution in the defect level is simple to calculate
by this method using straightforward population an-
alysis on the resulting wave functions.

The main disadvantages of the small periodic
cluster approach are the following:

(i) It involves solutions of large electronic secu-
lar determinants (for a 32-atom cluster with four
atomic valence orbitals on each atom, 128x128 ma-
trices are treated) since translational symmetry is
not explicitly utilized, but in turn, a more realistic
description of deviation from periodicity is possi-
ble.

(ii) It does not yield results that are continuous
in the wave vector K, but rather a discrete subset
is obtained, Thus, the density of states cannot be
reliably calculated.

(iii) The defects electronic properties are de-
scribed in a superlattice representation with a clus-
ter-size dependence of the indirect defect-defect in-
ter actions.

Since the SPC method is more useful than the
truncated-crystal method, the latter will be used
only to a limited extent.

C. Semiempirical LCAO computation schemes

Due to the complexity of ab initio calculations of
all the E„„, elements, some semiempirical meth-

ods are used to calculate these elements approxi-
mately. In the extended Huckel (EXH) approxima-
tion the matrix elements are given by

F„„„„=0. 5G(E o+ E„o,„o)Sv„,„,
where S„„„arethe atomic overlap intergrals cal-
culated from Slater atomic orbitals, E„„oand

E„o,„,are atomic orbital energies of orbitals p, and

p, respectively, taken from Hartree- Fock calcula-
tions on free atoms or alternatively from atomic
spectra. 6 is a semiempirical constant chosen to
fit some electronic properties of medium to large
molecules, and usually taken to be 1.75. ~6

The derivation of the EXH approximation from
the Hartree- Fock equations was given by Blyholder
and Coulson and by Gilbert, ' For systems with
moderately uniform charge distribution (a differ-
ence of less than 1.3 in the electronegativities of
the atoms in Pauling's scale, compared with a dif-
ference of 1.0 between X and 8), this was shown
to be a reasonable approximation to the rigorous
Hartree- Pock scheme.

Since in general the Hartree-Fock operator E
couples electronic contributions to the potential
from all atoms and orbitals in the cluster (and not
only from a particular p. n, vm pair), it depends on
the charge distribution of all electrons and nuclei.
A semiempirieal self-consistent approach to Eqs.
(2) and (3) [iterative extended Huckel (IEXH)27'"],
which is a refinement over the non-self-consistent
EXH approach and does not contain a free param-
eter is characterized by an iterative solution, in
which the diagonal E„„„„elements are taken to be
explicitly charge dependent:

E„„„„=E„'„,,„+Q„hF„,

+vn, vm
= ~vn, vm(+vn, vn+ ~vm, vm)( 0 5~ ~on, vol )'

E„'„„„is the atomic orbital energy of the free atom,
Q„ is the net atomic charge on the atom n, calcu-
lated from the solutions (C„„,j of Eqs. (1) and (2)
for all occupied states. AF„ is the change in the
v-orbital potential due to deviation from charge
neutrality (ioni city), as calculated from the Hartree-
Fock orbital energies of free ions of different ion-
ization states or taken from atomic spectra. Ac-
cording to this procedure one guesses Q„values for
all the atoms (usually the initial guess for systems
that are only partially ionic is the free atom value
Q„=O). Then the matrix elements of Eq. (3) are
constructed and solved for the coefficients jC„„;)of
Eq. (2), and the atomic charges are calculated from
the wave functions, A damping procedure is used
to faciliate the convergence of the iteration cycle.

The atomic orbital energies were taken from the
original work of Hoffman and the &E„values were
taken from the interpolation scheme of Cusachs and
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Reynolds. ' The atomic orbitals were taken as
Slater orbitals with the usual Slater exponents. In-
teraction and overlap matrix elements between the
N atoms are evaluated up to three to four orders of
neighbors in the SPC method and between all atoms
in the cluster in the truncated-crystal approach.
No adjustment of the semiempirical constants to ob-
tain better agreement with experiment ' is per-
formed. The iteration cycle in IEXH calculation are
terminated when the difference between atomic
charges on successive iterations does not exceed
10 e. Under these conditions, the band structure
and total energy per BN pair satisfy the first three
convergence requirements previously mentioned to
within less than 0. 1 eV.

D. Electronic properties of the perfect crystal

The calculated band structure of the perfect hex-

agonal lattice of boron nitride using IEXH method

and an 18-atom cluster P. = 2; P, and 1" points in-
cluded) was previously3 compared with both experi-
mental data and with other non-self-consistent tight-
binding calculations. ' ' To examine the conver-
gence properties of the results, we have performed
these calculations on an eight-atom cluster P. = 1; Q„
and ~ points included) and on a 32-atom cluster
p. =3; Q, and ~ points included). Relatively small
differences occur upon increasing the interaction
range: the m-m* band-to-band transition at the Qz

points in the BZ is shifted from 5. 8 eV at ~= 1 to
6. 0 eV at X=3 [experimental electron energy-loss
data indicate =6.2 eV(Ref. 47)], th'e bottom of the

lowest valence band occurring at the I", point is
18. 46 eV away from the center of the band gap for
the X = 1 calculation, 18.81 eV for the X = 2 calcula-
tion, and 18~ 86 eV for the X=3 calculation [electron-
scattering data give 19.4eV (Ref. 48]. The lowest
v-o~ transition (Q:-Q', ) occurs at 13.9 eV in the
X= 1 calculation and at 14.1 eV in the X = 3 calcula-
tion [energy-loss data indicate 14.1eV (Ref. 47) to
10.1eV(Ref. 49)]while thelowestmixedo- m* transi-
tion (Qz Q~) occurs at 8. 8 eV in the X=1 and 8. 9eV
in the X=3 calculation [energy-loss data give-9. 4 eV
(Ref. 47)]~ The band gap is obtained only in the 18-
atom cluster calculation as 3. 7 eV [experimental
optical and photoelectron data are scattered between
5. 4 to 3. 6eV (Refs. 50—52)]. The binding energy
changes from 6. 6 eV in the X=1 case through 7. 2 eV

in the X = 2 calculation to 6. 7 eV in the ~ = 3 calcula-
tion (compared with 6. 6 eV obtained in thermo-
chemical determination"). This nonmonotonic be-
havior results from the fact that the 8- and 32-atom
clusters include the Q saddle point that contributes
a, large part of the cohesive energy due to its high
degeneracy, while the 18-atom cluster includes
band-edge points with low degeneracy. Optimiza-
tion of the total energy with respect to the nearest-
neighbor BN distance yields equilibrium values of

1.441 A in the X = 2 case and 1.449 A in the X = 3
case [compared with the crystallographic determina-
tion of 1.446 A (Ref. 54)]~ The stretching-force
constant is calculated to be 10.1X10' dyn/cm and
10. 8&& 10' dyn/cm for the X=2 and X=3 calculations,
respectively (compared to-8. 3x 10' dyn/cm ob-
tained from band spectra"). The boron v charge is
calculated to be 0. 52e and 0. 508 in the X= 2 and
X= 3 calculations, respectively [NQR results yield
0. 45e (Ref. 56)]. The convergence of these elec-
tronic and structural features seems thus to be ob-
tained at about X= 2-3.

Repeating these calculations with the EXH
scheme, a similar convergence rate is obtained.
The results exhibit however some pronounced dif-
ferences relative to the IEXH results. The results
obtained with the largest clusters are: a w- m*

transition at 6. 29 eV, the I", point at 19.0 eV, a
Qm-Q', transition at 15.0 eV, a. Qm-Q~ transition
at 9.4 eV, a gap of 5. 49 eV, binding energy of
6.04 eV, equilibrium B-N bond length. of 1~ 443 A,
boron m charge of 0. 31e and a stretching-force con-
stant of 13.1x10' dyn/cm. Truncated-crystal re-
sults for boron nitride have been previously pub-
lished~ and seem to be in poorer agreement with ex-
periment for reasons discussed above.

It is quite unfortunate that in view of the large un-
certainties in optical and energy-loss data for bo-
ron nitride and the paucity of experimental data on
transitions at higher energy and on effective char-
ges, it is difficult to decide at this stage which
LCAO scheme should be preferred. It seems how-
ever that the extended-Huckel method is better for
describing energies while the iterative-extended-
Huckel method is better for determining charges and
atomic orbital coefficients. Similar conclusions
were previously suggested from extensive compar-
ison of these methods in predicting various prop-
erties of molecules. The IEXH is more diffi-
cult to implement in practice due to higher compu-
ter time requirements. Consequently, in the fol-
lowing work we use EXH and IEXH methods for 18-
and 32-atom clusters while a limited number of cal-
culations on the 50-atom cluster will be performed
only with the EXH method.

III. RESULTS

A. Substitutional carbon impurity in hexagonal boron nitride

Table I summarizes the calculated results for a
substitutional carbon impurity in two-dimensional
hexagonal boron nitride as computed by the trun-
cated-crystal and small-periodic-cluster methods
with the EXH approximation. The results for an
ideal cluster without a defect and for the cluster
with the defect are compared. The truncated clus-
ters used for the calculation were 8foN]QH fp,
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TABLE I. Calculated results for a substitutional C impurity in hexagona1 boron nitride, obtained using the EXH meth-
od. E~z, Ec, and Ec' represent energy levels appearing due to the carbon impurity. DE~d represents the energy differ-
ence between the edge of the conduction band and the highest defect level. Q& denotes the carbon ~ charge. Cluster I:
BfpNf2Hf2 cluster II: Bf2Nf2Hfo, cluster III: Bf4Nf4Hf4 (see Fig. 2).

Property

Valence edge (eV)
C ond uctio n edge (eV)
Band gap (eV)
E', (ev)
E' (eV)
E2s (eV)
ZE„, (ev)

Vp C character.
ln Ec
in Ec
in E2sc

—12.675
—7. 210

5 465

—12. 921
—7. 210

—12, 042
—12, 140
—23. 340

4. 832
—1.468

40. 09
66. 12
98. 39

Cluster. I
No. Carbon

defect impurity

—12. 762
—7. 269

5. 493

—12, 983
—7. 269

—11.931
—12. 140
—23. 285

4. 871
—l. 467

40. 10
65. 31
86. 65

Truncated crystal
Cluster II

No. Carbon
defect impurity

Cluster III
No. Carbon

defect impurity

—12. 598 —12. 832
—7. 155 —7. 155

5. 443
—11.913
—12. 135
—23. 199

4. 758
—1, 467

40. 12
64. 45
96. &35

—11.960
-6.470

5.490

—12. 731
—6, 470

—11.340
—12. 129
—23. 150

4. 879
—1.467

—11.962
-6.471

5. 491

—12. 735
—6. 471

—11.345
—12. 127
—23. 150

4. 874
—1.467

40, 12
65. 21
97. 10

40 15
64. 92
97. 12

Small-period clusters
18 atoms 32 atoms

No. Carbon No. Carbon
defect impurity defect impurity

BqaNtaHtq, and B)4Nt4Ht4(Fig. 2).
It is seen that upon substitutionally introducing a

carbon atom instead of a nitrogen atom in the hex-
agonal network, three new one-electron levels ap-
pear. The lowest of them (Eca') is a level mainly
composed of the 2s atomic orbitals of the carbon
atom and highly localized (more than 96% carbon
character, Table I) at the carbon site. This level
is slightly stabilized when compared with the free
carbon 2s state, and behaves actually as a core
state, The three degenerate 2P orbitals of the free
carbon atom are split in the crystal (which has a
D3„point symmetry) into two crystal-field compo-
nents: a doubly degenerate o level (Ec) spread in
the layer plane, and a, m level (Ec) perpendicular to
the layer plane. The Ec state contains 40%%up of car-
bon 2P„and 2P character, and due to mixing with
the corresponding o orbitals of the boron and nitro-
gen atoms, its energy is stabilized by more than
Q. 5 eV compared with the corresponding level in
the free atom. The E& level is slightly more sta-
bilized than the Ec level, due to a relatively higher
delocalization of m electrons in the crystal plane.
In the perfect lattice the larger delocalization of the
m electrons results in higher electrical conductivity
in this direction.

The edge of the conduction band remains un-
changed upon introducing the impurity, while the
edge of the valence band, corresponding to the work
function of the solid, decreases slightly. The dif-
ference ~„~between the highest impurity level
Ec (which is only singly occupied in the neutral
state) and the edge of the conduction band is only
slightly affected by increasing the cluster size and
assumes a value of about 4. 8 eV, as can be seen
from Table L

The carbon impurity level Ec acts therefore as a
deep acceptor level that can capture free carriers,
thereby decreasing their degree of delocalization.
It also decreases the optical gap, shifting the wave-

4

length of the absorbed light towards the visible (col-
oring effect). Such a trend was experimentally ob-
served in carbon-doped boron nitride. Analysis
of the ideal crystal band structure2' reveals that
the edge of the conduction band (Pa point) is com-
posed of boron m orbitals (99. 43% boron m charac-
ter in cluster III, and 100%%up boron m character in
SPC representations). The optical transition from
the carbon impurity level to the conduction band
edge is therefore an internal charge-transfer tran-
sition similar to those encountered in molecular
spectroscopy. ' Such a transition carries the elec-
tron from a level localized to a large extent on the
carbon atom, to a level spread over the boron sub-
lattice. This should be contrasted with the lowest
transition of the pure crystal which carries the sys-
tem from a level delocalized on the nitrogen sub-

FIG. 2. BN clusters used in the truncated-crystal cal-
culations. Each cluster is surrounded by H atoms to sat-
isfy the free valence. Ra„= l. 446 A, Ra„=l.2 A, and

RNH =1.1 A. Cluster I: BfpNf2Hf2 r Bf2NfpHf2 Cluster
II: Bf2Nf2Hf2 Cluster III Bf4Nf4Hf4. ~: boron; 0: nitro-
gen.
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lattice (the P, edge of the valence band) to a level
delocalized on the boron sublattice (the Pz state).

Comparison between the results obtained by the
truncated- crystal and the small-periodic- cluster
methods indicates that in the former method the
edges of the valence and conduction bands are
changed nonmonotonically with increasing cluster
size, and these edges can thus be only approxi-
mately determined by this method. A similar be-
havior was observed by Larkins~4 and by Messmer
and Watkins~ in calculating the electronic eigen-
value spectrum of diamond and siliconlike atomic
clusters, and by Zunger~ in a truncated-crystal cal-
culation for graphite. The calculation of atomic
charges in the perfect periodic cluster reveals com-
plete homogeneity of charges on each sublattice,
while in the truncated-crystal model, strong per-
turbations in the charge are evident near the bound-
aries of the cluster.

In both truncated-crystal and SIC calculations,
the carbon atom accumulates a large negative
charge (Qc' =0. 88e) at the expense of the surround-
ing boron atoms, due to the greater electronega-
tivity of carbon. This charge transfer is carried
out in a substantial way through the m system, re-
sulting in a carbon m charge of 1.467e (compared
to 1.222e in a similar SP C EXH calculation on
graphite); The extent of this effect is probably
overestimated in a non- self-consistent treatment
such as EXH, and a charge iterative calculation
should be applied to achieve more accurate results.
We recalculated the 18- and 32-atom periodic clus-
ter problem now employing the self- consistent IEXH
method. The highest carbon impurity level Ec ob-
tained when the carbon impurity calculation is per-
formed is now 2. 2 eV and 2. 1 eV below the con-
duction edge for the 18- and 32-atom clusters, re-
spectively. The carbon atom is shown to have a
net atomic charge of —0. 28e. The general features
of the non-self-consistent treatment are preserved,
but considerable quatitative differences occur due

to the requirement of self-consistent charge redis-
tribution. Similar differences between non- self-
consistent and self-consistent band energies were
calculated by Stukel et al. 4' on binary II-VI crys-
tals, by the OPW method.

It should be noted that the level splitting and or-
dering obtained here for the C-impurity model in-
dicate that such a system will exhibit dielectric
losses, as argued by Sussman. ~

We next allow for model lattice relaxations
around the C impurity, using the self-consistent
IEXH method. An inward relaxation of 18% of the
bond length, along the bonding distance, of the
three boron atoms surrounding the impurity, low-
ered the energy of the clusters to a minimum. The

gap between the highest defect level and the con-
duction edge increases now to 3. 2 eV. This large

effect demonstrates the importance of such pro-
cesses in deep defect levels in covalent and partly
ionic crystals. Thd fact that the IEXH method,
when applied to the 18- and 32-atom perfect BN
clusters, reproduces the equilibrium interatom
distance and stretching- force constant reasonably
well, justifies its use in investigating model relax-
ations. The negative net atomic charge on the cen-
tral carbon atom increases to —0. 35e upon relax-
ing the boron atoms, the carbon thus assumes a
greater stabilizing electrostatic interaction with
the boron atoms.

A similar relaxation calculation with EXH method
reveals a change inE„~ from 4. 8 to 4. 9 eV and a
change in carbon net charge from —0. 88e to
0. 908. When the carbon atom impurity lying in

the lattice plane is moved from the proper D» site
(occupied by a nitrogen atom in the ideal cluster),
the twofold degeneracy of the Ec level is lifted,
The total lattice energy increases, however, rel-
ative to the D» impurity, and therefore no de-
tailed mapping of the potential surface was made.
The separation E „ofthe defect level from the conduc-
tion band is affected only slightly by cluster size.
A calculation of an unrelaxed 50-atom cluster with
the EXH method yields E~„=4. 882 eV compared with
the value E„„=4. 879 eV for the 18-atom cluster.

B. Displaced carbon impurity in hexagonal BN

We next investigated the nonsubstitutional carbon
defects. These are characterized by a carbon
atom replacing a nitrogen atom and located at dis-
tance Bc above the vacant site and perpendicular
to the lattice plane (Rc = 0 is thus the planar im-
purity case). The calculations are performed on
the 18-atom periodic cluster with the EXH approxi-
mation for the matrix elements. Figure 3 shows
some of the relevant one-electron energy levels as
a function of Bc,

The pronounced features are the following.
(a) A conduction-band level (denoted E,) splits

from the conduction band as the distance of the car-
bon atom from the vacant site increases. The
charge carried by this level is mainly located sym-
metrically with respect to the carbon atom and its
three equivalent nearest-neighbor boron atoms.
The distance of this level from the conduction edge
tends to level off for large Ac. For Rc =1.0 A it
is at 1.30 eV from the conduction band. The con-
tribution of the defect orbital to the charge on the
three boron atoms surrounding the carbon impurity
decreases with increasing Rc. For Bc = 1.0 A this
charge is 0. 368.

(b) The crystal-field splitting between the Ec and

Ec levels decreases with increasing Rc. Both lev-
els are destabilized as A~ increases, thus ap-
proaching their free atom degenerate state.



2386 A. ZUNGE R AND A. KAT ZIR

Ecb
*

Et

-10

Ec

Evb

-15 I

0.0 0.2 0.4, 0.6 0.8
Rc(i

1

IO

FIG. 3. Dependence of one-electron energies on the
perpendicular distance Rc of the carbon impurity from
the vacant nitrogen. site. E,& and E„b denote conduction
and valence band edges, respectively. (E,*„denotes a
higher conduction state. ) E& denotes the trapping level
and originating from the I' —Q line in the perfect solid,
and Ec and E~z denote the carbon impurity 0. and 7t levels,
respectively.

(c) The edges of the conduction band (Z,„) and va-
lence band (E„b) are slightly shifted as Rc increases.

Similar results are obtained with IEXH method,
the defect level lying now at 1.Q eV and contribu-
tion a charge of G. 298 to the boron atoms for Rc
=1.G A.

In the neutral impurity state, the level Ec is
doubly occupied, Ec is singly occupied, and E, is
empty. This last level could act as an electron
trap and would then exhibit a characteristic three
boron EPR signal due to the even distribution of
charges on the three boron atoms surrounding the
vacant site. Its energy below the conduction band
suggests that it should also give rise to thermolu-
minescence effects with an activation energy of
-Et -E,b= 1.Q-1. 3 eV. This is consistent with
the model proposed to explain the role of carbon
impurities in BN (see Paper I).

When the distance Bc is further increased, the
binding energy of the carbon atom to the hexagonal
lattice (0. 64 eV for Bc=0) decreases. At the limit
of large displacement the defect structure repre-

sents a nitrogen vacancy. The defect level is of m'

character and its separation from the conduction
edge is calculated to be 1.39 and 1.38 eV for the
17- and 31-atom clusters, respectively, for the
EXH calculation and 1.12 to 1.16 eV for the IEXH
calculation. Detailed comparison of this vacancy
problem with the similar defect in graphite is de-
scribed eleswhere. 33

It is interesting to compare the energy and charge
distribution of such a defect as revealed by the
truncated-crystal vs the SP C methods. Table II
summarizes the results for the energy of the de-
fect level and boron charges, as revealed by these
methods. It is evident by inspection to Table II
that the truncated crystal approach does not yield
the proper location of the defect level with respect
to the conduction band, and only approximate re-
sults are obtained. Due to the differences in ge-
ometry of the truncated clusters employed, the
atomic charges carried by the nearest three boron
atoms in the defect crystal orbital are not identi-
cal, as they should be. The perturbative effect in-
troduced by the vacant site is propagating some
1-2 neighboring shells and introduces changes in
the charge distribution. of these coordination shells.
Truncated-crystal models of the size used here are
probably too small to account properly for such ef-
fects since the perturbations introduced by the edge
atoms are also extended within 1-2 shells.

Similarly, a defect molecule approach consider-
ing only the first coordination shell is perhaps in-
sufficient to account for the coupling of this level
with the bulk crystal (compare the 1-shell and
4-shell results in Table II).

When model lattice relaxations are introduced on
the three nearest boron atoms, the defect level
shifts to 1.51 and 1.2G eV for inward and outward
relaxations of 10% of the equilibrium perfect lattice
bond length, respectivej. y.

It should be mentioned that both in a nitrogen va-
cancy and in displaced carbon-impurity structures,
the distribution of charge in the defect level is syrn-
metrical with respect to the nearest three boron
atoms, and the unpaired spin density in such levels
should reveal an EPR signal with the same splitting
pattern (10 peaks for "Bcrystal). The energy sep-

TABLE II. Calculated results for a nitrogen vacancy in hexagonal boron. nitride, obtained using
the EXH method. E&,„denotes the energy difference between the conduction edge and thedefect
level. Qz&, QB2, and Q~3 denote the boron 7( charge in the defect level. 7- 17- 31- 49-atom clus-
ters correspond to 1, 2, 3, 4 coordination shells around the defect site.

Truncated crystal

Cluster I Cluster II Cluster III 7 atoms

SPC

17 atoms 31 atoms 49 atoms

E] ~b (eV)

Qai (e)
Qa2 «)
Qs3 «)

0. 763
0. 482
0. 482
0. 482

0. 933
0. 481
0. 481
0. 475

1.102
0. 435
0. 527
0. 527

0. 814
0. 721
0. 721
0. 721

1.390
0. 572
0. 572
0. 572

l. 380
0. 572
0. 572
0. 572

1.381
0. 571
0. 571
0. 571
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aration between the def ect level and the conduction
band is somewhat higher for the vacancy (1.38 and
1.16 eV in EXH and IEXH calculations, respective-
ly) than for the displaced carbon impurity (1.30
and 1.0 eV in EXH and IEXH calculations, respec-
tively). Also, higher charge is accumulated on the
boron atoms in the vacancy case (0. 57e and 0.48e
in EXH and IEXH calculations, respectively) than
in the displaced carbon impurity case (0. 36e and

0. 29e in EXH and IEXH calculations for Rc = 1.0 A).
Due to the uncertainties in the semiempirical LCAO
methods used, the absolute values of these calcu-
lated properties should not be given too much im-
portance. The general features of these model de-
fects are however believed to be correctly repro-
duced.

IV. ELECTROSTATIC POTENTIALS

The total electrostatic potential V(r) is given by
the sum of the electronic contribution tEg. (6)] and

the contribution from all the nuclei

V(r, ) = Va„(r;)+Q, — (9)

where the wave function 4 is formed from all oc-
cupied MO's. It has been recently demonstrated6'
that the electronic wave functions obtained from the
self-consistent-field molecular-orbital (SCF MO)

semiempirical approximations intermediate ne-
glect of differential overlap (INDO), ~' reproduces
quite accurately the electrostatic potential calcu-
lated from ab initio wave functions for medium-
size molecules. When the atomic basis set em-
ployed by these LCAO methods is expanded in a
Gaussian basis, the Poisson equation can be an-
alytically integrated. Previous numerical meth-
ods ' involved substantial errors in the potential
near the nucleus and exceedingly large computa-
tion times. With the analytic method, we expand
the Slater orbitals used by the INDO method as an

atomic basis set in a series of gaussians (the 6-G
expansion). With this representation of the atomic
basis set, .the charge distribution p(r) takes the
form of a sum of contributions from the individual

The electrostatic effects introduced by either a

estrogen vacancy or a carbon impurity into the oth-
erwise unperturbed lattice can be evaluated by
solving the Poisson equation for the charge density
'p(x) obtained from the electronic wave function 4'

of a finite BN cluster.

v'V„„(r) = 4mp(r),

where p(x) is obtained from the X-electron wave

function 4

gaussians even in the multicenter case. ' Compu-
tatiens of the electrostatic potentials for the unper-
turbed clusters I-III (Fig. 2) shows that in the re-
gion of. the central BN bond the potential is un-
changed within 0. 1% when increasing the cluster
size from cluster II to cluster III and changes only
b$0. 15% when passing from cluster I to cluster II.

In the case of neutral vacancy and neutral carbon
imputity, the electronic eigenvalue problem neces-
sitates open-shell SCF calculation, and the elec-
tronic density p(r) is computed from contributions
of both o'. and P spins, while in the unperturbed
cluster this reduces to a closed-shell problem.

The use of many-electron self-consistent wave
functions that already incorporate quantum ex-
change effects, for all the electrons in the cluster
(including the "trapped" electrons that are treated
as all other electrons in the neutral defect struc-
tures), suggests that the resulting potential should
present a meaningful picture of the affinities of the
various defects.

The electronic eigenvalue problem was solved
for cluster I (Fig. 2) by sta.ndard INDO method for
the perfect, N-vacancy and C-impurity structures.
Charge density was then computed from the re-
sulting wave function and the latter expanded in the
6-G expansion and used to solve the Poisson equa-
tion. The resulting electrostatic potentials along
the line marked in Fig. 2, are presented in Fig. 4.

It is seen that upon introducing a carbon atom
substituting at the site of a nitrogen atom, the elec-
trostatic potential along the newly formed B-C
bond is less attractive towards a negative point
charge than the corresponding potential in the un-
perturbed structure, due to the lower affinity of
carbon (electronegativity 2. 5 on Pauling's scale) to
attract electrons than nitrogen (electronegativity
3. 0). The electrostatic effect is introduced by the
carbon impurity is especially marked at the vicin-
ity of the newly formed 8-C bonds, while at the
center of the hexagonal rings surrounding the im-
purity (R = +4. 1 a. u. ) the potential is already very
close to its value in the unperturbed structure.

. When a nitrogen vacancy is formed, the electro-
static potential around the vacant site becomes very
shallow, increasing thereby the affinity of this cen-
ter towards capture of negative charge. The asym-
metry of the potential around the center of the bo-
ron-vacancy bond (R =0. 0) is increased. Again, the
perturbative effect introduced by the vacancy is al-
ready small at the center of the closest hexagons.
Both the nitrogen vacancy and the carbon impurity
in hexagonal boron nitride create thus acceptor
states.

When a similar calculation is performed with the
periodic 32-atom cluster the perturbative effect of
both defects is seen to extend to a larger radius,
and only after 2. 5-3.0 A away from the defect site
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the electrostatic potential approaches its value in
the unperturbed lattice. Due to the presence of
perturbations of edge atoms at this distance from
the defect in the truncated-crystal models employed,
the results obtained by these methods deviate sig-
nificantly (Tables I and II) from those of the SH."

model.

V. SUMMARY AND CONCLUSIONS

The electronic eigenvalue problem of a two-di-
mensional hexagonal D» lattice was represented b
a minimal basis set of LCAO equations for a finite
periodic array of hexagonally arranged atoms, ex-
hibiting 2 —4 orders of neighboring interactions,
SemiempiricaJ. EXH and IEXH Mo LCAO methods
were used to facilitate the numerical solutions.
For the ideal-lattice problem one thus obtains a
subset of the eigenva, lue spectrum of the infinite
lattice that is sufficient to account for the various
crystal band widths, band gaps, band-to-band tran-
sitions, equilibrium interatom distances, and atomic
charge distributions. These calculated properties
agree with the available experimental data.

The same method was then applied to the study of
carbon impurity states. The main features obtained
are (a) the appearance of a, doubly degenerate v lev-
el (4. 9-3.2 eV below the conduction edge) and a.

singly degenerate m level in the forbidden gap, with
a large degree of localization on the carbon site,
and (b) formation on an extra defect v level that
splits from the conduction band, when increasing
the vertical distance of the impurity atom from the
layer plane. This trapping defect level is associ-
ated with an even charge distribution on the three
nearest boron atoms, and its sepa. ration from the
conduction band is ca.lculated to be 1.0—1. 3 eV.
Lattice relaxations around the ca,rbon impurity de-
fect were shown to stabilize the system by lower-
ing the trapping level. Upon increasing the dis-
tance of the carbon atom from the layer to infinity,
a nitrogen vacancy is formed. It was shown to be

associated with a level that splits from the conduc-
tion band, and is situated 1.16—1.38 eV below it.
An even charge distribution on the three nearest bo-
ron atoms is also manifested by this level. The ef-
fects of lattice relaxations were investigated as
well as its coupling with the bulk crystal states.

In Paper I of this study a model was proposed to
explain the results of EPB, luminescence, and glow-
curve measurements on hexagonal boron nitride.
The main features of the model were as follows:
carbon impurities introduce an energy level at about
4. 1 eV below the conduction band. Electrons may
be excited from this level, pass through the conduc-
tion bands, and fall into traps. One such trap is a
nitrogen vacancy. An electron trapped in the vacan-
cy forms a three boron center (TBC), i. e. , the
charge is distributed equally on the three neighbor-
ing boron nuclei. This electron is trapped at about
1.0 eV below the conduction band, as revealed in
glow curve measurements and in a "knee" at 600 K
in the isochronal annealing curves of the EPR»g-
nals (Paper I, Fig. 3). A second "knee" appeared
at 800 'K, and it reveals the existence of another
type of TBC, which was not observed in other mea-
surements. In these centers electrons are trapped
at about l. 4 eV below the conduction band (as can
roughly be estimated from the "knee" in the iso-
chronal annealing curve). This type of TBC may
well be related to electron trapped in nitrogen va-
cancies, in the vicinity of carbon atoms,

The main features of the theoretical calculations
are in good agreement with the model proposed to
explain EPR, thermoluminescence, and thermally
stimulated current measurements (see Paper I).

From the investigation of the characteristics of
the calculation methods, it is concluded that: (a)
truncated-crystal models with relatively small num-
ber of atoms should be treated with great caution
when defect models are considered. The radius of
the perturbative effects introduced by the defect
should be estimated and kept well within the range
where the edge effects of the truncated surface are
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not important. (h) Defect-defect interactions pres-
ent in the superlattice representation can be effi-
ciently suppressed by using small periodic clusters
of an odd number of primitive unit cells, keeping
the interaction radius smaller than the molecular
cluster radius, and seeking the convergence limit
of the investigated electronic properties as a func-
tion of the interaction radius. This approach is
useful in describing covalent defect structures ex-
hibiting a reasonably short range electrostatic tail.
A comparable interaction range is also sufficient
to assure stability of the electronic and structural
properties of the perfect lattice.

(c) The electronic affinity of various defect
structures and its perturbation radius could be es-
timated by computing the Poisson potential gener-

ated by the quantum mechanically calculated charge
density. This representation was previously suc-
cessfully used in determining chemical reactivity
of various molecules ' ' and seems a promising
technique for describing self-consistent potential
rear rang ement in defe ct proble ms.

(d) Due to the uncertainty underlying the semi-
empirical LCAQ methods, one should examine the
results yielded by several such methods since com-
mitment to a single LCAQ approximation might be
misleading. The characteristics of both perfect
lattice and defect structures are only semiquanti-
tatively determined. However, the general features
of these systems are clearly demonstrated. For
more accurate results, ab initio methods are un-

avoidable.
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