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The electronic structure of neutral substitutional 3d transition-metal impurities in an in-
finite silicon host crystal has been calculated for the first time. The calculation is carried
out self-consistently in the local-density-functional formalism to within a high precision.
We use nonlocal, first-principles pseudopotentials and the recently developed quasiband
crystal-field (QBCF) Green's-function method. The elements of the electronic structure of
this system are discussed in detail. The calculation reveals the chemical trends in the defect
energies (gap states as we11 as resonances) for the impurities Zn, Cu, Ni, Co, Fe, Mn, Cr, V,
and Ti, as well as the regularities in the density of states, wave functions, charge distribu-
tions, and screening potentials. For charged impurities, the model explains the remarkable
occurrence of many charge states in the narrow-band-gap region through a new self-

regulating mechanism analogous to the homeostasis control in biological systems.

I. INTRODUCTION

A minute contamination of 1 titanium atom per
10 silicon atoms is sufficient to degrade substantial-
ly the efficiency of a crystalline silicon solar cell,
whereas relatively huge amounts of copper contam-
ination have almost no effect on the cell. ' Many
other transition-atom impurities have been known to
considerably affect the characteristics of various op-
toelectric devices. Among other intriguing proper-
ties of transition-atom (TA) impurities in semicon-
ductors is the fact that as an impurity, a TA can
sustain as many as five different charge states in the
narrow- (-1-eV) band-gap region, whereas the
various ionized states of a free TA are spread over a
range of many eV. Despite almost 30 years of
research on the technologically important and intel-
lectually stimulating Si:TA system, its electronic
and structural properties remain unclear. In this pa-
per we present the first theoretical study on the
electronic structure of all substitutional 3d elements
in an extended semiconductor host crystal. The
basic elements of the electronic structure of this sys-

tem as well as the various chemical trends along the
3d series are discussed.

The major obstacle in establishing a coherent ex-
perimental picture of TA impurities in silicon arises
from the high diffusivity of these elements. The dif-
fusion coefficients at —1000'C range from 10

cm /sec for Ni (as large as typical liquid diffusivi-
ties) and decrease to 10 —10 ' cm /sec for lighter
impurities (Ti,V). Solutions of TA in silicon may
hence be oversaturated by a few orders of magnitude
and thus unstable. This has led to considerable dif-
ficulties in establishing experimentally the electron-
ic, structural, and chemical properties of such de-
fects. On their electronic properties, considerable un-
certainty exists about the observed electronic activa-
tion energies of TA-defect levels in silicon. This un-
settling situation is exemplified in the two most re-
cent deep-level transient spectroscopy (DLTS) stud-
ies on 3d impurities in silicon published in 1981.
Only two out of the 35 measured transition energies
agreed. A recent compilation of activation energies
published in 1980 contains over 20 more energy lev-
els, almost none of which agree with the other two
studies. Furthermore, a rich literature on the subject
published in the Soviet literature over the past ten
years (e.g., Ref. 9) reveals yet many more energy lev-
els that are mostly unaccounted for in the studies
cited previously.

On their structural properties, the evidence on the
TA lattice site preference (substitutional versus in-
terstitial) and aggregation state (isolated impurities
versus impurity clusters) is very inconclusive. It has
been known for a long term that the site preference
depends on a fine control of the material preparation
parameters as much as on the nature of the impurity
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atom itself. ' For example, a diffusion of a transi-
tion atom into p-type silicon near its melting tern-
perature followed by a relatively slow quenching (a
rather loosely quantified quantity' ) often produces
impurity-acceptor pairs. A more rapid quench-

ing, however, can also produce isolated
interstitials. "" For the fast diffusers (Ni, Cu) it
might be impossible to quench the sample fast
enough to get stable dissolved atoms. Diffusion into
n-type samples followed by slow quenching can pro-
duce multimers of the defect (e.g., Mn4 clusters" or
Fe„clusters' ). If the sample already contains im-
purities such as Cu, Ag, or Zn, a diffusion of an ad-
ditional transition element can produce an impurity
in a substitutional site. "' ' ' There is no evidence
for any static lattice distortion or a departure from
tetrahedral symmetry (except, perhaps for Si:Ni
[(Ref. 3(c)]). A dynamic Jahn-Teller distortion was,
however, proposed for interstitial Cr, Mn, and Fe in
silicon to explain the complete suppression of orbital
contributions not accounted for by covalency
effects. ' ' Since different measurement techniques
focus on different physical properties of the impuri-
ty, it is not unusual that the same TA (e.g., Si:Co) is
sometimes argued to be substitutional' and intersti-
tial in the same host crystal.

On their chemical properties, various transition-
atom impurities are known to form acid-base —like
complexes with dopants ' and with unintentionally
introduced impurities. This considerably compli-
cates the interpretation of the DLTS and EPR re-
sults. A recent systematic study attributed most of
the observed electron and hole traps of transition-
atom —doped silicon to complexes with gold or
boron in the sample. Similarly, another recent
study revealed defect levels that are independent of
the specific transition-atom impurities diffused into
the crystal. Defect levels due to transition-atom ox-
ides (e.g., Ti02) formed during the growth and dif-
fusion' of TA into semiconductors have likewise
been reported.

The difficulties encountered in the experimental
studies of transition-atom impurities in silicon are
paralleled by the obstacles in theoretical studies on
these systems. ' lt seems that a systematic
theoretical study of a complete series of impurities
(e.g., substitutional and interstitial 3d elements) in
the same host crystal might help in organizing the
large experimental data base available in terms of
physically understandable regularities. It may fur-
ther serve to delineate theoretically well-
characterized isolated centers from defect complexes
that often occur in real materials.

The existing body of experimental and theoretical
results on the Si:Ta system poses a number of in-
teresting questions. For instance, what are the basic

chemical trends in the defect levels along the 3d
series? Do all five atomic 3d levels appear in the
semiconductor band-gap region as previously hy-
pothesized? ' Is the level ordering of e below t& in-
dicative of substitutional defects?" Are substitu-
tional defects characterized by a d~sp electronic
promotion? ' Why are the energy levels associated
with different ionization states of the impurity atom
located in the narrow energy gap whereas the same
ionization states in the free TA spread over a range
of many eV7 ' Is the linear dielectric screening ap-
propriate for shallow impurities also characteristic
of localized and deep impurities? How do the states
of host crystal control the position of various defect
levels? How does the degree of localization of the
Si:TA wave function compare with that of the more
conventional defects (s-p defects, vacancies in semi-
conductors, F centers in ionic solids, etc.). What is
the role played by the d orbitals of the TA impurity
in bonding to the host? Our work addresses these
questions for the substitutional 3d impurities in sil-
icon. It is to be complemented by a study of the in-
terstitial 3d impurities.

II. DEFINITION OF THE PROBLEM
AND THE APPROACH

The objective of this work is to find precise self-
consistent solutions to the electronic structure of iso-
lated substitutional TA impurities in silicon within
the local-density-functional formulation of the in-
terelectronic interactions. In this section we define
the physical problem that we solve in terms of the
effective single-particle potentials V(r) and charge
densities p( r ) of the unperturbed host (B) crystal,
and the crystal containing the defect (D).

A. Potentials and charge densities

The single-particle potential of the pure host crys-
tal and the impurity-containing crystal is given as a
sum of the bare external potential V'"'(r) and the
screening V'"( r ) that constitutes the electronic
response to it,

VH(r )= VH"'(r )+ V"'[prr(r )],
VD(r)=VO'(r)+ V '[pD(r)] .

The external potential is expressed as a superposi-
tion of the site-centered external potentials v &~»'( r ),
over the atomic sites at {Rp I,
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In an all-electron representation, v~, '~'(r)
Z—~/r, where Z~ is the atomic number of atom

P. In a pseudopotential representation, the effects
of the Zp —Z~ core electrons are replaced by a static
external potential. Hence u~, '~'(r)PL p is the bare
pseudopotential of atom P acting on the Lth angular
momentum component of the valence wave func-
tion. The angular momentum projection operator
on site p is PL ~, and Z~ is the number of valence (v)

electrons of atom P. It includes the outer s, p, and d
electrons of the atom.

The screening potential includes an interelectronic
(ee) Coulomb part and an exchange-correlation (xc)
contribution,

V„,[p(r)]= V"[p(r]+ V"'[p(r)] . (3)

The external potential perturbation is given as

xt(r) (LD)(~ R )
u(LH)( R )

(5a)

where it is understood that each term on the right-
hand side of (5a) acts only on the L component rela-
tive to the sites P and P', respectively. For substi-
tutional defects Rp=R&, whereas for interstitial de-
fects at site R~ we have

~VL"'(r)=v,", '(r —R~) .
The electronic response to this external perturba-

tion sets up the screening fluctuation given by

aV- (r) = VD"(r)—VH""(r) . (5b)

This screening perturbation is associated with a
charge-density fluctuation Ap(r) given in terms of
squares of the occupied (occ) defect single-particle
wave functions f;(r) (with occupation numbers N;)
and the occupied host-crystal Bloch wave functions

pz(k, r ) [with occupation numbers N ( k) for band j
and wave vector k] as

~p(r)—=pD(r) —pH(r)

= gN; ~
Q((r)

~

—QNJ(k)
~
t}(J(k,r)

~

2.
j, k

We define the effective potential perturbation
b, V' ( r ) associated with a defect in a solid as arising
from both an external perturbation and its screening
perturbation

(4)

The basic electronic properties of the system can be
obtained by self-consistently solving

[ , ~—'—+VH(r)+~v"(r)]tA(r)=clot(r) .

B. Physical inputs to the problem

Other than the atomic numbers and the number
of electrons in the system, there are three physical
inputs to the problem:

(i} A microscopic model for describing the in-

terelectronic exchange and correlation potential
V"'[p(r)] in Eq. (3). For this we use the Kohn-
Sham local-density-functional formalism with a
Slater exchange coefficient of a„=l.

(ii) The site external potentials v~, '~'(r) for the
host (P=H) and the impurity (P=D} atoms appear-
ing in Eq. (2). For the silicon host atom we employ
the local semiempirical pseudopotential of Ref. 26.
For the impurity atoms we use the first-principles
nonlocal-density-functional atomic pseudopotentials
of Ref. 25(a) [analytic forms are given in Ref. 25(b)].
The pseudopotential for the L=2 (d wave} equals,
by definition, 2' the all-electron TA potential.

(iii} The atomic positions [R~] appearing in Eq.
(2) both in the host crystal and in the crystal con-

taining a defect. For the host silicon crystal we em-

ploy its experimental crystal structure with a lattice
constant a=10.2646 a.u. Since experiment alone
has not provided as yet any conclusive evidence on
the site location of the TA in silicon, it was decided
to do systematic calculations for both substitutional
and interstitial sites. This work reports the results
for unrelaxed substitutional impurities. According-
ly, [R~j are chosen to coincide with the values of
the host crystal.

Given only uP'(r) and [R&) for the host crystal,
one can calculate the host charge density pH(r), the
self-consistent screening potential VH"(r), the band
structure [ej~( k ) ), and the host wave functions

[PJ(k, r) I in a standard manner. Table I depicts the
calculated self-consistent silicon band structure us-

ing the exchange coefficient a„=l. The calculated
single-particle energies compare reasonably well

with the observed excitation energies. The
same pseudopotential has been used in Ref. 31 to
calculate the electronic structure of a silicon vacan-

cy (with a similar but not identical pseudopotential
used in Ref. 32); however, the exchange coefficient
used in these calculations was a„=0.8. A compar-
ison of the a„=1and 0.8 results for bulk silicon
(Table I) shows the two to be similar for the
valence-band states; however, the a„=0.8 results
produce a fundamental band gap that is about 50go
smaller than the observed band gap. A similar un-
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a„=0.8
—12.8

0.0
2.88
3.49

—12.5
0.0
3.20
3.78
8.75

—8.32
—2.98

1.39
1.21

—10.21
—7.24
—1.30

2.02
4.11

r,
„

I 2s, u

I 15',c

I2,
Ii2
X)„
X4„
X),
Indirect gap
L2', v

Li, u

L3,v

L),
L3,

3.2'
4.15 +0.05'
8.3 +0.1'

—8.48
—3.14

0.78
0.60

—10.39
—7.52
—1.36

1.60
3.69

—2.9'

—9.3 +0.4"
—6.8 +0.2'
—1.2 +0.2'

2.02+0.2'
3.9 +0.1'

TABLE I. Calculated self-consistent single-particle
band structure of silicon with the semiempirical local
pseudopotential of Ref. 26, employing an exchange coeffi-
cient u„=1.For comparison, we give also the results for
a„=0.8 and experimental data (Refs. 27—30). The zero
of energy is set at the valence-band maximum. The unit-

cell volume used is twice the atomic volume 135.188
a.u. . 181 plane waves are used at the I point and a
comparable number at other k points. The self-consistent
screening is constructed from the lowest 1471 plane
waves. Four special k points are used to obtain the
ground-state charge density. All components of the pseu-
dopotential up to a momentum q =6 a.u. are included.

Level o,„=1 Experimental

—12,5 +0.6'

predictions that reAect the underlying local-density
theory (not the computational approximations to it,
such as finite clusters, muffin-tin approximations,
semiempirical tight-binding parametrizations, etc.)

to a level of precision of about 0.1 eV in energies
and 1—2% in charge density and potentials. A new
computational scheme ' recently developed by us
enables one to achieve this objective very efficiently
for an entire group of impurity atoms (e.g. , the 3d
row) with only modest investment of computer time.

D. Approach

We use the quasiband crystal-field (QBCF) self-
consistent Green's-function method. The method
was described in detail previously. For our present
discussion we need only to describe the wave-
function, potential, and density representations.
These definitions will aid the analysis of the results
(Sec. III).

1. blaue function -representations

We employ a dual representation of the defect
wave functions t1(t;(r)I. The first representation is
in terms of an impurity-centered local-orbital basis

Ig, (r ) I. The A,th partner of the ath irreducible rep-
resentation of the wave function is given as

'Reference 27.
Reference 28.

'Reference 29.
"Reference 30.

g; (r)= QC,~g, (r) .

derestimation of the gap occurs when first-principles
nonlocal pseudopotentials are used, "or when an
all-electron local-density calculation is done. Al-
though the discrepancy is not large on an absolute
energy scale, it is felt that a 0.6-eV band gap may
cloud the interpretation of the results of defect cal-
culations in which the location of defect levels with
respect to band edges is very important. %e there-
fore use a„=1 in all calculations reported here.

Since all basis functions have a unique origin, one
can separate the variables in g, (r) in a crystal-field
manner into a product of radial orbitals I'~t(

~

r
~

)

(of princpal quantum number p, and angular
momentum i) and Kubic harmonics KP~(r ),
transforming according to the A,th partner in the eth
irreducible representation and depending on the
direction of r alone:

C. Statement of the problem

In this paper we address the problem of establish-
ing a self-consistent solution for Eqs. (1)—(7) for 3d
impurity atoms in silicon within the local-density
formalism, given only the silicon and impurity-atom
pseudopotentials U~,

' (r) and the atomic positions
IRttI as input. The aspects of the electronic struc-
ture in which we are most interested are the chemi-
cal trends in the single-particle energies Ie;I and
their local density of states, the wave functions

I 1(;(r)J, as well as the charge density pD( r)„screen-
ing VD "(r ), and their deformations b p( r ) and
b, V"'(r), respectively. Our objective is to obtain

Here, IC„t;) are the expansion coefficients to be
determined for each defect level ~iud, ). The local
representation in Eq. (8a) can be further written as

max

y, '(-.)= g G,, (~-.
~

W;"(."), (8c)
I

where IGt;(
~

r'~ ) I, defined by Eqs. (8a) and (8b), are
the independent angular degrees of freedom of the
single-particle state ~i aA, ) . They reflect the
s,p, d, . . . content of each state.

The second representation of the defect wave
functions is given in terms of Bloch quasiband (QB)
wave functions':
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Here, [A,J (k) j are variational coefficients [related
to [C&~i;j in Eq. (8b)], whereas Igjq (k, r)j are
essentially identical to the host-crystal Bloch wave
functions for the lowest j& Mb bands, and are equal
to the renormalized impuritylike (quasiband) wave
functions for the higher bands j=Mb+ 1 to j =M,
where M=M, +Mb. The coefficients [A,J (k)j for
the Sk wave functions used are the independent
spectral degrees of freedom of the single-particle
state ~iaA) T, h. ey reflect the contribution of each
host-crystal state ~kj) to the defect wave function
pail ( ~)

The conventional expansion of the defect wave
functions by pure host wave functions introduced by
Koster and Slater was recently shown to lead to an
intolerably slow convergence in Eq. (9) (requiring
Mb ——10 —10 host bands) if the defect is chemically
or physically sufficiently different from the host. 33

This is merely a statement of the fact that the high-
energy states of the host crystal do not form a com-
pact basis for describing a fundamentally new atom-
ic state (3d). Our reformulation of the Koster-Slater
resolvent in terms of quasiband wave functions
[Pj~ (k, r)j instead of pure host wave functions

IPJ(k, r) j incorporates both hostlike and impurity-
like characteristics directly in the basis IP&~ (k, r) j.
This is achieved by renormalizing a very large num-
ber of host-crystal conduction bands, which would
have been needed for an adequate expansion of lo-
calized defect states, into a much smaller number

(M, =5) of local quasiband wave functions. In this
representation the expansion in Eq. (9) is rapidly
convergent even for arbitrary localized perturba-
tions.

2. Potential and density representations

We use a crystal-field-like factorization of the
density and potential perturbations into radial and
angular components:

2&max

hp(r ) = g ~pr( I
r

~
)&i (") (10a)

1=0

max

hP"(r )= g 6VI""(
~

r )
~

Ei ' („)
1=0

(10b)

We project out the a~ totally symmetric part of
p(r), and hence the a~ Kubic harmonic is used.
Note, however, that although these quantities are to-
tally symmetric in the point-group representation,
they are not spherically symmetric (as assumed in

the muffin-tin model' '). The coefficients bp~
and b, VI"' for l&0 measure their degree of non-
sphericity.

3. Computational input

There are four groups of computational parame-
ters appearing in the QBCF method: (i) The number
N and type of radial orbitals IF&~( ~

r
~

) j with max-
imum angular momentum I,„used in the expan-
sion (8). (ii) The number M =Mb+M, of quasiband
wave functions used in the expansion of Eq. (9).
This includes Mb hostlike bands and M, local quasi-
bands. (iii) The number N

k
of k points used in the

calculation of the Green's function (isomorphous
with a supercell size). (iv) The tolerance

on self-consistency, where i indexes radial mesh
points (extending to R & 11 a.u.).

We have searched the parameter space
I N, I,„,M„Mb,Nk, o j for values that meet our ob-
jective of a -0.1 eV precision in energies and a few
percentages in densities and potentials. Extensive
convergence tests were reported previously. We
have found an optimal parameter set that achieves
this goal for all 3d impurities in silicon using limited
computational effort.

We use l,„=4and %=47; The local basis orbi-
tals are distributed among the various I components
as follows: 11 s orbitals, 10p orbitals, 10 d orbitals,
8 f orbitals, and 8 g orbitals. Counting both angular
and radial components, we have 11+30+SO

+ S6+ 72 orbitals for l=0, 1, 2, 3, and 4, respec-
tively, or a total of 219 local basis functions. For
II'&~ j we use Coulombic orbitals with an optimized
effective charge Z~=10. The local-orbital basis is
augmented by the exact local-density (numerical) 3d
orbital of the free-space transition-atom impurity,
calculated self-consistently with the same exchange-
correlation functional used for the defect calcula-
tion. All local basis functions are orthogonalized
within a sphere of radius 7.S a.u. by the Gram-
Schmidt procedure. For the spectral representation
we use an average of Mb ——31 hostlike bands per k
point and M, =S local quasibands. For N k we use
10 k points (isomorphous with a supercell of 250
atoms) to obtain self-consistency; the self-consistent
potential is then applied to a calculation with
N „=20(isomorphous to a supercell containing 686
atoms) for testing its accuracy. The self-consistency
tolerance o. is set at about 20 mRy.

To test the internal precision of the method, we

apply the "atoms-in-vacuum test" which uses the
Green's-function method to solve for the electronic
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structure of isolated atoms. This is done by defining
in the host crystal a region r &R, where both
VH"'( r ) and Vrv'( r ) are removed (hence the potential
there equals the constant host vacuum level). We
have placed in this vacuum the screened pseudopo-
tential [vv,'~(r)+v"'(r)] of a free transition atom.
We then solve the Green's-function problem for this
system. If R, is large enough to accommodate the
atomic orbitals, the resulting QBCF energies and
wave functions should equal the self-consistent
atomic solutions obtained independently from a
direct numerical integration of the atomic problem.
For all transition atoms described in this work, we
find that the QBCF method produces atomic 3d en-

ergies and wave functions with a precision of 0.03
eV and 1%, respectively.

Complete details of the computational scheme are
described in Ref. 34. With this detailed outline, the
interested reader can independently reproduce this
method and its results.

Mulliken population analysis. In all calculations
reported here, we define the central-cell region in the
conventional way to include the spherical space be-
tween the substitutional impurity atom and its four
nearest neighbors, hence R„=4.44 a.u. for silicon.

D (e)= +5(e—e;)q; (12)

This quantity describes the energy distribution of
states belonging to the ath representation inside the
central cell. For R„~oo,this reduces to the con-
ventional (integrated) density of states for represen-
tation u.

3. Spectral analysis of ivave functions

2. Local density of states

The impurity-centered local density of single-
particle states belonging to the ath representation is
defined as

The resolution of the defect wave function in Eq.
(9) into Bloch wave functions allows one to deter-
mine which states in the unperturbed host crystal
significantly contribute to synthesizing a given de-
fect wave function. Hence the "percentage of
valence-band (VB) character" of a defect state ~ia I,}
is given by

VB IBZ

100++ ~Ag~ (k)
~ dk, (13)

j k

where d z is the number of vectors in the star of k,
and IBZ indicates that the summation is carried out
over the irreducible Brillouin zone. The quantity
~A,z (k)

~

measures the fraction of the norm of the
defect state ~iaA)contri, buted by the unperturbed
host Bloch function

i
kj). This will be used to iden-

tify special host-band wave functions that have
dominant contributions to defect states.

Since the quasiband wave functions in Eq. (9) are
constructed from Mb hostlike [band-structure (BS)]
bands and M, local quasibands (I.QB), one can fur-
ther decompose the norm of a defect state lian)
into a fraction aris, contributed by the lowest Mb
host wave functions, and a fraction aIQB —1 —aBs
contributed by the M, local quasibands (which ef-
fectively contain the contributions of the next-
highest approximately 10 —10 conduction bands):

Mb IBZ

f [~ (r)]'dr=i= X 2[~1(k)]'d~
j=& k

Ma IBZ

+ g + [A;~ (k)]'dg
j=& k

E. Quantities used for the analysis of results

In this section we define some auxiliary quantities
used to analyze the results of the present calculation.

1. Wave functio-n population analyses

The degree of spatial localization of a state ~i aA),
within the central-cell region (r(R«) is defined
from Eq. (Sc) as

max

q, =yf-
) Gt;(

~

r
~

) (
r dr: gqi; . (11)—

1

iaA, iaA,
QBS +QLQB (14)

Here, the "orbital density localization parameter" q;
is the amount of electronic charge enclosed in a
sphere of radius R„in state

~

iaA, } for each elec-
tron occupying this state (i.e., normalized to 1). The
"percentage of localization" of state ~iaido}is then,

100q;, since q; (1. The value of q; is used to de-
lineate localized defect states from extended states.
Its resolution into angular components qI; in Eq.
(11) provides a measure to the hybridization of this
state. The "percentage of I character" in state ~iaA},
is given as 100qt;/q; . If an a i, t2, or e state was a
pure s, p, or d state, respectively, as often assumed,
then the minority character in qI; would be very
small. As we will see, this is often not the case. No-
tice that a number of qI; components are zero by

a& a&
symmetry, e.g. (suppessing the index i), qi ——q2

e e 1 1 1 2=qp =q
& =qp =qi =q2 =qp =0 for T~ symme-

try. Further, the orthonormality of the representa-
tion in Eq. (Sc) and its single-centered character pre-
cludes ambiguity in the way one partitions a "bond
charge" into its constituent atoms, as there is in a
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If a defect state could have been constructed solely
from the Mb pure-host-crystal-band wave functions,
then a&~ ——1, whereas if the local quasibands are
needed, then a LQq would be sizable. Recall that in
the effective-mass approximation Mb = 1 for donor
state (Mt, ——3 for acceptor states), a its ——1, and
a LQz ——0, and that in tight-binding models
Mb ——8—10 and a~QQ —0.

4. Charge-density population analysis

It will be of interest to us to establish the total
amount of electronic charge in the central-cell re-
gion and its distribution among various I com-
ponents and representations a. We will hence define
Qt to be the electronic charge contribution within
the central-cell region from the 1th component of all
occupied states belonging to the nth representation:

OCC 8
Qt =gN~ f [Gt;(r)] r dr . (15)

~Q = (Q )impurity (Q )vacancy ~ (19a)

properly renormalized by its self-consistent interac-
tions with the host. This requires the definition of
an arbitrary reference state that represents the host
before a substitutional defect is introduced into it.
For this reference state we select the self-consistent

silicon-vacancy system calculated in Ref. 34. We
conceptualize that first one prepares a vacancy and
then drops into it a noninteracting effective impuri-

ty atom that produces an overall electronic distribu-
tion which is identical to that of the interacting sys-
tem. The effective impurity atom may be different
in its electronic structure from the isolated free-
space impurity atom; that is, it may have nonspheri-
cal components in its charge density (even if the
free-space atom is assumed spherical), it may be
compressed, it may have a different orbital configu-
ration, etc. We define the representation occupation
of the effective impurity atom as

We refer to Qt as the "orbital-representation
charge. " This will serve to establish "how p-like all
t2 states are,"or "how much f character exists in all
a ~ states, "etc.

The total charge Qi below the Fermi energy aris-
ing from the various l components in the wave func-
tions will be defined as

(16)

its orbital occupation as

Qt impunty (Ql )vacancy ~

its total net electronic charge as

~Q =(Q )impurity (Q )vacancy ~

(19b)

(19c)

We refer to Qt as the "orbital occupation" and use it
to judge questions such as "to what extent is a
transition-atom impurity in silicon d-like or p-like?"

The distribution of the total central-cell charge
among the various allowed representations will be
given by the "representation occupation" Qa,

which measures the contribution to the central-cell
charge from occupied states belonging to the irredu-
cible representations a&, t2, e, t&. Finally, the total
electronic charge enclosed in the central-cell region
is given by

Q"'=XQ =&Q
I a

(18)

5. The effective impurity atom

Qt, Qt, and Q will include contributions both
from the impurity atom and from the host-crystal
orbitals penetrating the central cell. It is instructive
to define an "effective impurity atom" that best de-
scribes the properties of an "isolated" defect atom

and its charge-density components as

~l(r) ( ~pl )impurity (~pl )vacancy r (19d)

etc. Each of the two terms in Eqs. (19) is calculated
separately in a self-consistent manner. Notice that
since at a large distance from the impurity site the
charge density of both the impurity-containing sys-
tem and the vacancy are equal (to the unperturbed
charge), the effective net charges in Eqs. (19) do not
depend on the radius R„used in the integration [cf.
Eq. (15)], provided R„is large enough. In practice,
the effective charges b,Q(R) do not change past
R & 7.5 a.u. Furthermore, when a large interatomic
separation is used for the host crystal, these charges
reduce to the charge of a free TA. These charges
are different from those used in muffin-tin calcula-
tions, '9 ~' which provide instead Q"' [Eq. (18)],
with a cutoff radius R„[cf.Eq. (15)] equaling the
muffin-tin sphere radius (R=2.22 a.u.). The latter
charge includes significant contributions both from
the impurity atom and from the host orbitals
penetrating the muffin-tin spheres, and are hence
not meaningful "impurity atomic charges. " It often
leads to the conclusion that the impurity atom is
negatively charged, whereas much of the extra
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&

states.
The strong valence-electron density gradient within
the central cell distinguishes TA impurities from all
s-p impurities that have a reasonably slowly varying
central-cell charge density. "' '

Figure 2 depicts the angular momentum com-
ponents dpi(

~

r
~

) [Eq. (10a)] of the charge-density
fluctuations. First, the spherical (l= 0) components
are shown [Fig. 2(a)], indicating a monotonic de-

crease in the amplitude as the atomic number of the
impurity decreases and a very strong localization in
the inner central-cell region. Compared with the
density fluctuation for a silicon vacancy [Fig. 2(c)]
having an overall dimension of 1—2 host bond
lengths, the density fluctuation associated with a 3d
impurity has a much smaller characteristic radius,
i.e., of the order of an atomic core size. Second, we

display in Fig. 2(b), on an expanded scale, the dif-
ferent I components of bp(r) for the Si:Cu system
(typical of all other 3d impurities). The spherical
(l=0}component dominates, whereas the nonspheri-
cal l=3 and 4 ("non-muffin-tin") terms are —100
times smaller. The charge density pD(r) of the
defect-containing system, as well as pH(r ) of the un-

perturbed host crystal, is strongly nonspherical and
extended in open-structure covalent systems. The
density fluctuation bp(r), however, is only weakly
anisotropic and localized in the central-cell region,
due to an effective cancellation. This highlights the
reasonableness of a crystal-field expansion [viz. , Eq.
(10)] of the perturbation.

The spherical component bpo(
~

r
~

) of the density
fluctuation possesses the same overall characteristic
form for all substitutional 3d impurities: It has a
positive maximum Ap" ' at r =R &, followed by a
negative minimum hp' ' at R2. The minimum is

charge corresponds to host states having nonzero
amplitude on the impurity site. The quantities in
Eq. (19) will be used to examine charge-
redistribution effects. For instance, a ground-state
Fe atom has a configuration s p d [or ai(et2) in a
Td classification]. When placed substitutionally in a
crystal its effective orbital configuration will change
to b,g, s electrons, b,gr p electrons, and Egd d
electrons, its representation occupation will be
h, g 'b, g'hg 'Eg ', and it will carry a net elec-
tronic charge of Ag"'. These are used to establish
the bonding patterns, ionicity, and electronic rear-
rangements attendant upon impurity formation,

III. RESULTS

A. Charge densities

Figure l(a) shows the self-consistent impurity
charge density pD(r) [first term in Eq. (6)] of a few
substitutional transition-atom impurities in silicon
along the +(111) crystal directions. Figure 1(b)
shows, on an enlarged scale, the tails of pD(r) for
r & 2 a.u. ; the results in this range are similar for all
impurities. It is seen that in the inner central-cell
region [r &1.5 a.u. , Fig. 1(a)] the charge density
resembles an atomic 3d charge density and has a
very large amplitude (the maximum valence charge
density of crystalline silicon is, in the same units,
only &0.1e/cell}. In the outer central-cell region
[2 &r &4.44 a.u. , Fig. 1(b)], on the other hand, the
charge density has dropped by nearly 2 orders of
magnitude and exhibits a strong asymmetric
behavior, characteristic of the host-crystal charge
density. It is constructed mostly from t2+e host

FIG. 1. Self-consistent charge density pD( r ) for some substitutional 3d impurities in silicon in the + (111)crystal direc-
tions. (b) shoves, on an expanded scale, the total charge density (solid line) and the charge density from the a~ states
(dashed-dotted line) in the outer central-cell region. The nearest-neighbor silicon atom is located at r=4.44 a.u. in the
(111)direction.
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the number of impurity electrons, 4&Zg&12, used
to populate the energy levels. A similar behavior
was noted by Dimmock and Hemstreet' 'b' for Cr in
GaAs. As will be demonstrated later [Fig. 11(a)],
individual wave functions associated primarily with
the TA impurity extend well outside the central cell,
yet by Fig. 3 the central cell preserves its electrical
neutrality. This "electronic elasticity" of the central
cell is facilitated by the readjustment of the hostlike
state in response to the external perturbation
b, VDc"'( r ), and will be discussed in some detail in Sec.
III F.

Figure 3 shows that the screening is effective over
a large range of external perturbations and that it
occurs already within a relatively short distance
r &R„.Notice that b(R) is nonmonotonic: Its
maximum occurs at R-R~~, and its value at the
maximum considerably exceeds the asymptotic limit
6(cc)=ZI —Zs; ——bZ". Hence the position of the
first node of Ap(r) at R~~ controls the maximum
available screening charge. The consequences of this
"screening overshoot" will be discussed further in
the next section. As a result of a negative minimum
bp' ', the charge b,(R) decreases for Rz, & r &RNz
and eventually saturates at the value of the point-
charge limit of hZ". In contrast to the behavior of
3d impurities, the silicon vacancy digs a broad struc-
tureless hole in the charge (Fig. 3).

-0.15

-0.20 I l

2 3

Distance {a.u. )

FIG. 2. Angular momentum decomposition of the
charge-density fluctuation hp(r ) [Eq. (10a)] for (a) substi-
tutional impurities in silicon, and (b) for the silicon vacan-
cy (c). Note the change in scale from (a) to (b).

bracketed by two nodes at RN& and R~2. A secon-
dary, smaller positive maximum Ap' ' occurs at R3.
The positions R& and R2 of the major extrema in-
crease monotonically as one moves backward in the
3d series from Zn to Ti: R

&
varies from 0.30 to 0.45

a.u. , and R2 from 2.2 to 2.4 a.u. Following this
trend, hp'" decreases rapidly from 19.3e/cell in
Si:Zn to 2.6e/cell for Si:Cr (reflecting the delocaliza-
tion of the atomiclike 3d orbitals with reducing
atomic number). It is instructive to examine the
amount of charge enclosed within a sphere
of a given radius. Figure 3 depicts the total elec-
tronic charge b, (R)= bp(r )dr in a sphere of ra-

. 0
dius R from the origin. The remarkable result of
this figure is that within R -4 a.u. the central cell is
electrically neutral [i.e., h(R„):—hZ"] regardless of

10—

O
6

K
Cl

4
O
Ql

2
0

h(R)= J' AP(r) dr

A(~ )=Z, -Za,

ZA

Cu

Ni

Fe

Mn

cr

~Vacancy
I I I

3 4 5

Distance R {a.u. )

FIG. 3. Total charge h(R) enclosed within a sphere of
radius R from the impurity for substitutional 3d TA in
silicon and for the silicon vacancy. The nearest-neighbor
Si atom is located at R =4.44 a.u.
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FIG. 4. External pseudopotential perturbation r 6 VL,"'(r) [Eq. (5a)] for I.=0, 1, and 2 and the angular momentum com-

ponents of the self-consistent screening r b, V~"'(r) [Eq. (10b)] for Si:Ni and Si:Fe. The asymptotic point-ion limits are in-
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and

lim [r6Vi'"'(r) ]—:—5Z'
P~ eo

lim [rh Vo"(r}]—:b,Z" .

The pseudopotential perturbation (upper panels) is
spherically symmetric and includes three nonlocal
components: L=O, denoted by a solid line (experi-
enced by s states); L= 1, denoted by a dashed line
(experienced by p states), and L=2, denoted by a
dotted line (experienced by d, f, and g states). The
difference between the three curves reflects the an-
gular nonlocality of the impurity atomic pseudopo-
tential. Note that since the valence 3d orbital has no
core state of the same symmetry (i.e., 2d), no pseu-
dopotential cancellation occurs for L =2. This pseu-
dopotential equals the (unpseudized) full all-electron
Kohn-Sham potential, with

lim (ru,",~') = Z~—
1'~ oo

(a value indicated in Figs. 4 and 5 next to the L=2
line). The order of the b, V'"'(r) curves for different
elements reflects their atomic properties. As the
atomic number Z~ increases in going from Cr to
Mn, Fe, and Ni, the minima in EVL,"'(r) deepen and
the crossing points RL 0 at which EVI"'(RL, ) =0 de-
crease, reflecting the increase of the atomic-orbital
ionization energies and atomic radius through the
series. Since the atomic 4s, 4p, and 3d electrons are
considered "active" valence electrons, all substitu-
tional 3d elements (even Zn) constitute attractive im-
purities in silicon, as can be seen from the mostly
negative values of b VI"'(r) in Figs. 4 and 5.

The overall characteristics of 6Vl"'(r) suggest for
the high-Z p limit the existence of deep-lying and lo-
calized, predominantly d-like states, separated from
the higher-energy s-p —like states that will be consid-
erably more delocalized. Moving towards lower Zp
values and hence to less attractive b, V2"'(r), the
wave function of the deep d state will become more
extended, and p-d hybridization will set in as the
delocalized d state starts to overlap the domain of
hV~"'(r}. These expectations are borne out by our
detailed calculations.

B. Effective potentials

Figures 4 and 5 depict the self-consistent screen-
ing perturbation b, V'"( r ) [Eqs. (10b)], together with
the input external potential perturbation b, VI'"' [Eq.
(5a)] that produces it. Actually plotted are the prod-
ucts r b VI'"'(r) and r b, VI"'(r), which correspond to
r-dependent effective charges with point-ion limits
of

The lower panels in Figs. 4 and 5 show the angu-
lar momentum components of the self-consistent
screening perturbation b, V~"'(

~

r
~

) [Eq. (10b)]. The
spherical l=O part is dominant, with the nonspheri-
cal contributions (1=3,4) being 2 orders of magni-
tude smaller (cf. Fig. 4). This behavior, together
with the similar nature of the charge-density pertur-
bation depicted in Fig. 2, highlights the physical
basis for our choice of an angular momentum repre-
sentation for bp(r) and EV(r) [Eqs. (10)]. It shows
that the angular series converges rapidly (i.e., bp
and hV are essentially isotropic objects) and that
variational flexibility is needed predominantly for
the description of the nontrivial radial variations in
the scalar coefficients bpI and & V~"'.

The characteristic feature of the dominant spheri-
cal r b Vo"(r) screening component is that it always
overshoots its asymptotic point-ion limit of AZ" at
the distance r =A&& corresponding to ihe first node
in the density fluctuation (cf. Figs. 2 and 3). This
overscreening at r =Rz& is a direct consequence of
the node in hpo(

~

r
~

). The degree of overscreening
varies from one impurity to the other, scaling with
the charge overshoot of Fig. 3. Since the degree of
overscreening cannot be Inodeled intuitively, non-
self-consistent calculations [which have to provide a
guess for b, V"'(r )] are problematic.

The overscreening effect causes b, V"'(r) to ap-
proach its point-ion limit hZ' somewhat slower
than the external potential perturbation b, V'"'(r) ap-

0„2

0.0

-0.2

& -0.4

-0.6

-0.8

0 ] 28 L L

1.9 2.0 3.0
Distance (a.u.)

FIG. 6. r-multiplied total effective potential r hV''(r)
for Si:Ni, Si:Cr, and Si:Ti in the outer central cell. Notice
the reversal of the ordering of r b V' (r) in the outer
central-cell region (r & 2 a.u. ) relative to their order in the
inner central ceH ( &1.7 a.u.). The r —+0 limits of
rhVL —21 p(r) are indicated at the left. The nearest-
neighbor Si atom is at r =4.44 a.u.
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ingpe urt rbations for Si:Ni and Si:Fe.

mit of —Az'. Consequent-Proaches its point-ion imi o
y, the total screened perturbation
=6V"'( r )+6V'"'( r ) of Eq. (4) is positiue for

n ed scaleI' )RN. igurCF' 6 displays on an expan ed
V' (r) in the outer central cell. For . 0 & rr hV r in

nt of the seu-
do otential perturbation), the net e ec peffective potentialopo en i
is ncgativc,tive due to t e omth dominance of the attractive

'"'r) term (compareAV'"'(r) over the repulsive b, V', r erm
1 in Fi s. 4 and S and their

sum for r (1.5 a.u. in Fig. 6). Hence the e ective
b, V' (r) delineates the centralscreened perturbation r e

'

cell into two distinct regoins, w ere..ere R orms t e
oint. In the inner central cell

8') the effective potential is attrac iv
and its depth follows the ordering of the ba parc scu-

6V AV g AV g AV etc. Th
3d wave functions of the free T, as we
wave functions of localized TA impurity states in

'1' largely confined to this region. Hencesilicon, are arge
theor ero e ed f effective potentials also re ec s

o free transitionder of the 3d ionization energies Ip of free
I I &Ic, &IT;), as well as the order of

h t central cell the overscreening e ect
causes the effective perturbation to be positive, wi
a reversed or er od f effective perturbations

b, V '&hV ' Fig 6). This reflects(~V "»V '&
the abiity ob'1' f the electron-rich impurities ( n

screen more e ective y eff 1 their potential relative to t e
electron-poor impurities (Ti) as shown in Fig.

'b'1' that defect energy levels e;(Z)i) associatedpossi i ity a e
with localized wave functions e.g.,

'

exhibit an o posite ordering, with atomic numbers
Zp, than defect levels associated with extended wave
functions (e.g., excited states of the same impurities .
We suspect this series reversal to also occur or im-

f m other parts of the Periodic Table as
discussed in a recent publica 'o .
has been o ten assumeb ft ssumed both in effective-mass and
in tig t- &.n ing

'
h -b'. d' calculations that the defect bin-

as I de-ies are monotonically decreasing as p e-ing energies are
creases (or, equivalently, with the depth o e pf the seu-

'
1 th the electronegativity differ-

ence ). The present calculation indicates that this is
the case ony i a o1 f 11 f the defect wave functions in
question samp e1 the potential in the inner centra
cell, but may not be so otherwise.

Figure 7 isp ays1 the decomposition of the screen-
s, V"'(r) into its direct Coulombing perturbation

V"' i E[V" in Eq. (3)] and exchange-correlation V in q.
t A expected the direct Coulomb

contribution has the opposite sign to the exchange-
correlation term, ob th for the spherical (1=0) and
the lowest nonspherical (1=3) component i.e., t .e
screened Coulomb interactions are weaker than the
bare Coulomb interactions). In the spherical screen-
in, the direct Coulomb term is clearly dominant
(h, VO' represents only 10—15% of it); in the non-

the exchange-correlation screen-
able to the direct Coulomb term.
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C. Self-consistent dielectric function

One can use the calculation of the self-consistent
response hV""(r) to the applied external perturba-
tion b, V'"'(r) to deduce an effective self-consistent
dielectric function of the system:

b VL"'(r)

eI L (r)
=AVI'"'(r)+AVI"'(r) =hV' (r) .

(20)

Here

et&�

(r) measures the spherical (1=0) and non-
spherical (l&0) components of the effective dielec-
tric screening responding to the I.th nonlocal com-
ponent of the external perturation.

Figure 8 displays the leading spherical term
ec L (r) in the inverse self-consistent dielectric func-
tion for I.=0, l, and 2 in Si:Fe. The results for oth-
er 3d impurities have similar characteristics. There
are three notable features of @&I'(r). First, the
screening is seen to be extremely efficient: it occurs
within a screening length characteristic of an atomic
dimension (or the radius Rz& of the first node in the
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FIG. 8. Spherical inverse dielectric function for the
L =0, 1, and 2 nonlocal pseudopotential perturbations cal-
culated self-consistently for Si:Fe [Eq. (20}]. Ro and R&
denote the pseudopotential turning points at which
6Vp" (Rp) =0 and 6Vj"'(R

& ) =0. Notice the extremely
effective screening that takes place within an atomic ra-
dius.

t2 Yhrelholcl— —e Threihoici

Ni, co Fe ~Mn Cr YI

~ ~ ~ ~ ~ 0
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ r r ~ ~ \ r' ~ 0 ~

tg Oanylini Hybrid
'

~ ~

'le Oe

r~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ~ ~ ~ ~ ~ rW o~v ~ yv r ~ ~ ~ ~ a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r ~ ~ ~ ~ ~ ~ r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r ~ ~ ~ ~ ~ ~r ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ r ~ ~ r ~ ~ ~ r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~J r ~ ~ ~ ~ r ~ ~ ~ ~ ~ ~ \ ~ ~ ~ ~ r ~ ~ ~ ~

4~':.
~ ~ ~ ~ ~ ~ ~ ~ ~ rgr ~ ~ ~wo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ J rr ~ ~ ~ ~ ~ ~ ~ r~a ~ ~ ~ ~ ~ ~ ~ ~ ~ e f I r~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \ \ ~ ~ ~ ~ ~ ~ ~ ~ r ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ I ~

~ ~ ~ ~ ~ ~ r ~ ~ ' ~ ~ ~ ~ ~ ~ ~ ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ . . . . .4e . .

o

QlIt -6-
Lji

-12-
Vacancy Zn

4

Ni Co
I 4

Fe Mn
4

FIG. 9. Calculated defect energy levels for neutral substitutional unrelaxed transition-atom impurities in silicon. The
zero of energy is set at the VB maximum. For resonances, the center-of-gravity energy is shown. The broad a&(2) an

a1(3) resonances showing little variatlon with the impu6ty, are denoted as crossed-hashed areas. For comparison we
show on the left the silicon vacancy levels (Ref. 1'7). Notice that the t2 first disappears into the conduction band at
Si:Co ("t2 threshold" ), whereas the e " first appears in the gap region in Si:Mn ("e threshold" ). The numbers 4e, 3e 2e,
etc. indicate the number of electrons occupying states above the VBM for the ground-state neutral impurities.
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density fluctuation; cf. Fig. 2). This screening
length is considerably shorter than that expected
from a point-ion Thomas-Fermi model, for a sil-
icon vacancy, or from the bulk linear screening
used in effective-mass calculations. Second, it is
seen that although the screening of the s and p per-
turbations are similar (the small-r divergencies result
from the occurrence of turning points at Ro and & i
for the I.=O and L= 1 pseudopotentials; cf. Figs. 4
and 5), the screening of the d perturbation is both
smoother and more effective. Third, a significant
overscreening (e '&0) corresponding to the charge
overshoot (cf. Fig. 3) occurs in the bond region, with
a maximum around the bond-center position (r -2.2
a.u.).

We find that the various features of a~ &'(r) (e.g.,
position of nodes and negative minima) vary
smoothly and monotonically with the atomic num-
ber of the impurity atom. This has an important
practical consequence for our calculation: Having
obtained sI I'(r) for two impurity systems, one can
use Eq. (20) to calculate a guess for a self-consistent
screening bV'"(r) of other impurities from their
bVI'"'(r,) It tu. rns out that this is usually an excel-
lent guess, and we need only a few self-consistent
iterations to refine it to the level of our imposed
self-consistency tolerance.

D. Defect energy levels

The defect energy levels introduced by neutral
substitutional 3d impurities in silicon are depicted in
Fig. 9. For broad tz and e resonance states we

display graphically only their centers of gravity.
Energies corresponding to various impurities are
connected by a line to guide the eye. The notation
4e, 3e, etc., denotes the gap-level occupation for the
neutral state of the impurity. For comparison, we
also show on the left-hand side the results for an un-

relaxed silicon vacancy obtained previously. The
defect energies, orbital density localization parame-
ters q; and qP [Eq. (11)J, and percentage of valence-
band character [Eq. (12)] are summarized in Tables
II and III. %'hen a defect-induced resonance has
more than one peak, we give in these Tables the
values corresponding to the most localized levels.
We present only the results for the defect levels hav-

ing q; larger than 0.05e. Next, we will discuss the
defect levels in increasing order of their binding en-

ergy.

The t~ dangling-bond hybrid

The highest-energy localized defect level is the t2
dangling-bond hybrid (DBH) appearing in Si:Zn just

TABLE II. Energies, orbital-density localization parameters q [Eq. (11)],and their angular momentum components qP,
and percentage of valence-band character [Eq. (13)J for the tz dangling-bond hybrids and the ti crystal-field resonances.

Impurity
atom (eV)

t2

(%)

f2

(%)
Total q

2

(e)

Average
VB

content
(%)

E

(eV)

f2

(%)

]CFR
2

f2

(%)

f2Total q
2

(e)

Average
VB

content
(%)

Zn

CU

Co

Fe

Mn

Cr

0.1 77 22

0.9 71 27

1.16 62 37

1.4 50 49

1.52 52 49

1 58 55 45

1.60
1.84
1.84

43
60
60

0.57 76 22

0.27

0.38

0.45

0.53

0.50

0.42

0.20
0.22
0.22

96

77.5

14
14
14

~

j
—11.9

i!—11.8
Ij —5.7

—2.4
2 2

I, —20

—1.24
—0.84

0.67
! —O.S5

—0.84
—0.67

I, —o.ss
—0.88

!

—0.68
I, —Oss

—0.89

I. —O.56

1.3
0.0
2.0
0.6

38
0.5
8

11,2
0.6
9.0
0.8

10.0
9
0.8

11
7.8
1.2

12
10.6
0.0

16

98 Ij

100(j
95 Ij

98 jj

57

97!
9O.!

89~[

90
98
87
90
98
86
92

97!
87.!
88 j

81

0.90

0.80

0.70

0.62

0.55

0.53

0.31

50

78
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TABLE III. Energies, orbital-density localization parameters q [Eq. (11)], and their
angular momentum components qI, and percentage of valence-band character for the e, t2,
and a i(1) crystal-field resonances.

Impurity
atom (eV) (%)

Average
VB

Total q' content
(&) (%)

ag(1)

q,'1 Total q'1
(eV) (%) (e)

Average
VB

content
(%)

Zn —11.6 100 0.99 —2.1 96 0.23 93

CU —5.15 100 0.94 8.4 —1.7 94 0.35

Ni

—2.1
—1.9
—1.6

94
100
100

0.32
0.32
0.27

7.3 —1.5 97 0.38 85

Co 98 088 0.38 82

—0.28 99 0.84 14 —1.4 95 0.39

Mn 0.10 100 0.82

0.22 99 0.78

—1.3 97

—1.3 95

0.41

0.41

79

1.0
1.3

100
100

0.41
0.32

—1.4 95 0.38 82

above the valence-band maximum (VBM) and in-
creasing in energy as one moves backwards through
the 3d series. It first disappears into the conduction
band for Si:Co ("t2 threshold" in Fig. 9), continues
to rise smoothly, and eventually saturates inside the
conduction band at an energy a=Eve+1.6 eV as
one reaches the Ti end of the 3d series. This level is
not "pinned" to the silicon-vacancy gap level
(e=Evs+0.7 eV); it moves smoothly from the
valence-band maximum into the conduction band.
Table II shows that at the Zn end of the series the
dangling-bond hybrid is made predominantly of
valence-band states (96%), whereas at the Ti end the
level becomes conduction-band-like (65%).

Figure 10 shows the decomposition of the t2
wave function into its angular-momentum com-

ponents Gt '(
~

r
~

) [Eq. (Sc)] for the first two
symmetry-allowed terms l =1 and 2. For compar-
ison, a partial wave-function resolution is also given
for the silicon vacancy (upper left panel in Fig. 10).
The significant fingerprint feature of
the t2 state for all transition-atom impurities in
silicon is a strongly localized atomiclike l =2 com-
ponent, which has a node in the inner central-cell re-
gion, and an opposite sign relative to the l =1 wave-
function component. This behavior is distinctly dif-
ferent from that observed in the silicon-vacancy
dangling-bond wave function, which has a delocal-

ized l =2 component with a node only outside the
central-cell region, and the same sign as the l =1
wave-function component in the inner region. As
one moves backward from the Zn end to the low-Z
limit of the 3d series, the node moves toward the
central-cell boundary. Nothing special happens to
the energy of this state, until the node of the I =2
component extends into the central-cell boundary
(Cr and Ti), at which point e[tz ] saturates This.
saturation indicates a confinement of the DBH level
to a narrow energy range by the repulsive effect of
two groups of levels, above and below in energy,
having the same tz symmetry (the "avoided cross-
ing" principle). The / = 1 component of the DBH is
qualitatively characteristic of a hostlike dangling
bond: it is extended, featureless, and has a node out-
side the central cell. However, a significant amount
of impuritylike character is hybridized into the
DBH state via the l=2 components (hence the
name dangling-bond hybrid).

The large l =2 content of the t2 wave function
(cf. Fig. 10 and Table II) is an important key to
understanding the variation of the defect levels with
atomic number (Fig. 9). Recall that the effective
perturbation 5V' (r) (cf Fig. 6) ha. s two distinct re-
gions: It is attractive in the inner central cell with
increased attractiveness as Z increases, and it is
repulsive in the outer central cell with reduced
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repulsiveness as Z decreases. The energy of the
more localized defect levels (as well as the 31 energy
of the free atoms) is controlled by the short-r
behavior (r (2 a.u. ) simply because most of the
wave-function and potential amplitudes are confined
there [cf. the (r )3d values for TA. in Table IV (Ref.
43) and the 1=2 components of the impurity wave
functions in Fig. 10]. As Z increases, both the
atomic 3d orbitals and the d portion of the defect
wave functions become more localized. Hence the
positive kinetic-energy contribution to the orbital
energy e; increases with Z. The faster decrease in

gs I t 1 I I l I I l~
0 1 2 3 4 5 60 t 2 3 4 5 6

Distance (a.u.)

FIQ. 10. Angular momentum components G~ (
~

r
~

)

[Eq. (Scl] for the tz dangling-bond-hybrid wave functions
of substitutional 3d impurities in silicon, and the silicon
vacancy. Note the various scale factors for the different l
components.

the negative and larger potential-energy contribution
causes the well-known increase in binding energy

of atomic 3d orbitals with increasing Z (Table IV).
The same behavior occurs for the 3d impurities
whose binding energy (relative to the VBM) in-

creases with increasing Z. The binding energies do
not follow the (reversed) order and the magnitudes
of b, V' (r) in the outer central-cell region simply be-

cause the overlap of the wave function and AV' (r)
is far larger in the inner central-cell region.

Notice that the energy of the vacancy t2 levelDBH

is lower than that of the impurity atoms lighter than
Co (Fig. 9) despite the fact that the vacancy poten-
tial is more repulsive than the impurity potential.
The reason for the absence of pinning of the impuri-

ty levels by the vacancy level is that whereas the
large and localized I =2 components of the impurity
wave functions have a large positive kinetic contri-
bution to e; (including the centrifugal term), the
smaller and diffused l =2 components of the vacan-

cy wave function come with a smaller kinetic term.

Thts effect ts mtssed by ttght-btndtng cajcuiattons.
The amount of p-d hybridization in the DBH is

shown in Fig. 11, where the percentage of p and d
charact«[qt; tn Eq. (11)] is depicted across the 3d
series. The DBH begins at Si:Zn as a predominantly

p state (coupling with p-like valence-band states, cf.
Table II). It reaches a 50%—50% p-d character
near the center of the 3d series, after which the p
character increases a little on account of the renewed
availability of nearby p-like host states (this time,
from the conduction bands). The large extent of p-d
hybridization found near the Fermi energy is not en-
tirely surprising; it is often found in inorganic chem-
istry of transition-metal tetrahedral coordination
co~pounds [e.g., 25% p character 4 in CuC142

50%%uo in Culq 20—30%%uo in the organic complex
copper (a,a'-Br) dipyrromethene ]. Note that a tz
level such as the DBH can by no means be con-
sidered "p like. " Figure 11(a) shows the percentage
of localization of the DBH within the central cell.
The level reaches its maximum localization for Fe.
However, still about 50% of the wave function re-
sides outside the central-cell region. Despite this,
the central-cell region remains remarkably neutral
(Fig. 3). The "electronic elasticity" effect leading to
this remarkable behavior will be discussed in Sec.
IIIF.

T'&e e and t2 crystal field resonances

Moving in Fig. 9 to more negative energies, one
observes a group of two defect levels, resonating
within the host valence-band continuum, denoted as
the e and t2 crystal-field resonances (CFR). The
t2" level is systematically below the e level. At
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TABLE IV. Summary of calculated ground-state one-electron atomic energy levels in eV.
The results of the local density (LD) and Hartree-Fock formalisms (Ref. 43) (HF) are shown.
The typical size of the atomic d shell is given by the orbital moment (r )3d in atomic units.
Although the LD results for energies are consistently below the HF results, the two calcula-
tions produce nearly parallel trends.

Atom Configuration
LD (a„=1)

P
—E'd

HF

Zn
Cu
Ni
Co
Fe
Mn
Cr
V
T1
Si

2d 10

1d 10

s'd'
s d
s d
s'd'
s'd'
s d
S2d2

$2@2

7.38
5.44
6.95
6.73
6.50
6.26
4.60
5.73
5.43

12.70

1.90
1.03
1.98
2.01
2.04
2.05
1.24
2.06
2.04
5.6

16.24
9.22

14.33
13.34
12.33
11.27
5.64
9.03
7.82

0.85
0.95
0.93
0.98
1.04
1.10
1.31
1.28
1.40

7.96
6.47
7.52
7.27
7.02
6.74
6.04
6.27
6.00

14.69

21.29
13.35
19.23
18.38
17.60
17.38
10.16
13.86
11.99

—ep ——8. 1

the Zn end of the 3d series, these levels occur near
the bottom of the valence band and have a small
crystal-field splitting. Moving toward the Ti end of
the series, the levels first rise sharply toward the
VBM. Then the t 2" level saturates at
e=Evn —(0.—9—0.6) eV inside the valence band,
whereas the energy of the e " level continues to
rise, first penetrating the band gap for Si:Mn (denot-
ed "e threshold" in Fig. 9). It then continues to rise
smoothly in the gap region as one moves toward Ti.
This movement of the defect levels to higher ener-
gies directly reflects the reduced attractiveness of
the effective perturbation in the inner central-cell re-
gion (cf. Figs. 4 and 5) with decreasing atomic num-

ber, as discussed previously for the t2 levels.
Table III indicates that the e " is spectrally

composed almost exclusively from conduction-band

states. However, the t2" state begins in Si:Zn with
50% valence-band character, and contrary to the
t2 state, it acquires more valence-band character
as one moves toward the Ti end of the 3d series
(even though its energy approaches the conduction
bands). Both the e and the t2 crystal-field reso-
nances are very much atomiclike in the central cell.
This is illustrated in Fig. 12 which depicts the e "
wave function along the (110) crystal direction
(pointing toward the next-nearest neighbors), and
the ti" in the (111)crystal direction (pointing to-
ward the nearest neighbors). The arrows in Fig.
12(a) indicate the distance R, from the origin at
which the e " wave function attains 1/e of its
maximum value. These R~ values are similar to the
corresponding free-atom values. Considering their
orbital momentum content, the e " is essentially a

t~ Dangling-Bn
Hpblld
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FIG. 11. (a) Variations in percentage of localization [q; of Eq. (11]and energy of the danghng-bond-hybrid level of TA
in silicon (relative to the VB maximum). Notice that the DBH energy level is not pinned in the bandgap. (b) Variations in
percentage of p and d character [qi; of Eq. (11)]in the dangling-bond-hybrid wave function.
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100% d state, whereas the t2"" is 80—100% d-like.
Both crystal-field resonances commence at the Si:Zn
end as very localized states (percentage of localiza-
tion, 90—100%). In contrast to the DBH, they
delocalize as one progresses to the Si:Ti end of the
series (30%%uo localization). We describe these states
as crystal-field pairs since at the Si:Zn limit, they
are essentially pure atomic d states, localized entire-
ly within the central-cell region but with a (small)
crystal-field splitting of the fivefold-degenerate 3d
level into a threefold and twofold t2 and e levels,
respectively. As seen in Fig. 9 and Tables II and III,
the e-t2 one-electron crystal-field splitting is only
-0.1 eV for Si:Zn, and it increases as one moves
backward in the 3d series reaching values of 1 and
1.7 eV for Si:Cr and Si:Ti, respectively.

Having observed the trends in the centers of grav-
ity of the various resonances, we now turn to exam-
ine their detailed energy distributions. Figure 13
shows the impurity-centered local density of states

[Eq. (12)] for the t2 [Fig. 13(a)] and e [Fig. 13(b)] de-
fect levels. One can see that both e and t2 crystal-
field resonances are energetically narrow when they
are close to the valence-band minimum (having a
low hostlike t2 and e density of states available for
hybridization). As the resonances move to the
valence-band center, they broaden as more host
states of the appropriate symmetry and energy are
available for hybridization. The different hybridiza-
tion patterns of the e and t2 resonances are related to
their different angular symmetries. By symmetry,
e-like states are composed of only I =2,4, . . . com-
ponents, whereas t2-like states have I =1, as well as
I =2,3,4, . . . components. The Kubic harmonic
Ei(r ) associated with the major l component of the
e states [cf. Eq. (8c)] is zero in the crystal direction
(111)pointing toward the nearest ligand atoms. It
is nonzero in the (110) direction, pointing to the
next-nearest ligand atoms. On the other hand, the
leading Kubic harmonic associated with a t2 state
(I =1) is nonvanishing already for the directions
pointing toward the nearest-neighboring ligand
atoms. Hence, whereas the t2 orbitals form o bonds
with the nearest neighbors, the e orbitals can form
only 1r bonds with them (and weak o bonds with the
next-nearest neighbors). Since the e " orbital can
couple strongly only with next-nearest-neighboring
host atoms, it remains only weakly hybridized (cf.
the high qd values in Table III) and appears as a
rather narrow resonance [Fig. 13(b)] throughout the

entire 3d series. On the other hand, the gz" already
couples effectively with its nearest atoms, and shows

t2 t2
pronounced p-d hybridization (cf. q~ and qd values,
Table II). Since the e " does not bond strongly
with the occupied host states, its wave function has
only a small VB content (Table III).

"is

-2I
4

haI
LLI
C

-1Q

-12

L I'

(111) (100) (110)
FIG. 14. Silicon band structure denoting the host

states that contribute most to the t&" wave functions
[Eq. (13)].

Many of the characteristics of the local density of
states can be understood qualitatively from the na-
ture of the host states that couple to the defect state.

The increased width of the tz" [Fig. 13(a)], as well
as its enhanced delocalization and valence-band
character (Table II) as one moves backward in the
3d series from Zn, directly mirrors the availability
of more host states of the appropriate symmetry for
hybridization. For example, Fig. 14 depicts regions
in the band structure of silicon that are found in our
spectral analysis [Eq. (9)] to contribute significantly
to the t2" wave function. Starting with Si:Zn,
which has a very attractive pseudopotential pertur-
bation b, VL"'(r), its t2"" level occurs at —11.7 eV
below the VBM. The spectral analysis indicates that
as much as 49.8%%uo of this wave function is provided
by the lowest silicon host-crystal band at the wave
vector k =(21r /a)0. 4(0 0,1) and energy e i ( k )
= —11.83 eV. Since the host t2 density of states
near this energy is small, the Si:Zn t2" has only a
50% valence-band character (Table II) and a small
resonance width [Fig. 13(a)]. Moving up to Si:Cr,
we see that its t2"" level occurs at about
—(0.5—1.0) eV from the VBM. This region in the
host band structure contains a high t2 density of
states due to the flat topmost valence band extend-
ing along the (111) direction from I 21 „

to L3 „,as
well as in the (110) direction extending from I zz,
towards the E2 „point. We find that the k point
0.4(2m. /a)(1, 1,1) of the topmost valence band
[e4(k)= —1.22 eV) contributes 48% to the should-
er of the Si:Cr t2" state at e[t2]=—1.07 eV,
whereas the k point 0.4(2'/a) (1,1,0) of the same
band [e4(k)= —0.92 eV] contributes 62% to the
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t2" peak at e[t2]=—0.88 eV. The availability of a
high host tq density of states at this region leads to
their substantial mixing into this state. This is re-
flected by the high percentage of valence-band char-
acter for Si:Cr (Table II). These examples illustrate
how the details of the host band structure, together
with the depth of the external perturbation 5VL"'( r ),
control the nature of the defect levels. In sharp con-
trast to effective-mass impurities, the wave func-
tions and energies of the deep Si:TA states are not
controlled by host band-edge states.

There are four notable features in the variation of
the main defect levels t2, tq", and e " with the
impurity atomic number. First, for most impurities
the system sustains either a t2 or an e occu-~ DBH CFR

pied gap state, but not both, in contrast with previ-
ous assumptions. ' (Si:Fe may be a marginal case. )

Second, most TA electrons appear as a valence-band
resonance in t2" and not in the gap, in contrast to
the interstitial case where all the impurity valence
electrons appear in the gap levels. ' Third, Mn
forms a demarcation point in the 3d series, delineat-

ing the lighter impurities (with an impuritylike gap
state ec" ) from the heavier impurities (with a host-
like gap state tz ). Fourth, the gap levels do not
show pinning at the vacancy level, in contrast to the
tight-binding results for s-p impurities. Instead,
the t2 defect levels are confined by the host states
that show a maximum in the t2 density of states.
These occur at -EvB —1 eV and -ECB+2.7 eV.
Hence, it is the Phillips gap (-4.8 eV), not the
fundamental optical gap (1.1 eV) that controls these
impurity levels.

3. The ag resonances

Figure 9 shows that there are three major a& reso-
nances in the system, denoted a&(1), a~(2), and
a&(3). The a~(1) resonance is relatively sharp and
starts in Si:Zn at EvB —2. 1 eV, increasing in energy
as we approach the Si:Ti end of the series towards
EvB —1.3 eV. It is almost a pure s state constructed
predominantly from valence-band states, and has a
localization parameter of -40% (cf. Table III).
The lower resonances, a~(2) around —4 eV and
a

~ (3) around —(9.S—7.S) eV, are rather broad and

weak (q '=O. OSe per state). The lowest a~(3) reso-
nance is an s fhybrid with its wave f-unction peak-
ing past the nearest-neighbor Si atoms, whereas
a

&
(2) has its wave function peaking within the

central-cell boundaries. These resonances are very
much hostlike and similar in character to the a&

states of the silicon vacancy. This can be under-
stood qualitatively by noting that since the atomic s
energy of a TA is considerably less negative than the
corresponding value for Si (cf. Table IV), their bond-
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ing combination is predominantly Si-like and resides
in the valence band, whereas the antibonding TA-
like states appear at much higher energies and do
not contribute to the occupied states.

This phenomena is very well known in the chem-
istry of transition-atom compounds: when a TA
forms a binary compound with an element X having
a lower-lying valence s orbital (e.g., X =Cl in CuCl),
the I ~ „bottom of the occupied valence band is
composed predominantly of the X-atom s orbitals
(ap, +bp, with a »b), whereas the antibonding
counterpart of this state is the empty conduction-
band level I"

~, composed primarily of the TA s orbi-
tals (cP, —dP, , with d »c). Note, however, that
although anchored at the TA site, this wave func-
tion may have most of its amplitude on the anion. "
Hence, the TA s orbital gets effectively depopulated
relative to its atomic ground state. The extent of
this depopulation increases with the increased
separation in the atomic s energies of the two atoms.
Considering the trends in the atomic energies given
in Table IV, one expects the effective s occupation
of a TA in silicon to decrease as Z decreases. The
a~ valence-band resonances are accordingly mostly
hostlike, whereas the atomic 4s state of the TA is
expected to be mostly empty (diffused throughout
the conduction band). This will be demonstrated in
Sec. III G and Fig. 17.

E. Population analysis

Having discussed the individual defect energy lev-

els in the system, we turn to analyzing the global
charge distribution with the use of the population
analysis defined in Sec. IIE4. Tables V and VI
summarize the calculated orbital-representation Qt,
orbital Qt, representation Q charges, and the total
charge Q"' for the Si:TA system, and the Si vacan-

cy.
Inspection of these Tables reveals a number of

chemical trends. First, the total a& charge is essen-
tially s-like (93% in Zn to 90% in Cr and Ti), the e
charge is essentially d-like (98%%uo in Zn to 85% in
Ti), and the t& charge is f-like (-85%), whereas the
t2 charge is a p-d hybrid (about 33—66%). Second,
the t& and a~ representation charges Q stay con-
stant throughout the series, and are close to the cor-
responding values for the silicon vacancy. This is
consistent with the fact that there are no localized t

&

defect levels for the Si:TA system, and that the a~
resonances have their origin in the host crystal and
are similar to the corresponding vacancy resonances
subjected to a weakly attractive L =0 pseudopoten-
tial perturbation 6 VL"' 0( r ). Third, the e representa-
tion charges stay constant from Zn to Fe, but once

past Fe they drop linearly with Z. This reflects the
absence of an e gap state from Zn to Fe and the gra-
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dual decrease in occupation of the e gap level in go-
ing from Mn (three e " electrons) to Ti (zero e "R

electrons). On the other hand, the t2 representation

charges decrease from Zn to Co and stay constant
afterwards. This reflects the emptying of the t2

gap states in going from Zn (four tz electrons) to
Co (no t2 electrons), and the unoccupied t2

DBH

levels past Co. Fourth, the total central-cell charge
Q"' corresponds to approximately six vacancy elec-
trons (-1.5 per dangling bond, lingering into the
central-cell volume) plus Ztt impurity valence elec-
trons (e.g., 6+ 12 for Si:Zn, 6+ 8 for Si:Fe, and
6+4 for Si:Ti). Inside the central-cell region, the
impurity atom is hence nearly neutral, as observed
in Sec. IIA.

F. Stability of charged states

It has been known for a long time' ' that
whereas the energy levels of different ionized states
of a free ion span a large energy range, when a non-
transition element exists as an impurity (Si:S, Si:P,
etc.), it can sustain a number of ionized states in a
very narrow energy range, often -0.1 eV. Both
phenomena are understandable. The weak potential
perturbation of an i-p impurity in an s-p host crystal
leads to defect wave functions that extend over
many lattice constants [q; of Eq. (11) is typically
0.01]. Hence, even if the intraatomic Coulomb ener-

gy per electron U is not small, the orbital energy eg p
of this extended orbit varies only slowly with its oc-
cupation number N (proportional to the formal net
charge Q„„).On the other hand, for free atoms the
localized nature of the bound orbitals and the corre-
spondingly large free-atom Coulomb energies U
lead to a rapid variation in the orbital energy with
the amount of electronic charge Q (N) on the atom,

(21)e(N)=eo+ UQ(N) .

E.g., for Mn the ds through d ionization energies

Its (where Its scales with Q as Itt UQ since-
Itt cc e) are 33—.7, 51.2, 72.4, and 95 eV, respective-

ly, leading to U» =20 eV/e. (Indeed, local-density
calculations for atomic ionization d~—+d~ show
that the orbital energies can be fitted by
e =const+ U Q, yielding U =20 eV/e for heavy 3d
elements. ) Surprisingly, however, when a TA exists
as an impurity in a semiconductor, it can sustain in
a narrow energy range a large number of different
charge states despite the fact that the gap level is
highly levelized (e.g., q; =0.82 for Mn; cf. Table III).

Our calculation explains this remarkable behavior
in terms of two related effects: (i) The interaction
with the semiconductor is shown to reduce U3d by 2
orders of magnitude relative to the free-ion values

U3» due to extremely effective nonlinear screening
effects discussed in Sec. IIC. This screening at-

tenuation is larger by an order of magnitude than
that possible by a linear dielectric screening mechan-
ism appropriate for effective-mass impurities. (ii)
Despite the fact that, as in an atom, most of the im-

purity charge is localized in, the central cell
(Q=Z"), this charge is remarkably stable against
variations in the gap-level occupation number N
(proportional to the formal net charge Q„„),leading
to small variations in es,z(N). This unusual elect-
ronic elasticity of thy central-cell region results from
the fact that when the contribution Qs,~(N) of the
gap-level wave function to the centra1-cell charge is
changed by altering N, the valence-band states
respond nonlinearly by undergoing a rehybridization
which changes their contribution Qva(N) in the op-

posite direction. This result agrees with the predic-
tion of Haldane and Anderson based on a solution
of the Anderson Hamiltonian for the semiconduct-
ing Kondo system within the unrestricted Hartree-
Fock approximation. Our calculation, which in-
cludes a realistic description of the host, impurity,
and their interactions, provides a detailed explana-
tion for this effect.

The total charge Q(N) in the central cell due to
the impurity atom alone is calculated as

f
R

CC

0 [pD(r ) pv(r )]d r—,

where we substract the vacancy (V) charge pr(r)
from the defect charge pD(r ) [cf. Eq. (6)] to get the
effective transition-atom charge in the solid for each
value of¹ This central-cell charge [equal to b Q"'
of Eq. (19c) but denoted here for simplicity by
Q(N)] represents the total number of valence elec-
trons that an impurity atom has when it is incor-
porated substitutionally in Si. It depends on the
number of electrons N occupying the gap level. If
N =Np the system as a whole has a zero formal
charge Q„„=O(e.g., No ——3 for Si:Mn; cf. Fig. 9).
We now separate Q (N) into the contribution

Qvs(N) from the occupied valence bands of the per-
turbed system, and the contribution Qs,z(N) from
the gap level alone,

Q (N) =QvB(N)+ Qs,p(N),

where

S~P

Qs,p(N) = gN;q;
i,a

[cf. Eq. (11)]. Before discussing the self-consistently
calculated results for Qvs(N) and Qs,~(N), consider
the prediction of simple models. If the system
would have behaved as in a one-electron rigid-band
model, addition of electrons to the highest occupied
gap level in excess of No would have kept Qvn(N)
constant and increased Qs,~(N) linearly by
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(N Nc)q;, wh—ere q; is the gap-level charge per
electron given by Eq. (11). Similarly, in an
effective-mass donor model, Qvs(N) is conceptual-
ized to remain almost constant as the system is
charged, since ZH of the impurity electrons are used
to "heal" the vacancy site, and the remaining
(Zt"—ZH +N Np ) impurit—y electrons occupy the
extended donor-gap levd. Furthermore, in a non-
self-consistent calculation for a deep impurity,
Qvs(N) would likewise be independent of N, and

Qs»(N) would increase linearly with N Nc. —
Figure 15(a) shows for Si:Mn the variations in

QvB(N) and Qs,„(N)with N, as obtained by per-
forming separate self-consistent calculations for
each value of N. It is seen that whereas Qg, &(N) in-
creases nearly linearly with X, as expected, the
valence-band contribution Qvs(N) decreases with N,
leading to Q(N) that varies with N considerably
slower than Q„„=NNc or Qs,~(N) a—lone. Much
like a pool below a waterfall, as electrons are poured
into the gap level the valence-band states rearrange
themselves so that they leak out of the central ce11 to
partially compensate for the disturbance. This self-
regulating behavior of the system, in response to an
external perturbation, is remarkably analogous to
the homeostasis control mechanisms in biology or to
servomechanisms in machine operations. In such
systems, despite the existence of dynamic perturba-
tions, a stability of operation within a prescribed
range of operating parameters is maintained through

) I 4.0
2.5 3.0 3.5 4.0

Gap-Level Occupation

F&G. 15. (a} Contributions of the gap level Qg, (N) and
the valence band Qva(N) to the central-cell charge Q, as

a function of the gap-level occupation N. (b) Variation in
central-cell charge Q and gap-level energy eg,~ (relative to
the VB maximum) with N.

a (often nonlinear) self-regulating feedback response.
This is possible only in an open thermodynamic sys-
tem such as Si:TA, but not in a closed system such
as an isolated transition atom. In the latter case, the
effect of added electrons must be absorbed by the
atom itself through an increased delocalization of its
wave functions and a rapid change of the ionization
energy with N —Nc ——Q„„.We suspect a similar
self-regulating behavior to occur in many other sys-
tems whenever localized states characterized by
large correlation energies coexist in a similar energy
domain with an itinerant manifold of states with
which it can exchange charge. Surface states and
valence-fluctuation states are probably just a few
possible examples.

In the Si:TA system, almost all Z" electrons are
concentrated in the central cell much like in a free
atom. For example, Table VI shows that in Si:Mn
the central-cell contains

Q(N =3)—= (Q"'); p„„tr—(Q"')„„,„,r=13—6=7

electrons, as for the free-space Mn d s atom. No-
tice further that 2.46e occupy the gap level (3q' of
Table III) and the remaining 4.54e appear as reso-
nances in the VB. However, in sharp contrast to the
behavior of a free atom, the energy es,z(N) of the

gap level in Si:Mn increases only slowly with N [Fig.
15(b)] due to the weak variation in Q(N) facilitated
by the self-regulating mechanism. This effect will

allow the existence of several charged states in a nar-
row energy range; it will hence lead to pinning of the
Fermi energy in the band gap.

Weak variations in es,p(N) are indicative, by Eq.
(21), of weak variations in U„Q. We find that not
only does Q (N) change more slowly than Q„„,but
that U is also reduced compared to its atomic value.
This is already suggested by the hyperscreening evi-
dent from Fig. 8 and discussed in Secs. IIB and
IIC. Our model can directly provide the value of
the effective intra-atomic Coulomb repulsion U„.It
is calculated as the difference between the total ener-

gy E(—/0) of a neutral (0) to singly negative ( —)

transition, and the neutral to singly positive (+)
transition E(+/0). The use of Slater's transition-
state method gives E(—/0) =e[e ' ] and
E(+/0)=e[e ' ], and hence U=E( —/0)—
E(+/0) =0.2 eV (Ref. 51) [depicted in Fig. 15(b)].
It is 2 orders of magnitude smaller than the free-
atom value of U„=20 eV. Whereas values of
U„-0.2 eV are often observed even for s-p defects
in silicon, the attenuation relative to the free-atom
value is normally only 1/ep, where ep=11.4 is the
static dieleetrie constant of the host. The extra at-
tenuation of Ud calculated here directly reAeets the
extremely effective nonlinear screening in the Si:TA
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a different mechanism. From the calculation of
Stoneham and Sangster one expects that the leak-

age of VB charge in response to charging the impur-

ity is accommodated by polarization and distortion
effects. This means that as the force field describing

the various atom-atom interactions in the system

changes with the ionization state of the impurity,
the relaxed energy required to remove a host atom

and replace it by a charged impurity changes as

well. This polarization energy will then offset the

increase in the ionization energy [second term in Eq.
(21)] due to charging. Hence for TA impurities in

ionic host crystals one still expects a self-regulating

behavior leading to the existence of many charged

states in the gap, but the role of covalent p-d dehy-

bridization is now taken up by a rearrangement in

the polarization field.

0.3— —37 G. Effective electronic configuration

0.2 -'-- 3.6
2.5 3.0 3.5 4.0

Gap-Level Occupation

FIG. 16. Analysis of the valence-band contributions

Qva{N) of Si:Mn to the central cell ch-arge in terms of (a)
wave-function representations and (b) orbital contribu-

tions.

system. The small value of Ud obtained here im-
plies a posteriori that a one-electron description of
this system is a reasonably good approximation.

One can further inquire to the chemical origin of
the leakage of valence-band states from the central
cell. Figure 16(a) analyzes QvB(X) in terms of the
wave-function representations [Eq. (19a)] contribut-
ing to it. It is seen that whereas the a& and t]
valence states, much like in a rigid-band model,
remain largely unresponsive to the change in the
gap-level occupation, the e and t2 valence-band wave
functions tend to leak out of the central cell as more
electrons are added to the gap level. A partial-wave
analysis of Qvs(N) depicted in Fig. 16(b) [using Eq.
(19b)] shows that the reduction in the valence-band
contribution to the central-cell charge results from a
strong attenuation of its d content (largely localized
wave functions) accompanied by a smaller increase
in the p content (largely delocalized wave functions),
with almost no response from the s states. We con-
clude that the remarkable feature of the Si:TA sys-
tem is that it resists an ionic charge separation in
response to addition of electrons by having its
valence-band states leak out from the central cell,
and that the system accomplishes this leakage by
undoing its p-d hybridization (i.e., dehybridization).

In ionic host crystals such as alkaline-earth ox-
ides, where p-d hybridization is unimportant, one ex-
pects the self-regulating behavior to be facilitated by

The small Ud values for the Si:TA system have an

interesting implication for the effective electronic
configuration of the impurity atom. Whereas the

large atomic Ud values lead to the we11-known

preference for occupying the 4s subshell before the
3d subshell is completed, small U~ values in the
solid may lead to a population inversion in the
ground state.

Figure 17(a) depicts, with the use of Eq. 19(a), the
manner in which the atomic a ', (et2)" +' or a f(et2)"
ground-state configuration is redistributed when the
atom is placed in the solid. One sees that most of
the atomic a

&
electrons are depleted and redistribut-

ed into the e and t2 representations. The e represen-
tation contains nearly four electrons for Zn through
Fe, then 3, 2, 1, and 0 electrons for Mn, Cr, V, and
Ti, respectively, as the e " moves into the gap and
is progressively emptied (Fig. 9). The decrease in
the occupation from Zn to Fe, for the t2 representa-
tion followed by a constant occupation of approxi-
mately four electrons thereafter, reflects the evacua-
tion of the t z level as it moves through the gap.

Figure 17(b) shows the variations with atomic
number of the effective orbital configuration b QI of
the impurity atom [Eq. (19b)]. The total number of
impurity valence electrons Z& is shown for compar-
ison (dashed line). The interesting result of this fig-
ure is that whenever the 3d subshell can also accom-
modate the s electrons (i.e., to the left of Ni d in the
periodic table), the latter are promoted into it. This
trend is evident in Fig. 17(b) from the approach of
the AQd line to the Zp (dashed) line. Hence,
whereas Fe, Mn, Cr, and Ti have 6, 5, 4, and 2
valence d electrons in the free atom, respectively,
they have about 8, 7, 6, and 4 d electrons, respective-
ly, when placed substitutionally in silicon.
Transition-atom impurities in silicon tend therefore
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to approach a noble-metal configuration. This is in
marked contradiction to the Ludwig-%oodbury
model which hypothesized that for substitutional
3d elements, the 3d electrons will be promoted into
the sp subshell to form a tetrahedral hybrid (i.e.,
d"s ~d" s'p, or d" +'s' —+d" s'p ). We find
that for the completely filled d-subshell elements Zn
and Cu, where the 3d shell cannot accommodate any
s electrons, the latter are being promoted into a p
state, yielding =s p

' d ' for Zn and
so'9p084d9'9z for Cu. The Ni impurity has the in-
termediate occupation of s '

p d; hence Ni in
silicon forms a noble-metal-like compound with a
nearly filled d subshell. This should be contrasted
with the effective electronic configurations deduced
for the bulk elemental metals of s' d, s' d
s "d', and s' d for Cr, Fe, Ni, and Cu, respec-
tively, showing a much higher occupation of the s
orbitals.

A calculation of the charge-density components
5I(r) of the effective impurity atom [Eq. (19c)]
shows them to be very similar to those of a free
atom (in fact, almost indistinguishable on a regular-
size plot) with somewhat compressed tails and a
small nonspherical 53(r) term absent in the free
atom. This analysis suggests a surprisingly simple
chemical picture for the changes that the crystalline
environment exerts on the impurity atom. Whereas
the discrete atomic energy levels of the impurity

atom undergo substantial changes in the solid —they
split and broaden into structured resonances cover-

ing a wide energy range —its final effective charge
density simply corresponds to that of a compressed
atom with its s electrons excited into the p and d
shells.

H. The importance of se1f-consistency

In the defense of computational schemes that are
inherently non-self-consistent, it is often argued that
self-consistency is unimportant (or even incorrect )

for obtaining physically and chemically correct
trends in the defect levels. We will address this is-
sue for transition-atom impurities in silicon.

In the absence of any a priori knowledge of the
impure system, the perturbation potential is often
modeled from the properties of the isolated host and
impurity atoms (e.g., Ref 37). Fig.ure 18 depicts the
spherical screening perturbation D, VO" (

~

r
~

) for
Si:Fe obtained from taking the difference between
the corresponding atomic screening potentials
(dashed line) together with the self-consistent screen-
ing potential from the present calculation (soHd
line). The two curves may appear similar, suggest-
ing at first that the non-self-consistent atomic guess
is physically reasonable. However, this is not the
case. The insert to Figure 18 shows the energy-level
diagram obtained with these two potentials. The
atomic model leads to very large errors in the energy
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FIG. 18. Spherical l =0 component of the screening perturbation obtained for Si:Fe in an atomic model (———), and
in a self-consistent model ( ). The inset compares the defect energy levels and central-cell charges produced by these
two screening potentials.

levels. Compared with the self-consistent result, the
atomic model predicts that the tz level (Eve+1.4
eV in the self-consistent model) will be below the
VBM at Eva —0.3 eV, the e " level (Evq —0.28
eV) will be pulled down to EvB 8eV, and the t—2

CFR

level —(Evq —0.6 eV) will occur at
Evq —(7—8.5)eV. The overattractiveness of the
atomic potential results in a far too high t2 popula-
tion in the central-cell region (Q '=10.94e, instead

of Q '=7.46e). Taking into account all representa-
tions, the central-cell region in the atomic model
contains almost four electrons too many.

The wave functions produced from the input
atomic screening (EV0");„p„tcan be used to calcu-
late an output screening (EVE'")outp„t. Figure 19
shows their deviation

(~~0 )output (~1 0 )input

(a measure to the degree of non-self-consistency) for

both the self-consistent and the atomic input poten-
tials. Whereas the atomic input produces an enor-
mous error (average deviation o of 8500 mRy), the
error in the self-consistent potential is reduced by 3
orders of magnitude. There can be no doubt that a
non-self-consistent atomic guess for the potential is
poor.

I. Comparison with other calculations

Our results agree with the overall trend in defect
energy levels found by Cartling, ' "' and by Hem-
street, who used a small-cluster multiple-scattering
Xa (MSXa) approach. Both cluster and Green*s-
function calculations show that the heavier 3d ele-
ments have a t2 ~ap level, whereas the lighter im-
purities have an e level in the gap. Among the
differences in the results are the following (compare
Fig. 9): The cluster model shows the t2" and ec""
level for Si:Zn to be below the bottom of the valence
band due to the too-narrow valence-band width.
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produced by an atomic model ( ———), compared with

that produced by a self-consistent model ( ) for Si:Fe.
u indicates the energy error between output and input po-
tentials.

For Si:Ni the t2" and e "" levels are about 2 eV
deeper than in the present calculation; for Si:Fe the
e " is found in the gap, whereas in the present cal-
culation it is just below the VBM, etc. If one con-
siders the simplicity of the cluster model, these
discrepancies are very reasonable. In general, the
cluster results seem internally more accurate for the

heavy elements Zn, Cu, Ni, and Co sustaining a
tz gap level (tz energies of 0.26, 0.57, 0.83, and

1.03 eV, respectively, compared with our results of
0.1, 0.57, 0.9, and 1.2 eV) than for the lighter ele-

ments sustaining a e "
gap level (e ""level at 0.7

eV for Si:Cr, compared with our result of 0.2 eV).
This is understandable since the Si+ cluster (where

X is a TA) used in these calculations' " has no Si
atoms as next-nearest neighbors to the impurity
atom. Since the e levels can form o bonds only with

the next-nearest neighbors and none with the nearest
neighbors, its stability is underestimated in a Si+
cluster. From the results of Refs. 20 and 19(a) it ap-
pears that this causes the e gap levels for Co (Ref.
20) and Fe [Ref. 19(a)] to be 0.5 eV too high. In
general, we find that the position of the e " level is

very sensitive to the variational flexibility of the
basis set; incomplete sets (e.g., 135 instead of 219 lo-

cal orbitals) push this level upwards by 0.5 eV.
Similarly, when we zero the potential from a point
between the nearest and next-nearest neighbors and
beyond, the e " level moves up by 0.55 eV. Infor-
mation on wave functions and charge density cannot
be compared since they are not included in the clus-
ter work.

Somewhat more fundamental differences exist in
interpretation of the origin of gap levels. Hem-

street interprets his tz level for the light ele-
ments (e.g., Si:Cr) to be the vacancy dangling-bond
orbital moving down into the valence bands. How-
ever, if one inspects the energy levels and wave func-
tions above the conduction-band minimum (CBM)
in the present calculation, one finds that, in fact, the
vacancylike dangling-bond hybrid has moved up in
energy into the conduction band (cf. Fig. 9), whereas
the tz"" level inside the valence bands is not
dangling-bond-like. [A similar misinterpretation oc-
curred in Ref. 27(b) for impurities in GaAs. ] Also,
Hemstreet interpreted the change in the behavior of
the gap levels from Fe, Cr to Co, Ni, Cu, and Zn as
reflecting a crossing in the ground-state atomic 3d
and 4s energy levels (4s being above 3d in Cr,
whereas the order is being reversed in Fe). In fact,
both local-density and Hartree-Fock calculations
show the atomic 3d energy to be always below the 4s
energy for all 3d elements in their ground states (cf.
Table IV).

A further difference is that the crystal-field split-
ting between t2" and e " tends to be somewhat
smaller in the muffin-tin cluster calculation. 20 This
is in line with the fact that all covalent interactions
are seriously underestimated by a muffin-tin model.
Recall that the band gap that measures the strength
of such bonding-antibonding interactions is zero for
the Si crystal when a muffin-tin potential is used in
a band-structure calculation and is underestimated

by 30% (1.6 eV) in diamond. The -1-Ry non-

spherical part of the central-cell potential,
neglected in muffin-tin calculations, ' ' clearly
makes the host appear more metallic than covalent.
(The only reason that a finite band gap was obtained
at all in Si by Hemstreet and DeLeo et al. ' is that
a finite cluster with hydrogen terminators was used,
where the band edges do not correspond to the infin-
ite crystal band edges. ) The underestimation of the
Si-Si covalent interactions by —1 eV shows up as a
spurious reduction in the TA crystal-field splitting
by -0.5—0.8 eV.

The only other self-consistent calculation for
Si:TA to which we can compare our results is the
Si:Zn calculation by Bernholc eI; al. In this
Green's-function calculation, the Zn atom was

represented by a local empirical pseudopotential. A
t2 state was reported at EvB+0.12 eV, in good
agreement with our results (using a nonlocal spd
pseudopotential) of Evs+0. 1 eV for a 250-atom su-

percell, and Eve+0.08 eV for a 1458-atom super-
cell.

IV. THE LOCAL-DENSITY MODEL AND BEYOND:
ANALYSIS OF EFFECTS LEFT OUT

The calculation reported in this paper was per-
formed consistently within the local-density (LD)
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model for interelectronic interactions to a high de-

gree of internal numerical precision. Whereas the
model describes very well the ground-state proper-
ties associated with the charge distribution, it has a
number of clear deficiencies in describing ionization,
excitation, and activation energies. In this section
we discuss these limitations and present a semiquan-
titative analysis of the leading corrections to it. LD+ II sIc+XR+XEc (24a)

E[e"t ] E—[e" 't +']

=b, +b,II ' +b,X +b,X (23)

and not by the orbital energy difference he„alone.
Likewise, the ionization energy I, from state e is
given as

A. Orbital energies and removal energies

As has been pointed out previously (e.g., Refs. 58
and 49), the energy eigenvalues —e; obtained in

the LD formalism do not correspond to removal en-

ergies for three reasons. First, Koopmans theorem
does not apply to the LD Hamiltonian, i.e., even if
the wave functions are assumed to be unaffected by
the excitation process the difference in total energies
E of the excited and the ground state does not equal
the difference be~; between the final (f) and initial

(i) one-electron energies. The correction due to this
effect for an i~f excitation is b, IIfl~ =IIf II; ',
where II; ' is the self-interaction correction' (SIC)
to orbital

~

i ). (In the Hartree-Fock model,
II; ' =0.) Second, wave functions do relax upon ex-
citation. The relaxation energy is denoted as

EX'; ——Xf —X;, where X;" is the relaxation self
energy of state ~i). It is defined here to include
both the distortion of the excited orbital itself, and
the rearrangement of all other occupied states, lead-

ing to an improved electrostatic screening of the ex-

cited system relative to the ground state. Third, the
homogeneous-electron-gas approximation for the
correlation potential is imperfect in a number of
ways. When LD calculations are corrected for self-

interaction and relaxation effects, a large number of
its predictions become accurate. However, a num-

ber of systematic discrepancies with experiment still
remain, to which we refer collectively as arising
from "extra correlation" (EC) corrections. The
correction to the excitation energy will be denoted

AXf ——Xf —X;, where X;" is the extra correla-
tion self-energy. Among the best known errors due

to EC are the systematic overestimation of the inter-
configurational s-d energies in transition atoms,
the overestimation of the spin-polarization exchange
splitting in metallic Co and Ni (by factors of 1.2 and
2.2, respectively), and the deformed spectral intensi-
ties in the optical-absorption spectra of solids such
as silicon and diamond.

In the absence of lattice distortions, the excitation
energy between two defect states, say between the
e with n electrons and the t2 with m electrons
(the states are denoted hereafter for simplicity as e
and t, respectively), is therefore given as

whereas the electron affinity 7, of the state t is given
as

X = —6" +II'+X +X (24b)

Figure 20 depicts schematically the various terms
for the e tcryst-al-field excitation in the Si:TA sys-

tem. It establishes the notations used in this discus-

sion and the relevant vacuum reference energy.
Our calculation provides be„(Fig.9 and Tables

II and III). The self-interaction correction II; can
be calculated simply in closed form, whereas the
relaxation self-energy X; can be evaluated numeri-

cally in a number of ways. The extra correlation
self-energy X; is extremely complicated to evalu-

ate, and relatively little is known about its energy
dependence and even its sign. We will have to
neglect it in the forthcoming discussion.

Our objective here is to provide a semiquantitative
analysis of the effects produced by the first three
terms on the right-hand side of Eq. (23), as well as
their modification due to spin polarization (Sec.
IV B). A detailed derivation of these quantities was

given in Ref. 58. We now summarize some of the
salient features pertinent to our present problem.
For simplicity of presentation, we discuss the pro-
cess of ionization.

(i) The self-interaction correction II; is positive
and usually larger in magnitude than the negative
relaxation energy X; . Upon ionization to the vac-

uum, the energy of an impurity gap level will hence
move to a more negative value so that its actual ion-

ization energy will be larger than —e;" by the
quantity II; +X;". [Since II; ' =0 in the Hartree-
Fock (HF) model, the ionization energy to the vacu-

um is smaller in that model than the negative of the
orbital energy —e;

"
by just X;, in contrast to the

LD result where the corrected ionization energy is
larger than —e;" .] If the excitation is into a par-
tially occupied final state, its energy will move
closer to the vacuum level by IIf' +Xf . If, howev-

er, the final state is initially empty (virtual state), an
electron excited into it will experience only the re-
duced screening due to the hole left behind, and con-
sequently its energy will move away from the vacu-
um level. This effect constitutes the polarization
piece of the relaxation self-energy Xf .
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(ii) Slater's transition-state (TS) concept approxi-
mates the first three terms on the right-hand side of
Eq. (23) by the eigenvalue difference

gETs LDP g —1/2t ted + 1/2q LD[ g —1/2t m +1/2]
te t

(25)

This is often a good approximation and leads, for an
ionization process, to an energy hE; larger than
the Koopmans estimate —e,

" . This is illustrated by
the calculation of Fig. 15(b), where, relative to the
vacuum level the transition-state energy for the
e —+e process (given by e" [e ]=Evs+0.02 eV)
is seen to be farther below the vacuum level than the
Koopmans estimate (given by e" [e ]=Eve+0. 1

eV). The self-interaction and relaxation corrections
II,' +X, for ionizing the e " level of Si:Mn is
hence of the order of 0.1 eV. Even if our estimate is
off by 100%, the correction could not be more than
0.2 eV. Notice, however, that these corrections are
expected to be substantially larger for the hyperdeep
t2" and e ""levels of the heavy impurities.

(iii) Both the self-interaction and the relaxation
corrections decrease rapidly as the wave function
delocalizes spatially. In particular, a diffused
conduction-band state is expected to carry only
small corrections. Similarly, the t z state, being a
dangling-bond state and hence considerably less lo-
calized than the e " orbital, will have a smaller
correction. We conclude that both donorlike transi-
tions from e " to the CB, and acceptorlike transi-
tions from t2 to the VB, will occur at energies
that exceed the LD eigenvalue differences by a rath-
er small correction, about II +X; =0.1 eV.

It is interesting to contrast the correction calculat-
ed for Si:Mn to that of atomic Mn. For the ioniza-
tion of a high-spin d electron from Mn d s we get
II~' ——8 eV and Xd = —3.9 eV (Ref. 59), or
IId' +X~=4.1 eV (Ref. 60). For the ionization of
the more extended 4s state, we find II, ' =2.7 eV
and X, = —0.8 eV, or II,' +X, = 1.9 eV. The sig-
nificant result is that the leading corrections for the
removal energies from gap levels in Si:TA are
strongly reduced relative to the free-atom values
(primarily due to the occurrence of a solid-state
node in the wave function of the impurity state).
The more delocalized nature of the defect orbitals
outside the central cell (cf. Tables II and III), and
the strong screening attenuation discussed in Sec.
IIIF contribute to this reduction. Furthermore,
since the corrections to the removal energies vary
monotonically with the degree of orbital localiza-
tion and since the latter changes smoothly across
the 3d impurity series (Tables II and III), we expect
the chemical trends shown in Fig. 9 to be preserved.

B. The ground-state electronic configuration

The ground-state electronic configuration in the
local-density model corresponds strictly to a popula-
tion scheme obeying the aufbau principle, i.e., occu-
pying levels in increasing order of one-electron ener-
gies e; without leaving holes behind. Incomplete
shells (e.g., atomic Mn d's ) exist only when the
one-electron energy of the incompletely occupied or-
bital exceeds that of the next shell upon adding an
electron to the former shell. In accordance with the
LD model, we have fixed the occupation numbers of
the neutral TA defects according to the aufbau prin-
ciple, as shown in Fig. 9. In the following we will
denote one-electron configurations in the order of
increasing one-electron energies; e.g., for Si:Mn we
have e t as the LD ground state, and for Si:Cr we
have e t, etc. Notice that such LD aufbau configu-
rations need not obey Hund's rule for maximum
ground-state spin multiplicity. A promoted Hund-

type configuration for Si:Mn, such as e t ', could be-
come a ground state only if the order of energy lev-
els is reversed.

Obviously, the LD au+au configuration need not
be the ground state if a different approximation is
used for the single-particle potential. An example
for such an improved approximation is given by the
local-spin-density (LSD) potential. In this approxi-
mation, different spin states (denoted + and —) ex-
perience different potentials and hence lead to dif-
ferent spin-up (e+) and spin-down (e ) orbital ener-

gies due to exchange interactions. We will next
briefly explore the condition under which such a
spin splitting may alter the ground-state configura-
tion of the defect. The effect of the spin polariza-
tion on the e-t crystal-field splitting is depicted
schematically in Fig. 20.

To explore whether spin polarization can alter the
LD-type e"t configuration, one needs to promote it
to a e" 't' configuration. Figure 20 and the discus-
sion of the preceding section show that this widens

the e-t crystal-field splitting h&F. Each of the one-
electron levels may now exhibit an exchange split-
ting denoted in Fig. 20 by h„(i) (depending on
whether the excited electron has its spin up or down,
one will get a triplet or a singlet}. Since the ex-
change splitting reduces quadratically with de-
creased orbital localization, hostlike conduction-
band resonances are expected to have a small ex-
change splitting. Clearly, the ground state will
remain at its LD configuration e "t as long as

(i.e., as long as the crystal-field splitting exceeds the
exchange splitting}. Conversely, if the exchange
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FIG. 20. Schematic energy-level diagram showing the effects of relaxation, self-interaction correction, and spin polari-
zation on the e " ~ t2
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maximum). An e vs t+ spin-polarization level inversion is assumed. See text for explanation of symbols.

splitting exceeds the crystal-field splitting, the
aufbau principle will produce for Si:Mn a Hund
ground state e+t+e t shown in Fig. 20. Using
again free transition atoms as a guide, we can calcu-
late d-orbital exchange splittings. We find, for ex-

ample, that the LSD exchange splitting for Fe is
3.4, 2.5, and 1.6eV for the d s, d s', and d s con-
figurations, respectively. Since the exchange split-
ting is a two-electron integral, it scales with the
square of the localization parameter of the orbital
[Eq. (11)]. Hence with the use of atomic exchange
splittings and the impurity localization parameters
given in Tables II and III one can estimate the e and
t exchange splittings not to exceed about 1.5 and 0.3
eV, respectively [e.g. , for substitutional GaAs:Cr,
Dimmock and Hemstreet' ' ' found an exchange
splitting of the e gap level of 0.6 eV, compared with
the atomic exchange splitting for d s' of 3.7 eV
(Ref. 60)]. Clearly, a level reversal due to exchange
splitting can occur only when the one-electron e-t
energy gap does not exceed about 2 eV. This ex-
cludes all impurities heavier than Fe (cf. Fig. 9).
From. the remaining impurities, Cr and V already
have a Hund ground state, and Ti has unoccupied e
and t levels. The only reasonable candidates for a
level reversal are hence Si:Fe and Si:Mn. Their
one-electron e-t splittings are 1.7 and 1.4 eV, respec-
tively, in the e t and e t LD configurations. Re-
calling that a promotion to the e t ' or e t ' configu-

rations will further widen the crystal-field splitting
(cf. Fig. 20), it would appear that a spin-polarization
level reversal is (marginally) possible for these sys-
tems. A complete spin-polarized calculation is need-
ed to establish this.

Notice that the strength of the crystal-field (CF)
splitting AcF that determines the possibility of a
spin-polarization configuration inversion depends on
the impurity site. The crystal-field potential (i.e.,
the potential exerted at the impurity site by all
atoms except the impurity) in silicon is far stronger
at the substitutional site than in the tetrahedral in-
terstitial site. ' Indeed the e ""-t2 one-electron
splitting for Si:Co was calculated in the muffin-tin
cluster model to be 2.1 eV for the substitutional
site (between the 2T2 and OE levels of Ref. 20),
whereas the e-t splitting of the gap levels in the in-
terstitial site was found ' to be less than 0.1 eV.
Clearly, even a very small exchange splitting will
cause a level reversal for the interstitial sites, '

whereas only a relatively large exchange splitting
could reverse the level ordering for the substitutional
sites (the atomic exchange splitting for Co d s' is
only 1.8 eV). Furthermore, the spherical approxi-
mation to the potential used in the cluster calcula-
tions ' ' is likely to severely underestimate the
crystal-field potential, since the latter is determined
by the I =3 and I =4 nonspherical components. (In
the point-ion approximation the tetrahedral —crys-
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tal-field splitting depends on the l =4 potential
component alone' .) The nonspherical com-
ponents '~' are known to be significant in an open
covalent structure. This is particularly true for the
tetrahedral interstitial site which in the muffin-tin
approximation (with sphere radii equalling half an
Si—Si bond length ' '} is characterized by a weak
anisotropy in the potential. When the full nonspher-
ical potential is retained the crystal field is likely to
be substantially larger, inhibiting further a level in-
version due to spin polarization. (Our recent QBCF
calculations for interstitial Si:Fe (Ref. 23) indicate
that the crystal-field splitting obtained in the cluster
model ' is underestimated by a factor of 4—5.)

From our calculated energy-level scheme (Fig. 9)
and the foregoing discussion we can characterize the
one-electron configuration, total spin S, and the
lowest crystal-field term (in the weak-coupling limit)
for the neutral defects as

electronic configurations for the neutral defects are
Zn[t+t ', 5 = —,] (double acceptor}, Cu[t+, S = —,]
(triple acceptor), and Ni[t+, S=1] (quadruple ac-
ceptor}.

V. COMPARISON WITH OBSERVED
CHEMICAL TRENDS

In this section we compare qualitatively the
overall chemical trends evident from our calcula-
tions with those observed experim. entally. It is felt
that a detailed and quantitative comparison is not
warranted at this initial stage both because the inter-
pretation of the experimental results are still clouded
by a number of factors discussed in the Introduc-
tion, and because of an incomplete account of
many-body effects in the present calculations (cf.
Sec. IV}.

A. DLTS data

and

V[e+,S=—,, E],
Cr[e+, S =1, Aq],

3 5 4Mn[e4. r/ J=—, —„—„~1]

Fe[e+t+, J=1,2, 3, T2] .

Here J is the total momentum, and a spin-
polarization inversion was assumed for Mn and Fe.
To lowest order, the various charged states are de-
rived from this configuration simply by adding or
subtracting electrons, e.g., V is like Cro and Cr+
like V, etc. For the heavier impurities, the e ""is
too deep to be affected by spin polarization, and the

Figure 21 depicts the deep-level transient spec-
troscopy (DLTS) activation energies for 3d impuri-
ties in Si, recently measured by Kimerling, Benton,
and Rubin and by Graff and Pieper. The hole-trap
(donor) energies correspond to transitions from the
valence band to the defect levels, whereas the
electron-trap (acceptor) energies correspond to exci-
tations from the defect levels into the conduction
band. The most recent values' for hole-trap ioniza-
tion of a neutral TA defect X to a positively
charged TA defect X+ are Ecq —0.28 eV,
EcB—0.22 eV, Ecs —0.42 eV, and EvB+0.385 eV
for Ti, V, Cr, Mn, and Fe, respectively. ' The six
electron traps at Eve+0. 6 eV as well as the five
hole traps at Eve+0. 3 eV were assigned by Kimer-
ling et al. as Au-related defects. Similarly, the hole
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FIG. 21. Experimentally observed DLTS electron and hole traps for transition-atom-doped silicon (Refs. 4 and 5). The
assignment of the various transitions and the lines connecting different points is tentative (Refs. 4 and 5).



traps near the top of the VB were shown '" to be due
to complexes with acceptor impurities such as boron
(the most recent values are ' EvB+0.28 eV,
Ecg —0.55 eV, and Eve+0. 1 eV for Cr, Mn, and
Fe, respectively). The remaining transitions were
suggested tentatively to arise from isolated TA im-
purities. We address only these transitions. The
two sets of data ' containing a total of 35 points,
agree only on two points: the Mn electron trap and
the Nl hole trap. The hole-trap result for Fe ob-
tained by Graff and Pieper agrees with the results of
Feichtinger.

The striking result in the experimental study of
Kimerling et a/. is the clear demarcation between
the levels of elements to the right and to the left of
Mn. The 3d elements heavier than Mn (Mn through
Zn) show a single-electron trap (acceptor level)
which starts up close to the CBM and drops mono-
tonically as the impurity becomes heavier. This
trend is found for our t2 acceptor level in Fig. 9.
Recalling from the discussion of Sec. IV that the
correction to the LD energies (Fig. 9) required «r
acceptors is a -0.1-eV shift toward the CB, the cal-
culated results are in reasonably good agreement
with experiment. Graff and Pieper have identified
two more data points for the electron traps of Si:V
and Si:Ti showing that the level has saturated, as in-
dicated ln the calculation of Fig. 9. The interpreta-
tion of the substitutional Si:Cu as a triple acceptor
(viz. , Fig. 9) agrees with the Hall-effect data of Hall
and Racette.

For the 3d elements lighter than Mn (Cr through
Sc), Kimerling et al. found no electron trap in the
upper part of the band gap, as indeed suggested by
the eventual disappearance of the tz level into the
conduction band in Fig. 9. The donor levels associ-
ated with the e " levels were not observed by Ki-
merling et al. However, Graff and Pieper did note a
sequence of donor levels starting for the low-Z im-
purities below the CBM and dropping in energy as
one goes to the heavier elements, a behavior similar
to that shown by our e " level (Fig. 9). We note
that the overall agreement we find between the ob-
served and calculated chemical trends is not based
on either of the two assumptions made by Kimerling
et al. to interpret the data: that the elements
heavier than Mn are interstitials, or that substitu-
tional impurities are characterized by a d~s pro-
motion. In fact, our calculation shows the opposite
to be true (cf. Sec. IIIE). However, we must note
that one cannot conclude from the agreement in the
chen;ical trends that the observed levels are due to
substitutional defects before we complete an identi-
cal calculation for all interstitial impurities to exam-
ine if the present geometry is the only one that
agrees with the experimental trends.

B. EPR data

We next turn to compare our results with the
chemical trends evident from the EPR studies. We
will first brieAy discuss the line of argument used
originally by Ludwig and Woodbury (LW) to
deduce their model from the data.

The salient features of their data are the follow-
ing: First, the observed anisotropy of the g values
and the hyperfine-interaction parameters clearly
suggest the impurities to be in a cubic site. This
means that as perceived by an EPR experiment,
there is no measurable impurity-impurity, or
impurity-dopant association and static lattice relaxa-
tion that alters the impurity-site symmetry (i.e., no
static Jahn-Teller distortions). Second, the total spin
S of the system was obtained both from counting
the number 2S of the fine-structure lines (when
resolved, e.g., Cr, but not V) and from fitting the ob-
served frequency of the electron-nuclear double reso-
nance (ENDOR) transitions to the transition calcu-
lated from the known impurity nuclear momentum
and from an assumed value for S. This provides
directly the number 2S of unpaired electrons.

In interpreting these data one needs to select the
number and the ordering of the energy levels that
will accomodate the impurity electrons. In the ab-
sence of detailed calculation, it was reasonable to as-
sume at the time that there are only two important
levels t2 and e, and that they derive from the impur-
ity atomic 3d level. A simple crystal-field argu-
rnent, neglecting hybridization, next-nearest-
neighbor effects, charge redistribution, and incor-
porating only the first leading angular momentum
term in the wave-function expansion, predicts for a
T~ symmetry an e level below a t2 level for substitu-
tional defects. ' This level ordering was assumed by
I.W in interpreting their results for substitutional
defects. A reversed order (e above t2) was assumed
for interpreting the results that pertain to interstitial
impurities. The LW level ordering for substitutional
impurities implies that their e and t2 levels cor-
respond, in a complete calculation, to our e
and tz states. However, we find that the e and t2
pair that actually evolves from the atomic 3d levels
(at least at the high-Z hmit) is clearly e " and
tz", not e " and tz, and that their ordering is
the reverse of that assumed by LW. It is hence a
priori not impossible that the LW interpretation of
the interstitial results (e above t2) pertains (perhaps
in part) to substitutional impurities. To make a
close contact with the LW interpretation we will as-
sume, however, in what follows the LW assignment
of substitutional impurities levels, i.e., e " and

DBH



ELECTRONIC STRUCTURE OF TRANSITION-ATOM. . . 1223

The logic of the model is then as follows: If the
electronic configuration of the free atom is d"s~,
but only 2S&n+m spins are observed in the im-
pure system, one needs to accommodate n +m elec-
trons in the t2 and e levels, maintaining their ap-
propriate ordering, so that n+m —2S of the spins
are neutralized ("annihilated" ). One can annihilate
spins either by pairing electrons with opposite spins,
by ionizing the electrons altogether, or by a corn-
bination of these two operations. Notice, however,
that more than one solution exists to this problem.
LW chose one that yields the charge state Q„„,con-
sistent with the known sample doping (Q„«y0 for p
type and Q„««0for n type).

Few other experimental quantities are relevant to
constructing a consistent model. Simple argu-
ments' show that all paramagnetic interactions that
depend on the matrix elements of the orbital angular
momentum, spin-orbit interactions, and hyperfine
interaction among t2 states contain opposite contri-
butions from p- and d-orbital components. If the
hybridization of p content into the TA d states is
large enough, the anisotropic hyperfine interactions
would even be cancelled, as observed, for instance,
for tetrahedral Cu in the organic complex copper
(a,a'-Br) dipyrromethene, in which the p content
is about 20—30%. From Fig. 11(b) and Tables II
and III, we can immediately see that if the paramag-
netic electrons are accomodated in the t2 level,
large p-d "covalency" effects are expected, whereas
if they are in the e " level, such effects will be
small. Further, Simanek and Miiller, Van Wierig-
nen, and Matumura have pointed out that the
hyperfine-interaction constant A for transition
atoms decreases in magnitude with increasing co-
valency, while the g value increases. For instance,
Mn+ has the value 3=—97.8)&10 cm ' in a
strongly ionic hostlike CaF2. The value is strongly
reduced to A = —40&10 cm ' in a covalent host-
like silicon. These trends are to be kept in mind in
analyzing the data for Si:TA.

%e point out that although the L% analysis is
plausible, it is not unique. With the use of our cal-
culated energy-level scheme (Fig. 9), it appears that
much of the data interpreted by L%' as pertinent to
interstitial impurities can be equally well interpreted
if one assumes substitutional impurities. This is il-
lustrated below by a few examples. In this qualita-
tive argument we need only the calculated level or-
dering for neutral defects (Fig. 9). We recall (Sec.
IV) that relative to the vacuum level, addition (re-
moval) of electrons causes a decrease (increase) in
the binding energy (Fig. 21), and that spin polariza-
tion lowers, the energy of the majority-spin levels.

Hence, assuming an interstitial level ordering, L%
interpreted the Si:Ni spectra showing 2S=1 to be

due to the configuration t+t e+e with Q„«——1

(hence d compared to d s in the atom). We note
from Fig. 9 that a substitutional model predicts that
for neutral Si:Ni", all but two electrons are below the
VBM. The last two electrons occupy the t2 ac-
ceptor level. Hence, assuming also Q„„=1, we
predict a t'+ configuration (where t refers to the
tz state) consistent with 2S=1. However, our as-
signment does not require the artificial assumption
of an s~d promotion. Because of its ionization,
the energy of this state would be slightly below (cf.
Fig. 20) the neutral tz level for Si:Ni indicated in
Fig. 9. The strong covalency effects of t2 [Fig.
11(b)] are expected to reduce the hyperfine constant.
Indeed, LW (Ref. 3) have observed 3=3.6)&10
cm ' for this system.

If we assume, following L%, that the maximum-

spin (Hund's-rule) configuration applies (i.e., the
spin-polarization splitting exceeds the crystal-field
splitting, cf. Fig. 20), even more data can be recon-
ciled with a substitutional model. For example, the
2S=3 value observed for Si:Fe+ under p-type dop-
ing, which L% interpreted to arise from an intersti-
tial t+t e+e configuration with Q„,„=l,can be
explained in a substitutional model as resulting from
a e+t'+( T~ ) configuration also with Q„«——1. Since
the highest occupied spin orbital here is the t2
strong covalency effects due to p-d hybridization [cf.
Fig. 11(b)] would be manifested on the spin-orbit
and hyperfine interactions. Indeed, A =3)& 10
cm ' was observed. The same holds for the 2S=3
value observed for Si:Mn (type of doping unspeci-
fied); the e2+t 1+(4T1 ) substitutional configuration
with Q„„=Oagrees with the observed data as much
as the interstitial configuration t'+t e+e agrees
with Q„„=O.The latter two examples are hence
predicted to have an orbitally degenerate ground

state and therefore a large g shift, as indeed ob-

served3 (g =3.524 for Fe+ and 3.362 for Mn ).
For the EPR spectra, which LW assumed to be

pertinent to substitutional impurities (Cr, Mn+,
and Mn ), the two interpretations are identical.
For instance, for the 2S=1 spectra observed for
Si:Mn+ and Si:Cr under the material preparation
conditions said to favor substitutional defects, both
models predict an e+ ( A2) configuration with

Q„„=1 for Si:Mn and Q„„=Ofor Si:Cr . The ob-
served g values for these orbitally singlet states are
indeed close to the free-electron value g =2
(g=1.9962 for Cr and 2.0259 for Mn+). Since
these e states are only weakly hybridized with host
states (cf. Table III), small covalency effects are ex-

pected to be manifested on the EPR parameters.
For the Si:Mn spectra showing 2S=5, both
models predict e+t+( A~) with Q„„=—2. Since,
however, the highest occupied spin state is now the
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strongly hybridized t2 state [cf. Fig. 11(b)] and
not the ec" state (as in Mn+), strong covalency ef-
fects are expected. Indeed, the hyperfine constant
~A

~

was found to be dramatically smaller for
Mn (A =—40.5 X 10 cm ') than for Mn+
(A= —63)&10 cm '). The latter value is close to
that expected for ionic hosts such as ZnS.

We finally note that transition-metal impurities in
silicon have recently received a renewed interest due
to the possibility that they determine the interface
properties (e.g., Shottky-barrier heights) in silicon-
silicide interfaces. ' It is hoped that more photo-
emission experiments will be conducted to ducidate
the energetics involved with both the deep and the
hyperdeep levels predicted in this calculation (Fig.
9).

VI. SUMMARY

The electronic structure of substitutional 3d
transition-atom (TA) impurities in silicon was calcu-
lated self-consistently in the local-density approxi-
mation. The salient features of the results are the
following.

(i) Substitutional 3d impurities in silicon intro-
duce two new t2 levels, a single e level, and three a&

resonances. The energy of these levels varies mono-
tonically with the impurity s atomic number Z be-
tween Zn and Ti. The t2 levels occur in pairs: a
lower, bonding t2 crystal-field-resonance (CFR) state
t2" and a higher, antibonding t2 dangling-bond hy-
brid (DBH) state t2 Betwe.en them we find the
nonbonding e-type crystal-field-resonance state
e CFR

The fivefold-degenerate 3d levels of the impurity
atom split under the T~ site symmetry into a
threefold-degenerate t2 level and a twofold-
degenerate e level. The self-consistently calculated
variations in the t2 defect levels can be mapped onto
a simple three-level system in which the atomic level
t2 interacts with two t2 effective host states t2
and tz from the valence band (VB) and conduction
band (CB), respectively. The three-level system pro-
duces a bonding t2" which starts up in Si:Zn near
the bottom of the VB as a hyperlocalized (percen-
tage of localization in the central cell q =90%), d-
like (98% d) state that is controlled by the atomic
t2 energy, and rises up and broadens in energy as Z
decreases to become for Si:Ti a delocalized
(q =31%),dg hybrid (85% d, 15%p) pinned by the
energy of t2 . The antibonding t2 is a hybrid be-
tween the host s-p dangling bonds and the TA d or-
bitals. It starts up in Si:Zn just above the VB max-
imum as a delocalized (q =22%%), predominantly p-
like (77%, p, 22%%u% d) state, that is, controlled by the

t2 energy, and rises up in energy as Z decreases,
disappearing for the first time into the CB for Si:Co
("t2 threshold" ). As it rises up in energy, its p-to-d
hybridization ratio decreases and its degree of locali-
zation increases, becoming a 50%-50% p-d hybrid
with q=—50% localization for Si:Fe. At the low-Z
limit it is pinned by the repulsion (avoided crossing)
from t2 . Between the bonding and antibonding t2
states we find the nonbonding narrow e " that is
nearly a pure d state throughout, starting up as a hy-
perlocalized (q = 100%) state for Si:Zn near the bot-
tom of the VB, and delocalizing as it rises up in en-

ergy with decreasing Z (e.g., q =78% for Si:Cr). It
penetrates the band-gap region for the first time for
Si:Mn ("e threshold" ). It shows a crystal-field split-
ting from the t2 level that increases with Z. The
three defect-induced a i resonances are hostlike. %e
find that for a given impurity, the system usually
sustains either a f2 or a e occupied gap state,
but not both, in contrast with previous assumptions.
Further, the results show that Mn forms a demarca-
tion point in the 3d series, delineating the lighter im-
purities (with an impuritylike gap state e ) from
the heavier impurities (with a hostlike gap state
t DBH)

(ii) The energies of the various defect levels are
not pinned either by the energy of the silicon-
vacancy gap level or by the valence- or conduction-
band edges. The relevant host-pinning states for the
t2 defect levels are the t2 states (-EvB —1 eV) and
the t2 states (-EcB+2.7 eV). These constitute
the major host states with a maximum in their
central-cell t2 local density of states. They are
separated by an effective t2 band gap of -4.8 eV,
much like the Phillips band gap. This is the physi-
cally relevant bandgap for these defect levels, not
the optical gap (1.15 eV).

(iii) Whereas the charge densities p(r) of both the
host crystal and the crystal containing the defect are
extended in coordinate space and strongly anisotro-
pic, the density and potential perturbations bp(r)
and 5V( r ), respectively, are both localized and near-
ly isotropic. Although this property is also shared
by the silicon vacancy, the density fluctuation b,p( r)
in the Si:TA system attains its localization within a
distance typical of atomic dimensions (rather than
1—2 bond lengths), and has a strong gradient in the
central cell.

(iv) The screened-potential perturbation b, V(r)
exceeds its asymptotic point-ion limit of AZ/r in-

side the central cell ("screening overshoot") due to
the highly localized nature of the density fluctua-
tion. The self-consistent reciprocal dielectric func-
tion et L'( r) consequently shows that the d waves are
screened extremely efficiently relative to the more
conventional point-ion dielectric screening mechan-
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ism appropriate for shallow effective-mass impuri-
ties.

(v) The consequence of the special screening in
this system is that whereas in the inner central cell
(r &1.5 a.u. ) the screened perturbation b, V follows
the atomically determined order of the bare pseudo-
potentials, b, V "&hV '&hV ', etc., (and hence
that of the atomic 3d ionization energies); in the
outer central cell (r &2 a.u. ) the order is reversed.
This may lead to the interesting possibility that de-
fect energy levels e;(Z) associated with very local-
ized wave functions will exhibit an opposite ordering
with the atomic number Z to that characteristic of
delocalized wave functions (e.g., excited states).

(vi) Although impurities encompassing Zn to Ti
span a wide range of values for the number of
valence electrons per atom (12—14), the central-cell
region in the crystal is always found to be electrical-
ly neutral. This is so despite the fact that many of
the individual TA-like defect wave functions extend
well outside the central cell. The local neutrality is
facilitated by the redistribution of hostlike valence-
band states that effectively screen the external per-
turbation.

(vii) Transition-atom impurities in silicon are
known to sustain in a narrow energy range a large
number of defect states corresponding to different
charge states, in sharp contrast to the behavior of
free TA. This remarkable behavior is explained in
our model in terms of two effects: (a) The interac-
tion with the semiconductor is shown to reduce the
intra-atomic Coulomb repulsion U3~ by 2 orders of
magnitude relative to the free-ion value due to the
extremely effective nonlinear screening effects. (b)
Despite the fact that, like in an isolated TA, most of
the impurity charge is localized in the central-cell

region, this charge Q (X) is remarkably stable
against variations in the gap-level occupation num-
ber N. This leads to a pinning of many charged
states in the gap region. This unusual "electronic
elasticity" of the central-cell region results from a
self-regulatory behavior analogous to homeostasis in
biology.

(viii) The substantial attenuation in the intra-
atomic Coulomb repulsion U~ relative to the free
atom suggests that a one-electron model forms a
good approximation for the Si:TA system. Further-
more, the small Ud value is found to lead to an
s~d population crossover in the ground state of
the Si:TA system: We find that whenever the d sub-
shell can accomodate more than its electrons, the s
electrons are promoted into the d subshell. Hence
Si:Ni attains a noble-metal configuration ( =Ni d 'o),

and the lighter TA attain an -d"+ s configura-
tion, in contrast to the atomic d"s or d" +'s' con-
figurations.

(ix) The overall trends in the experimentally ob-
served DLTS activation energies across the 3d series
agree with the calculated defect levels.

(x) The salient features of the EPR spectra can be
reconciled with an interstitial impurity configura-
tion, as originally suggested by Ludwig and Wood-
bury, but are also shown to be consistent, for the
most part, with a substitutional geometry.
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