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Alloy theory with atomic resolution for Rashba or topological systems
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Interest in substitutional disordered alloys has recently reemerged with focus on the symmetry-sensitive
properties in the alloy such as topological insulation and Rashba effect. A substitutional random alloy
(AX )x (BX )1−x of components AX and BX generally manifests a distribution of local environments, whereby
each X site, for example, can be locally decorated by different substitutional arrangements of {A, B, X} atoms,
thus creating an inherently polymorphous network. Electrons will then respond to the existence of different local
environments and site symmetries, creating local charge transfer and atomic displacements patterns observed
in experiments. While the macroscopic average structure S0, as seen by probes with long coherence length,
may have the original high symmetry of the constituent compounds, many observable physical properties are
sensitive to local symmetry, and are hence the average 〈P(Si )〉 of the properties {P(Si ); i = 1, . . . , N} of the
individual microscopic configurations {Si; i = 1, N} rather than the property P(〈Si〉) = P(S0) of the macro-
scopically averaged high-symmetry (monomorphous) configuration S0. The fundamental difference between the
polymorphous representation 〈P(Si )〉 versus the monomorphous P(S0) in modeling substitutionally disordered
alloys led to the often diverging results between methods that “see” atomic details and those that see only the
high symmetry of the constituents, while missing the atomic-scale resolution needed in many cases to discern
local symmetry-related physics. A natural approach that captures the polymorphous aspect of random alloys is
the well-known supercell approach where lattice sites are occupied by the alloyed elements with a particular
form of disorder and solved via periodic electronic structure methods for sufficiently large supercells. However,
such approaches tend to produce complex E versus k dispersion relations (“spaghetti bands”), rendering the
wave-vector k information needed in theories of topology and Rashba physics and seen in angular resolved
experiments, practically inaccessible. The results of such calculations have consequently been displayed as
density of states. A solution that retains the polymorphous nature of the random alloy but reinstates the E versus
k relation in the base Brillouin zone is to unfold the supercell bands. This yields alloy “effective band structure”
(EBS), providing a three-dimensional picture of the distribution of spectral density in the whole Brillouin zone. It
consists of E - and k-dependent spectral weight with coherent and incoherent features, all created naturally by the
specific nature of the chemical bonding underlying the polymorphous distribution of many local environments.
We illustrate this EBS approach for CdTe-HgTe, PbSe-SnSe, and PbS-PbTe alloys, showing atomic-scale effects
such as formation of a distribution of A-X and B-X bond lengths, local charge transfer, and the creation and
destruction of valley degeneracies. In CdTe-HgTe, the disorder effect is so weak that the incoherent term is
negligible, and the monomorphous approaches are still feasible in this alloy. In PbSe-SnSe, the stronger disorder
effect introduces significant (∼150 meV) band splitting of the topological band inversion, forming a sequential
inversion of multiple bands which is important for the topological transition but absent in monomorphous
methods. In PbS- PbTe, there is a strong disorder effect, revealing the emergence of ferroelectricity from the
polymorphous network in this alloy.
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I. INTRODUCTION

A. Alloy theories with or without atomic resolution

Many target properties of materials are not available in
currently known individual components AX or BX but do
exist in alloys of such components (AX )x(BX )1−x, where X
denotes anion and x denotes alloy composition. Examples
include band gap and effective mass tuning in semiconduc-
tors, ductility, brittleness and a given degree of short-range
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ordering (SRO) in intermetallics, and topological properties
existing only after alloying [1]. Inevitably, disorder effects
due to the substitutional occupations of A and B atoms in
(AX )x(BX )1−x is the key to understand alloy properties such
as mobility, conductivity, electronic structure and localization.
Of particular recent interest are alloy properties that depend
on local symmetry, such as the emergence of Rashba effect,
predicated on absence of inversion symmetry, in alloys of
centrosymmetric components [2], or the appearance of topo-
logical properties in alloys, e.g., (PbSe)x(SnSe)1−x [3] and
MoxW1−xTe2 [4] at specific, time reversal invariant wave
vectors.
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However, accounting for local symmetry effects in random
disordered alloys is never a simple task. Common models of
disorder have considered single-site models and continuum
model that account for the changes of lattice vectors and
volume (e.g., via Vegard’s law) but retain the macroscopic
symmetry rather than the local symmetry. The virtual crys-
tal approximation [5] (VCA) relies on the assumption that
alloy short-range disorder has negligible effects and can be
averaged out, thus largely restoring in the alloy the symmetry
(hence band structure shapes and degeneracies) of the parent
compounds; the single-site coherent potential approximation
[6] (S-CPA) with account k-dependent broadening of the band
structure [7] approximately calculates the microscopic (local)
environment however neglects effects such as local symmetry
lowering due to atomic relaxation. Nevertheless, the VCA
and S-CPA generally lack a full description of atomic-scale
resolution of disorder that should be visible when the alloyed
elements differ sufficiently on some scale of atomic sizes,
bonding characteristics, or charge transfer.

The insufficiency of the monomorphous alloy description
has been shown in many previous works. Examples include
(i) the extended X-ray absorption fine structure (EXAFS)
and atomic pair distribution function (PDF) observation of
the existence in random alloy of a distribution of A-X and
B-X bond lengths [8–13]; and (ii) the observation that atomic
site charges {Qi} in an alloy depend on the local neighbor-
hood environment of site i, which results in a nonvanishing,
large electrostatic alloy (Madelung) energy [14], contradicting
the common assumption underlying S-CPA, of the indepen-
dence of charges on local environment, leading to 〈QiQj〉 =
〈Qi〉〈Qj〉 = 0, i.e., vanishing electrostatic energy. To achieve
an atomic resolution of disorder one needs theory that recog-
nizes local symmetries, yet informs about the extent to which
the long-range translational symmetry underlying the concept
of wave vector is retained in alloys.

Theories of topological effects in random alloys [15–17]
argue that in an infinite sample of random alloy all symmetry
elements (e.g., inversion center) of the constituent solids being
mixed are preserved on average, so the latter configuration
can be used to evaluate topological characteristics. However,
even if this proposition were correct, the properties of the alloy
〈P〉 (such as band structure and band inversion) do not reflect
the property of the macroscopically averaged configuration
〈P〉 = P(S0) but rather the average Pobs = �P(Si ) of the prop-
erties {P(Si )} of the individual microscopic configurations
{Si; i = 1, N}.

B. The atomically resolved perturbations induced
by A-on-B substitution in alloys

As is well known, disorder models with atomic resolution
can be built by solving the band structure problem of super-
cell whose N × N × N primitive cells contain N3 sites are
occupied randomly by the constituent atoms A and B. The
alloyed atoms can naturally have different electronic struc-
tures, atomic sizes, and tendencies for charge transfer, thereby
creating a polymorphous representation where (unlike VCA
or S-CPA) the common atom X is ‘seeing’ a variety of local
environments, depending on the number of A and B atoms
locally coordinating different X sites. In this representation,

A-X, B-X , and A-B charge transfer, as well as the existence
of a distribution of A-X and B-X bond lengths is allowed, in
addition to the trivial variation of volume with composition.
The spectra can be converged with respect to the size of the
supercell and by averaging over a representative number of
random realizations. More effectively, one can construct from
the outset special supercells, “special quasirandom structures”
(SQS) that are guaranteed to reproduce pair and many body
correlation functions in the best way possible for a given
supercell size N [18]. The observable property P calculated
for such an SQS structure is not simply the property of a
single snapshot configuration but approximates the ensemble
average 〈P〉 for the random configuration. This is described
in Refs. [18,19]. Furthermore, in general, SQS supercell with
large size gives more reliable result than the ensemble average
along many small random supercells, as shown by Ref. [19].
The reason is that large supercells contain intermediate range
interactions (such as fourth neighbor pairs inside a supercell)
which do not exist in small supercells, where such interactions
are approximated by the replica of the interactions outside the
small cell. Indeed, when a physical property needs for its de-
scription contributions that scale as nth order pair interaction,
then small cells have a limited nmax value since further values
of n > nmax are replicas of other n and contain no new infor-
mation, whereas large supercells are needed to capture longer
range pairs that come from same supercell. Convergence tests
to P as a function of SQS size were tested as shown in the
Methods section. Details can be found in Refs. [18,19].

C. The limitation of supercells and band unfolding

As the size of supercells increase, the E versus k dispersion
relation also becomes more complex because of band folding.
This leads to the difficulty of interpreting alloy effects that
depend on wave-vector k information, e.g., topological mate-
rials, Rashba physics and angle-resolved photoemission spec-
troscopy (ARPES) analyses. Such effects would be concealed
inside the “spaghettilike” supercell bands. This is perhaps
the primary reason density of states, rather than E versus k
dispersion, is usually shown in such supercell calculations.
This difficulty can be solved by the “effective band struc-
ture” (EBS) method [20], which unfolds the supercell band
structures into the primitive Brillouin zone (BZ), same as
the BZ used in the theoretical study of pure compounds
and the experimental ARPES study of alloy. Similar to
ARPES, the EBS method also provides a three-dimensional
picture of the spectral function with E - and k-dependent
features including coherent (dispersive term or “sharpness”)
and incoherent (band nondispersive broadening or “fuzzi-
ness”) spectral weights [21], all naturally produced by the
polymorphous nature of the many local environment in al-
loys. Depending on the electronic structure method used to
solve the supercell Hamiltonian (mean-field like approaches,
or explicitly correlated approaches), additional coherent or
incoherent effects originating from many-body effects can
come in. Here we emphasize that even a single determinant
electronic structure method such as density functional theory
(DFT) will already produce three-dimensional spectral func-
tions with coherent and incoherent features just because of
allowing a polymorphous representation of the structure.
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FIG. 1. The physical steps from pure compounds to alloy. (a) Pure compounds AX and BX at their equilibrium lattice vectors {�a0(AX )}
and {�a0(BX )}; (b) deform AX and BX lattice vectors, and let them both have the alloy lattice vectors {�a0(x)}; (c) form a supercell of AX-BX
with lattice vectors {�a0(x)} while keeping all bong lengths equal to each other; (d) relax all bonds in the supercell with lattice vectors {�a0(x)}.
Step a → b is the lattice deformation (LD); step b → c is charge exchange (CE), whereas step c → d is the bond relaxation (BR) step.

We applied our supercell model with DFT to several
substitutional random alloys CdTe-HgTe (topological alloy),
PbSe-SnSe (topological alloy), and PbS-PbTe (bulk Rashba
alloy). By using the EBS, we restored the E versus k band
dispersion for alloy into the primitive BZ. We found that (1) in
CdTe-HgTe, is a weakly perturbed alloy made of nearly size-
matched components of similar electronic and bonding prop-
erties, with band gap occurring at nondegenerate state at the
� point. The polymorphous theory gives band structure and
topological band inversion point that are rather similar to those
found previously in the monomorphous theory. (2) PbSe-SnSe
is an alloy with moderate chemical disparity in the alloyed
elements Pb versus Sn but with degenerate band edge states
at L point. Here, the monomorphous theory fails to describe
the disorder-induced band edge splitting, whereas the poly-
morphous representation shows that the states split and invert
sequentially. This is because the monomorphous approaches
do not consider the symmetry breaking induced by charge ex-
change and bond relaxation, masking such events by a sweep-
ing band broadening parameter. Such approaches are inade-
quacy for prediction of topological properties in this system.
(3) PbS-PbTe represents a strongly scattering alloy (8% lattice
mismatch). We find in the high-resolution picture a coher-
ent, Rashba-like band splitting (revealing the ferroelectricity)
emerging from the incoherent band broadening (revealing the
alloy disorder). The mixture of coherent and incoherent fea-
tures in this alloy is absent in the monomorphous approaches.

II. MODELING THE PHYSICAL CHANGES
IN THE CONSTITUENT COMPOUNDS UPON

FORMING AN ALLOY

To analyze the specific physical effects contributing to
alloy formation, we will decompose the alloy formation into
three physical steps illustrated in Fig. 1.

(1) Lattice deformation (LD) step [from Figs. 1(a) to 1(b)].
Here we prepare the two constituent compounds so they could
form a common alloy lattice in the next step. To do so we

distort the lattice vectors for both components, so both have
the same lattice vectors {�a0(x)} appropriate to this alloy of
composition x, where the subscript 0 means the equilibrium
lattice vector. {�a0(x)} are determined by doing a full energy
minimization relaxation (atomic positions, cell shape and cell
volume) of a large SQS supercell of that alloy at composition
x. For the alloys of CdHgTe and PbSnSe, the Vegard lattice
constant aVegard(x) is very close to a0(x), while for PbSTe
alloy a0(x) becomes concave above aVegard(x). For example,
pure PbS and PbTe are both face-center cubic (FCC) struc-
ture, with a0(PbS) = 6.03 Å, a0(PbTe) = 6.55 Å and α =
β = γ = 90◦; while in PbSTe alloy, the lattice constant has
changed [a0(PbS) < a0(x) < a0(PbTe)], and the crystalline
structure has transformed into a distorted rhombohedral struc-
ture. We then in this step expand the smaller component (here,
PbS) and compress the larger component (here, PbTe), and
distort the two compounds into the same, distorted rhombohe-
dral structure as in alloy. Note that the alloy lattice constants
as well as the cell distortions are calculated from DFT and
validated with experiments. The change in extensive property
P(x) (total energy, etc.) in this step can be modelled by the
formal reaction

AX |�a0(AX ) + BX |�a0(BX ) → AX |�a0(x) + BX |�a0(x). (1)

This step reveals the contribution of the deformation of
lattice on the alloy formation.

(2) Charge exchange (CE) step [from Figs. 1(b) to 1(c)].
Here we mix the structures prepared in the previous step to
form the random alloy supercell at lattice vectors {�a0(x)}.
At this step, the A-X and B-X bonds are allowed to coexist
in the alloy so charge exchange can occur among different
atomic sites, but all bonds are still constrained to equal to
each other. Each atomic site of a given chemical identity
(such as X of AX ) will have in principle, a different charge
distribution around it, generally reflecting the number of A
and B atoms around it. CE step is a polymorphous effect thus
not captured by monomorphous approaches. The change in
extensive property P(x) in this step can be modelled by the
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TABLE I. The calculation details for pure compounds and the comparison between DFT and experimental results.

Compounds Exchange correlation Cutoff Lattice constant Lattice constant Band gap Band gap
(space group) term energy (DFT) (Exp.) (DFT) (Exp.)

CdTe LDA + U 400 eV 6.410 Å 6.48 Å 0.86 eV 1.65 eV
(F–43m) (Ud = 10 eV)

HgTe LDA + U 400 eV 6.436 Å 6.46 Å −0.26 eV −0.3 eV
(F–43m) (Ud = 10 eV)

PbSe GGA + U 360 eV 6.22 Å 6.12 Å 0.23 eV 0.17 eV
(Fm–3m) (UPb_s = 2 eV)

SnSe GGA + U 360 eV 5.99 Å 6.00 Å 0.72 eV 0.62 ∼ 0.72 eV
(Fm–3m) (UPb_s = 2 eV)

PbS GGA + U 360 eV 6.03 Å 5.93 Å 0.3 V 0.29 eV
(Fm–3m) (UPb_s = 2 eV)

PbTe GGA + U 360 eV 6.55 Å 6.44 Å 0.2 eV 0.19 eV
(Fm–3m) (UPb_s = 2 eV)

formal reaction

AX |�a0(x) + BX |�a0(x) → A1−xBxX |�a0(x) (2)

representing charge exchange at constant volume and ideal
bond geometry.

(3) Bond relaxation (BR) step [from Figs. 1(c) to 1(d)].
Here we take the previous step where a supercell with its
attendant charge transfer was already formed and now allow
the relaxation for all internal atomic positions at the fixed
alloy lattice vectors {�a0(x)}. Note that for each composi-
tion the bond lengths are not single-valued but have distri-
butions due to the polymorphous local environment effect,
i.e., bond lengths R(n)

A−X (x) and R(n)
B−X (x) are neighborhood-

configuration-dependent [(n)-dependent]. The BR step is a
polymorphous effect thus not captured by monomorphous
approaches. The change in extensive property P(x) in this step
can be modelled by the formal reaction

A1−xBxX |�a0(x) → relaxed A1−xBxX |�a0(x). (3)

The total change in extensive property P(x) of alloy relative
to the linearly weighted average of the constituents can be
written as

�Ptot (x) = P(x) − [xP(AX ) + (1 − x)P(BX )]

= �PLD(x) + �PCE(x) + �PBR(x), (4)

which will assist us in analyzing physical alloy effect.

III. COMPUTATIONAL DETAILS

This work used the computational resources of the Extreme
Science and Engineering Discovery Environment (XSEDE)
[22]. We have performed DFT calculations as applied within
the Vienna ab initio simulation package (VASP) [23] using
the projector-augmented wave (PAW) [24] pseudopotentials.
Cd 4d , 5s, Hg 5d , 6s, Pb 5d , 5s, 5p, Sn 4d , 5s, 5p, S 3s,
3p, Se 4s, 4p, and Te 5s, 5p have been treated as valence
electrons. For all primitive cells of pure compounds, we used
an 8 × 8 × 8 �-center k mesh in the electronic self-consistent
iterations and in the atomic relaxations. Table I shows the

space group, energy cutoff and exchange correlation terms,
and the comparison of relaxed lattice constant and band
gap for all pure compounds between DFT and experimental
results. All alloy supercells have been constructed using the
SQS method as implemented in the Alloy Theoretic Auto-
mated Toolkit (ATAT) [25,26]. Alloy supercell sizes are 32
formula unit (f.u.) (CdTe-HgTe), 128 f.u. (PbSe-SnSe), and
32 f.u. (PbS-PbTe), while the k meshes are 4 × 4 × 4 (CdTe-
HgTe), 3 × 3 × 2 (PbSe-SnSe), and 4 × 4 × 4 (PbS-PbTe).
We calculated all alloy supercells using the same parameters
as in their constituent compounds (e.g., for all CdTe-HgTe
alloy supercells we used the same parameters as in CdTe
and HgTe). Note that the space groups of alloys are always
different from constituent compounds, because all atomic
positions as well as the lattice vectors in alloys have been
determined by fully relaxing (atomic positions, cell shape
and cell volume) the alloy supercells. CdTe-HgTe and PbSe-
SnSe alloy supercells are still in cubic phase after relaxation,
however they are no longer F–43m or Fm–3m because of
the polymorphous network (different atomic sites have differ-
ent element occupations and different atomic displacements).
This makes it completely different with the monomorphous
approaches. Meanwhile PbS-PbTe alloy supercells become
distorted rhombohedral after relaxation. EBS calculations
have been done by a modified version of BANDUP code [27].

IV. UNFOLDING THE SUPERCELL ENERGY BANDS
AND RECOVERING E VERSUS k ALLOY EBS

Here we briefly summarize the basic equations of EBS. In
the supercell Brillouin zone |Km〉 is the mth electronic eigen
state at K, whereas in the primitive Brillouin zone, |kin〉 is the
nth electronic eigen state at ki. Each eigenfunction |Km〉 in the
supercell can be quantified by expanding it in a complete set of
Bloch eigenfunctions |kin〉 of primitive cell, where K = ki −
Gi, and Gi being reciprocal lattice vectors in the supercell BZ.
The band folding mechanism between supercell and primitive
cell can then be expressed as

|Km〉 =
NK∑

i=1

∑

n

F (ki, n; K, m)|kin〉, (5)
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FIG. 2. (a) Conventional band structure of the distorted R3m
PbTe (two-atom primitive cell, plotted in primitive Brillouin zone).
(b) Supercell band structure (64-atom supercell PbSxTe1−x at x =
9.375%, plotted in the same primitive Brillouin zone) and (c)
EBS (unfolded from 64-atom supercell for PbSxTe1−x alloy at x =
9.375% into the same primitive Brillouin zone). The primitive lat-
tice vectors have been distorted according to the relaxed supercell
structure in order to make a direct comparison. (a)–(c) are all plotted
along the same �-Z-U direction in the primitive Brillouin zone
[Z = (π/a1, π/a2, π/a3), U = (π/2a1, 2π/a2, π/2a3)].

where |Km〉 is the mth electronic state at K in supercell
Brillouin zone, |kin〉 is the nth electronic state at ki in prim-
itive Brillouin zone. One can then unfold the supercell band
structure by calculating the spectral weight PKm(ki ) from

PKm(ki ) =
∑

n

|〈Km | kin〉|2, (6)

which is the Bloch “preservation” of Bloch wave vector ki in
|Km〉 when En = Em. Finally, the EBS can be obtained using
the spectral function A(ki, E ),

A(ki, E ) =
∑

m

PKm(ki )δ(Em − E ). (7)

As an example, Fig. 2 shows the comparison among
pure PbTe band structure, supercell PbSTe band structure
and supercell PbSTe EBS, all plotted in the PbTe primitive
Brillouin zone. The spectral function can be sharply dispersive
(coherent), e.g., conduction-band minimum (CBM) along �-Z
direction, or become completely nondispersive (incoherent),
e.g., valence-band maximum (VBM) at �, or be a mixture of
both, e.g., VBM along �-Z direction.

V. RESULTS AND DISCUSSION

A. Decomposition of alloy effects into physical terms

We study alloys having different scales of disorder: HgTe-
CdTe, PbSe-SnSe, and PbS-PbTe. We will see that the scale
of disorder is system-dependent, from weak (HgTe-CdTe)
to intermediate (PbSe-SnSe) and to strong (PbS-PbTe). It is
an interesting question how different scales of disorder in
different materials can affect E versus k structure.

Figure 3 shows the polymorphous local environment ef-
fects in the CE and BR terms in the alloy forming reactions.
The effects of CE step have been shown in Figs. 3(a), 3(c),
and 3(e) by plotting the contours of the charge density nearby
one common atom in the three alloy systems. We see that
the charge density around the common atom (Te in CdHgTe;
Se in PbSnSe and Pb in PbSTe) has different shapes when

FIG. 3. The charge density and bond length profiles in three alloy
systems. (a), (c), and (e) show the logarithmically spaced contours
for the charge density nearby one common atom for each of the alloys
in CE step. (b), (d), and (f) show the bond length distributions for the
different types of bond (red and blue solid lines) with means (circles)
and standard deviations (bars). The uniform bond lengths R0(x) in
the unrelaxed lattice (i.e., before BR step) are shown as the black
dash lines in (b), (d), and (f). R(0) shown in red and blue dash lines
are the bond lengths in pure compounds.

considering the bonds formed with the dissimilar alloyed
atoms, i.e., the densities around different A atoms are different
depending on the neighbors of A. The effects in BR step
have been shown in Figs. 3(b), 3(d), and 3(f) by the bond
length distribution profiles. Note that the range of y axis
becomes larger from Figs. 3(b) to 3(f). The asymmetricity of
charge density along different bonds, as well as the spread
of bond length variations of different bonds, becomes more
significant as one progresses from weak to strong alloying.
In CdTe-HgTe, the electron density distributions along Cd-Te
and Hg-Te bonds show only small differences [Fig. 2(a)], and
the bond lengths of Cd-Te (as well as Hg-Te) are virtually
equal with negligible distribution of values [σ < 0.002 Å as
shown in Fig. 2(b)]. In the strongly perturbed alloy PbS-PbTe,
(i) the Pb-S and Pb-Te bonds have distinct charge densities,
(ii) the bond lengths show a significant statistical spread for
the same chemical bond [Figs. 2(e) and 2(f)], e.g., the Pb-S
bonds vary in a range of ∼1 Å, and (iii) chemically different
bonds Pb-S and Pb-Te have different lengths away from
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FIG. 4. Alloy mixing energies in each physical step and the total
formation energies for (a) CdTe-HgTe, (b) PbSe-SnSe, and (c) PbS-
PbTe.

the macroscopic lattice constant. Clearly, the high-symmetric
alloy model assumed in monomorphous theories ignore the
local atomic environment effects for both electron density and
geometric bond structures.

The disorder effects can also be seen from the decompo-
sition of the alloy mixing energy (total energy of alloy with
respect to equivalent amounts of its constituents) from Eq. (4),
shown in Fig. 4. Recall that the LD step introduces only
monomorphous effects while the CE and BR steps result in
polymorphous local environments. The scale of the total mix-
ing energies in parts (a)–(c) already disclose the scale of disor-
der, CdTe-HgTe having 7 meV (x = 50%), PbSe-SnSe having
3 meV (x = 31.25%), whereas PbS-PbTe having 70 meV
(x = 50%) which agrees with previous works [28,29]. In the
weak alloy CdTe-HgTe where the lattice mismatch is tiny
(∼0.3%), the lattice deformation and bond relaxation energies
are negligible, and the charge exchange contributes most to
the mixing enthalpy (�H). As the lattice mismatch increases
(PbSe-SnSe and PbS-PbTe), the bond relaxation BR step does
not release as much energy as the lattice deformation costs in
the first place, and the charge exchange energy is small, so the
total mixing energy is positive and non-negligible. It is hence

FIG. 5. EBS of CdTe-HgTe supercell (32 f.u.) at (a) Cd =
12.5%, (b) 18.75%, (c) 25%, and (d) 31.25%, unfolded to the zinc-
blende primitive Brillouin zone. All EBS are plotted along the same
X -(�)-�-(�)-L direction in the primitive Brillouin zone.

inadequate to include only the trivial lattice deformation effect
as in simple monomorphous models, since the polymorphous
terms, CE and BR can be important, neglecting which would
lead incorrectly to high mixing enthalpies.

B. Effective band structure of the three alloys

Here we show EBS pictures for each of the three alloys.
We found that the spectral functions show a clear trend
with respect to the scale of disorder: from weak to strong
alloy, the spectral weights lose the coherent dispersion more
quickly when leaving the reciprocal high-symmetric k points.
Moreover, each alloy shows some unique features.

(1) In pure CdTe and HgTe, each band at � point is a
twofold degenerate. CdTe-HgTe EBS shows very sharp band
structure near the time reversal invariant momentum (TRIM)
� point and no band splitting at � point (Fig. 5), which can
be attributed to the very weak alloy disorder effect as shown
in Figs. 3(a), 3(b), and 4(a). All bands near the Fermi level,
including the light electron, light hole and heavy hole states
(corresponding to �6 and �8 states in pure HgTe and CdTe),
are sharply dispersive and almost 100% coherent. Note that
there is a tiny splitting (<25 meV) on the heavy hole state
along �-L direction, which is attributed to the small atomic
displacement [see Fig. 3(b)] and agrees with previous work
[30]. Therefore, in this alloy, the monomorphous theories
might be adequate, e.g., for predicting the topological band
inversion between �6 and �8 states at � point as Cd composi-
tion increases.
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FIG. 6. EBS of PbSe-SnSe supercell (128 f.u.) at Sn = 25%
unfolded to the FCC PbSe primitive Brillouin zone, plotted (a) along
�-(�)-L-(Q)-W direction and then (b) zoomed-in around L point.
The white circles mark the sequential band inversion in this alloy
attributed to band edge splitting at L point.

(2) As the scale of disorder increasing, in PbSe-SnSe
EBS, the degeneracy of band valleys at the TRIM L point
is no longer preserved: there is a significant band splitting
(∼150 meV) on the band valleys at L point (marked by red
circles in Fig. 6). Both valence band and conduction bands
are split but sharply dispersive near L; moving along the
�-L-W lines, one can see that the VBM quickly loses its
coherent feature, first in the middle of �-L line then near
the W point. More importantly, the band valley splitting at
TRIM L further indicates that the “sharp,” concurrent NI-TCI
transition at specific composition, which has been predicted
earlier [3,7] to be due to the band inversion between highly
degenerated bands, is not what a theory with atomic resolution
finds: the alloy system actually experiences a regime having
sequential inversions of multiple bands nearby Fermi level
at L point. The sequential band inversion regime is visible
only within the polymorphous model, e.g., supercell but not
in the monomorphous models [3,7,17,31–34]. Furthermore,
we have found recently that the sequential band inversion
not only invalidates the topological invariant of TCI-ness in
such a sequential inversion regime, but also introduces a new
Weyl semimetal phase between the NI-TCI phase transition,
which is also absent in monomorphous alloy theories. The
appearance of such Weyl semimetal phase is verified by the
calculations of topological invariant and Weyl points in the
supercell Brillouin zone, and can be attributed to the removal
of valley degeneracy at L point (shown in Fig. 6) and spin
degeneracy nearby L point (breaking of inversion symmetry).
This discussion is outside the scope of the current paper
and will be discussed in a future publication dedicated to
topological invariants in a random alloy.

Experimental probing of the insulator to metal transition
in PbSe-SnSe alloys were carried out mostly optically. Alloy
compositions where the gap is positive (insulating) were
observed [35] for x < 10%, and alloy compositions where
gap is smaller than 50 meV were reported [35] for 13% <

x < 24%. Our calculation finds a clear insulator to metal
transition, occurring in a composition regime of 12% < x <

30%. Experimentally the precise transition could not be found

with IR detectors used at the time of the experiment, because
gap occurs in far IR when it is smaller than 50 meV. In
addition, nonrandomness (i.e., clustering) and high carrier
concentration can cloud the precise value of composition
where the transition occurs. Perhaps a future verification of
the bulk gap closing composition could be performed with
low-temperature, terahertz-range optical experiment. We also
hope that a verification of band edge splitting can be done in
ARPES.

(3) In the strong alloy PbS-PbTe, the introduction of S
atom leads to a ferroelectric (FE) sublattice displacement at
low T , making the alloy a famous candidate of bulk Rashba
and FE materials [10]. In VCA and S-CPA, the ferroelectricity
was mimic monomorphously by using a uniform displacement
between cation and anion sublattice, while in our supercell,
ferroelectricity is polymorphous. We found that (Fig. 7) in this
alloy most bands suffer splitting and broadening, but the CBM
and VBM at Z point is relatively sharp and dispersive. VCA
results were previously shown in Ref. [7] Supplementary
Materials Fig. 4, while CPA shown were shown in Ref. [7]
Fig. 1 and Supplementary Materials Fig. 3. Comparison with
our EBS results (Fig. 7) shows that the VCA is very different
(no removal of degeneracies) whereas the CPA has similar
band shapes as the EBS, the latter presents far more details
than captured by the CPA: we see that each conduction bands
clearly split into two bands along �-Z and Z-U directions,
while VBM, although mixed with incoherent broadening, also
shows such two-band splitting along Z-U direction. Note
that this type of band splitting is coherent because each split
branch shows an individual dispersion. We suggest that this
band splitting of band edge states can be Rashba-like and
reveal the ferroelectricity of this alloy system.

VI. CONCLUSIONS

With the aid of polymorphous supercell approach and band
unfolding, we restore the all-important E versus k dispersion
relation to alloy theory in CdTe-HgTe, PbSe-SnSe, and PbS-
PbTe alloys, revealing various sources of alloy formation,
such as lattice deformation, charge exchange and bond relax-
ation. This allows one to define a scale of disorder, by the
deviations that these effects create relative to the monomor-
phous level. We find that the spectral weights unfolded to
primitive Brillouin zone shows: (1) both coherent, dispersive
splitting of band degeneracies and incoherent band broaden-
ing that depends on the wave vectors and on the scale of alloy
disorder; (2) coherent-incoherent transition on different bands
along different k-space directions; and (3) Rashba-like band
splitting consisting of both coherent and incoherent features.
We expect that such effects—notably the splitting of band
degeneracies—could be observed by ARPES.

ACKNOWLEDGMENTS

The work at the University of Colorado at Boulder was sup-
ported by the National Science foundation (NSF) Grant NSF-
DMR-CMMT No. DMR-1724791. J.W.L. was supported by
the National Natural Science Foundation of China under

044605-7



ZHI WANG, JUN-WEI LUO, AND ALEX ZUNGER PHYSICAL REVIEW MATERIALS 3, 044605 (2019)

FIG. 7. EBS of PbS-PbTe supercell (32 f.u.) at (a) S = 9.375%, (b) 18.75%, (c) 25%, and (d) 31.25%, unfolded to the distorted R3m
PbTe primitive Brillouin zone. All EBS are plotted along the same �-Z-U direction in the primitive Brillouin zone [Z = (π/a1, π/a2, π/a3),
U = (π/2a1, 2π/a2, π/2a3)]. The white dot lines are only for eye-guiding to show the coherent splitting on VBM along Z-U .

Grants No. 61888102 and No. 61811530022. We thank Qi-
hang Liu for fruitful discussions on the subject. The ab initio
calculations were done using the Extreme Science and Engi-
neering Discovery Environment (XSEDE), which is supported
by National Science Foundation Grant No. ACI-1548562.

APPENDIX: SPECTRAL FUNCTIONS
IN ARPES AND IN EBS

When explaining the spectral function of primitive Bril-
louin zone in ARPES, a common method is to assume the out-
coming photoelectron can be described by a single planewave
eik·r, i.e., a free-electron final state, therefore the spectral

function can be written as [36,37]

Ã(k, hν ) =
occ∑

m

BZ∑

K

|P · k|2|〈eik·r | Km〉|2δ(Em − Ek + hν),

(A1)

where |Km〉 is the mth electronic state with energy Em at
K in Brillouin zone of measured sample, hν is incoming
photon energy, Ek is the kinetic energy of eik·r, and the term
|P · k|2 is called the matrix element effect. Ã(k, E ) in Eq. (A1)
represents how much wave-vector character of k is lost or
preserved in |Km〉 when Ek = Em + hν.
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FIG. 8. EBS in a Pb0.75Sn0.25Se 256-atom supercell. � =
(0, 0, 0), L0 = (0.5, 0.5, 0.5), and �2 = (1, 1, 1) (unit of length:
2π/a). The white solid line at L0 marks the boundary of first and
extended BZs. EBS shows the same intensity along path 1 (first BZ)
and path 2 (extended BZs).

EBS, meanwhile, offers another way to calculate the spec-
tral function: instead of single planewave, one can use the
Bloch function in primitive cell |kn〉 as the final state, i.e., one
calculates spectral function A(k, E ) from |〈kn | Km〉|2 instead
of |〈eik·r | Km〉|2 as shown in Eqs. (5)–(7), which is the basic
concept of EBS that we describe in Sec. IV. The EBS spectral
function A(k, E ) from Eq. (7) also represents the k character
in |Km〉, meaning that it is comparable to Ã(k, E ) in Eq. (A1).

Under the single planewave final state assumption
[Eq. (A1)], it has been proved that [36] the spectral function
Ã(k, E ) can be different at the equivalent k points in differ-
ent Brillouin zones, e.g., first Brillouin zone and extended
Brillouin zone, even when omitting the matrix element effect.
However, because the final state is Bloch function, A(k, E )
from Eq. (7) has to obey the Bloch theorem, thus A(k, E )
is always the same at equivalent k points in different Bril-
louin zones. As an example, in Fig. 8, we show the EBS of
Pb0.75Sn0.25Se 256-atom supercell along the first and extended
Brillouin zones: � is in first BZ, L0 = (0.5, 0.5, 0.5) is on the
boundary of first and second BZs, while �2 = (1, 1, 1) (all
have unit of 2π/a) is in the extended BZ. The boundaries of
first and extended BZs have been shown by white solid line.
It can be seen that the intensities are the same for equivalent k
points in first and extended zones (same intensity along �-L0

and �2-L0).
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