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We apply machine learning (ML) methods to a database of 390 experimentally reported ABO3 compounds to
construct two statistical models that predict possible new perovskite materials and possible new cubic perovskites.
The first ML model classified the 390 compounds into 254 perovskites and 136 that are not perovskites with a
90% average cross-validation (CV) accuracy; the second ML model further classified the perovskites into 22
known cubic perovskites and 232 known noncubic perovskites with a 94% average CV accuracy. We find that
the most effective chemical descriptors affecting our classification include largely geometric constructs such as
the A and B Shannon ionic radii, the tolerance and octahedral factors, the A-O and B-O bond length, and the
A and B Villars’ Mendeleev numbers. We then construct an additional list of 625 ABO3 compounds assembled
from charge conserving combinations of A and B atoms absent from our list of known compounds. Then, using
the two ML models constructed on the known compounds, we predict that 235 of the 625 exist in a perovskite
structure with a confidence greater than 50% and among them that 20 exist in the cubic structure (albeit, the
latter with only ∼50% confidence). We find that the new perovskites are most likely to occur when the A and
B atoms are a lanthanide or actinide, when the A atom is an alkali, alkali earth, or late transition metal atom,
or when the B atom is a p-block atom. We also compare the ML findings with the density functional theory
calculations and convex hull analyses in the Open Quantum Materials Database (OQMD), which predicts the
T = 0 K ground-state stability of all the ABO3 compounds. We find that OQMD predicts 186 of 254 of the
perovskites in the experimental database to be thermodynamically stable within 100 meV/atom of the convex
hull and predicts 87 of the 235 ML-predicted perovskite compounds to be thermodynamically stable within 100
meV/atom of the convex hull, including 6 of these to be in cubic structures. We suggest these 87 as the most
promising candidates for future experimental synthesis of novel perovskites.
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I. INTRODUCTION

The ABO3 compounds, particularly those with a perovskite
structure hold a special place in the arena of design and
discovery of new materials with interesting and technology-
enabling target functionalities [1–3] because of the range of
elements involved, the variety of crystal structures possible,
and the breadth of important physical properties they exhibit.
The perovskite crystal structures can exist not only in the cubic
“undistorted” structure, but also in a wide variety of structural
distortions [4]. Common to all is the ABO3 chemical formula
where the A atom is nine- to 12-fold coordinated by oxygen,
whereas the B atom is sixfold coordinated by oxygen, and
most importantly, the BO6 octahedra are corner-connected
in all three directions. Perovskite structures include space
groups that are subclasses of cubic, orthorhombic, tetragonal,
rhombohedral, monoclinic, and triclinic crystals. We adopt the
definition of Zhang et al. [5] who limit these space groups
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to the 15 unique structures, noted by Lufaso and Woodward
[4]. There are about 254 experimentally synthesized inorganic
perovskites, of which 22 are cubic and 232 noncubic (Tables I
and II, Ref. [6]). A number of interesting physical properties of
ABO3 compounds depend on whether they have a perovskite
structure or not, and also if they have a perovskite structure,
whether they are cubic perovskites or noncubic perovskites.
The perovskite structure, for example, is characteristic of high-
temperature superconductors [7], colossal magnetoresistors
[8], and multiferroic materials [9]. Cubic perovskites are
important as ionic conductors [10] and as a new class of
topological insulators [11,12]. Accordingly, there is both an
interest and need to design and discover new perovskites.

In this paper, we apply two machine learning (ML) methods
to (a) train an ML model to classify the ABO3 compounds,
which were assembled from the experimental literature as
“perovskites or not,” (b) train another ML model to classify
experimentally known perovskites as “cubic or not,” and then
(c) use these models to predict whether members of a proposed
set of ABO3 compounds (not included in the training set)
are perovskites. Finally (d), we compare our ML predictions
for the proposed ABO3 compounds with density functional
theory (DFT) and a convex hull (CH) analysis of stability
with respect to decomposition into other phases, using the
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TABLE I. The mean accuracy and the standard deviation (STD)
of the predictions of our RFC and GTBC models on the test data.
These quantities were computed on the basis of 100 repetitions of the
machine learning fits. We give these statistical quantities for each pair
of features used in this paper.

Perovskite or Not Cubic or Not

RFC GTBC RFC GTBC

Feature Pair Mean STD Mean STD Mean STD Mean STD

MA,MB 0.860 0.028 0.841 0.024 0.913 0.016 0.914 0.016
dAO,dBO 0.859 0.022 0.848 0.024 0.918 0.016 0.928 0.016
rA/rO,rB/rO 0.903 0.017 0.899 0.020 0.933 0.015 0.937 0.016
O,t 0.898 0.017 0.900 0.018 0.933 0.016 0.933 0.015

Open Quantum Materials Database (OQMD) [13–15]. Items
(c) and (d) are the new findings presented in this paper
where we report predictions of possible new formable and
stable ABO3 perovskite compounds. ML and DFT-based con-
vex hull (DFT-CH) methods provide complementary insights
into whether an ABO3 compound can exist in a perovskite
structure.

We also consider a list of 625 ABO3 compounds (given in
Tables III and IV, Ref. [6]) that are not present in the training
set and assembled from charge conserving combinations of
A and B atoms, and predict from ML that 235 compounds
might be perovskites, including 20 in cubic structure, the latter
albeit with only ∼50% confidence (only as good as random
guessing). We predict from ML that new perovskites are most
likely to occur when the A and B atoms are a lanthanide
or actinide, or when the A atom is an alkali, alkali earth, or
late transition metal atom, and when the B atom is a p-block
atom. The DFT-CH description, as implemented in the OQMD,
predicts 87 of the 235 ML-predicted perovskite compounds to
be thermodynamically stable within 100 meV/atom of the CH
(which is our threshold for either decomposition or compar-
ison to other ABO3 structures with the same composition),
including 6 of these to be in cubic structures. The predictions
of a number of possible interlanthanides and interactinides
are noteworthy as compounds in these classes are generally
difficult to calculate accurately with ab initio methods but
present no computational challenge for the ML methods.

TABLE II. U values for 11 elements used in the high-throughput
density functional theory calculations.

Element U value (eV)

V 3.1
Cr 3.5
Mn 3.8
Fe 4.0
Co 3.3
Ni 6.4
Cu 4.0
Th 4.0
U 4.0
Np 4.0
Pu 4.0

TABLE III. Comparison of the classifications of experimentally
synthesized ABO3 compounds (referred to as “DATA” in the table)
with those predicted from ML. The word “cubics” refers to a
perovskite in the cubic structure (Pm3̄m). Similarly, “noncubics”
refers to a perovskite in a structure other than cubic. Finally, “non-
perovskites” refers to all other cases.

ML: ML: ML:
cubics noncubics nonperovskites

DATA: cubics 19 3 0 22
DATA: noncubics 0 225 7 232
DATA: nonperovskites 0 18 118 136

19 246 125

The OQMD database was built from DFT calculations at
zero temperature and pressure and can automatically construct
the ground-state CH [13–15] of a given A-B-O system,
including all possible combinations of competing phases. An
ABO3 compound is stable in a given structure if it lies on
the CH. However, metastable phases can often be synthesized,
and hence we consider also a reasonable range of “degree of
metastability” (DOM), whereby a structure predicted to lie
near, but somewhat above the CH (<100 meV/atom) will
also be a candidate for metastable formability (see Sec. III C)
[16]. While the question of formability can be experimentally
validated by synthesizing the compounds in the laboratory,
validation of stability is expected to be nontrivial due to
the existence of potentially many energetically competing
metastable structures and complex kinetic pathways before
reaching the final stable state. Our hypothesis, supported by
other analyses [16], is that if a compound is predicted to be
thermodynamically stable then it should be synthesizeable. If a
compound has a small, but positive, DOM (0–100 meV/atom),

TABLE IV. Examination of the cubic vs not cubic ML predictions
by DFT phonon calculations for 14 ABO3 compounds that are
classified as cubic perovskite by ML. We explored two flavors of GGA

(PBEsol and PBE) and two different pseudopotentials (ultra-soft and
PAW). “Not cubic” indicates that the phonon calculations found the
corresponding ABO3 compound to be dynamically unstable in the
cubic perovskite crystal structure. “Cubic” means that the phonons of
the cubic phase at T = 0 are normal.

Phonon calculations (QE)

Compound PBEsol ultrasoft PBE PAW

BaVO3 Cubic Not cubic
CsBiO3 Cubic Cubic
CsReO3 Cubic Cubic
CsSbO3 Cubic Cubic
CsTaO3 Not cubic Not cubic
CsWO3 Cubic Cubic
RbBiO3 Not cubic Cubic
RbReO3 Cubic Cubic
RbSbO3 Not cubic Cubic
RbWO3 Cubic Cubic
TlBiO3 Not cubic Not cubic
TlNbO3 Not cubic Not cubic
TlReO3 Cubic Cubic
TlTaO3 Not cubic Not cubic
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then it could possibly be formable. We acknowledge that
whether a given stoichiometry will form a compound or not
will depend on synthesis conditions, which we cannot predict.
Out of the 235 compounds predicted by ML to be in a
perovskite structure, 87 are found to be OQMD stable or
nearly stable in these structures. We thus suggest that these
87 are most likely formable (see Appendix). Some of the
notable ABO3 perovskites that we predict by superimposing
the ML predictions with the DFT-based CH analysis are
EuIrO3, BiVO3, EuVO3, NdRuO3, and EuMnO3. Validating
our suggestions is a challenge we propose to experimentalists.

II. BACKGROUND

A. Classification of materials by ML

ML is a statistical approach, which can be applied to
the identification of classes of new materials based on ex-
isting knowledge of already formed members. For decades,
researchers have used diagrammatic classification of the pre-
viously measured structure types of broad chemical groups
of synthesized compounds in terms of phenomenological
chemical coordinates describing the constituent elements (such
as the atomic radii, quantum orbital radii, electronegativities,
etc.). The historical precursors to ML were “structure plots,”

i.e., scatter plots of two chemical coordinates of a material class
having one or more targeted properties (generally, the crystal
structure type). Straight lines were often drawn on the plot by
hand to group materials with similar characteristics. Such plots
often capture trends in materials behavior reflecting trends in
the periodic table. Possible new materials are defined by the
vacant regions of the plot. One looks for materials to occupy
these regions in the vicinity of those whose properties one
is seeking to enhance. Likely, the best known of the earliest
structure plots are those of Mooser and Pearson, Phillips and
Chelikowsky for binary AB octet compounds, Zunger for octet
and nonoctet structures, and those of Villars and Pettifor for
classifying ternary phases [17–20].

As the databases of compounds subject to such classification
queries have increased in size [for example, the growth of
the Inorganic Crystal Structure Database (ICSD)] [21,22]
and the number of pertinent chemical coordinates diversified,
ML methods have become a popular extension of the two-
dimensional structure plot. Such methods have been applied
to AB, AB2, and ABO3 materials with improved accuracy in
predicted capabilities relative to the traditional structure plots
[23–29] as well as to compounds with arbitrary stoichiometries
[30,31]. Many of these ML applications start with materials
known to exist and construct statistical models that predict

Possible list of ABO3 compounds (625)

Machine Learning 1

Perovskite or Not?

Machine Learning 2

Cubic or Not?

Predictive study

(c)

non-cubic

cubic

perovskite

non-perovskite

(235)

(390)

(20)

(215)

Database of known perovskite and 
non-perovskite ABO3 compounds

Machine Learning 1

Classify ABO3 compounds

Machine Learning 1

perovskite non-perovskite

(a)

390

(254) (136)

Database of known cubic and 
non-cubic perovskites

Machine Learning 2

Classify cubic and non-cubic perovskites

Machine Learning 2

(b)

non-cubiccubic

254

(232)(22)

FIG. 1. Our ML workflow for the prediction of new ABO3 cubic perovskites. We build two independent ML models for (a) the classification
of ABO3 into perovskites or not (machine learning 1). We assembled a data set of 390 ABO3 compounds from surveying the literature, which
included 254 perovskites and 136 nonperovskites. (b) Classification of cubic and noncubic ABO3 perovskites (machine learning 2). Out of
the 254 perovskites, there were 232 in the noncubic structures (e.g., orthorhombic, monoclinic, tetragonal, rhombohedral, etc.) and 22 in the
cubic structure (space group, Pm3̄m). To predict whether a new ABO3 compound will have a cubic perovskite structure or not, we utilize
these two ML models in a hierarchical manner [as shown in (c)]. We assembled a list of 625 possible ABO3 compounds that were not present
in the training set. Machine learning 1 predicted 235 as possible in the perovskite structure. Machine learning 2 further predicted 215 ABO3

compounds in the noncubic perovskite structures and 20 in the cubic perovskite structure.
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expected properties of materials not yet known to exist.
Since the input to the learning process consists of previously
synthesized compounds, the ensuing ML predictions provide
insights into chemistries in a given stoichiometry that are
probable in a crystal structure type without commenting on
whether they are thermodynamically stable or not.

B. Predicting new ABO3 perovskites by ML

Our overarching ML strategy is shown in Fig. 1. We first
demonstrate that the ML models can classify the known 390
ABO3 compounds into the 254 perovskites and 136 that
are not perovskites with 90% average cross-validation (CV)
accuracy determined by a stratified CV procedure [Fig. 1(a)].
This success, in part, requires identifying effective chemical
descriptors (features) that enable such classification. Then, we
build another set of ML models to classify all formable 254
perovskite structures into the 22 known cubic perovskites and
232 known noncubic perovskites finding similarly 94% CV
accuracy [Fig. 1(b)]. We interpret that the misclassifications
of our models as more of a source of important physical
information than as a failing of the model. For example, KTaO3

and SrVO3 were classified as noncubic perovskite by ML
whereas they were reported to be formed as cubic perovskites.
They are likely poised to undergo a structural transition from
the experimentally observed cubic to noncubic perovskite
structure. This possibility remains to be experimentally val-
idated (discussed in Sec. IV C).

We next apply the trained ML models constructed from
these classifications of known compounds to predict whether
they would be in cubic or noncubic perovskite crystal structures
for a list of 625 possible ABO3 stoichiometries [Fig. 1(c)],
which are not in our current compilations of perovskite mate-
rials and are generated from charge conserving combinations
of A and B cations. It is unknown to the ML models whether
any of the 625 assembled stoichiometries is chemically stable
at this stage because stability data were not included in the ML
training. Stability will be assessed by DFT below. We formulate
this prediction problem as a two-step task. In the first step, we
use our trained ML models [Fig. 1(a)] to screen for compounds
and classify them into perovskites and those that are not
perovskites. Only those ABO3 compounds that are classified
as perovskites reach the second step, where new ML models
are trained [Fig. 1(b)] then used to classify cubic from noncubic
perovskites. Using this strategy, we predict a total of 235 ABO3

compounds (not present in the training set) in the perovskite
structure, including 20 in the cubic perovskite structure. We
also identify chemical trends in the A-B element pairs that are
predicted to be perovskites. They are the following. (i) When
the A and B atoms are interlanthanides and interactinides, the
resulting ABO3 compound is predicted to be a perovskite,
i.e., lanthanides and actinides appear to substitute for each
other relatively easily. (ii) When the A atom is an alkali,
alkaline earth, or a late transition metal atom then there is
a strong likelihood for the compound to be in a perovskite
structure. (iii) Similarly, when the B atom is a p-block atom,
it favors the perovskite structure. These specific trends are
consistent with previous ML [26], to some extent the HT-DFT
studies of Emery et al. [15], and with the recent analyses

of known compounds of various structures and element sets
[32,33].

C. Predicting stability of compounds by DFT
convex hull construction

Our ML models can predict whether a particular ABO3

compound will have a perovskite crystal structure or not and
if it is a perovskite then whether it is cubic or not. However,
the models lack the thermodynamical stability insights, i.e.,
they cannot indicate whether those compounds are stable
or not, or whether they would readily decompose to other
products. This is mainly because our training data set lacks
such detailed thermodynamic information. This question can
be addressed by first-principles based total energy calculations
and CH analysis, which can indicate the degree to which a
hypothetical compound is on or above the equilibrium CH. One
can thus retain both stable compounds and those with a degree
of metastability (DOM) energy not higher than a reasonable
threshold value. One generally expects that compounds formed
in the laboratory by near equilibrium growth methods (such as
melt or solution growth, but not via artificial layer-by-layer
growth methods from the gas phase such as molecular beam
epitaxy, or pulsed laser deposition) are thermodynamically
stable or weakly metastable. However, not all synthesizeable
compounds are stable. Many metastable compounds that are
known to form are protected from decomposition by in-
surmountable kinetic barriers [34]. Also, stable compounds
may have thus far escaped successful synthesis (for example,
because the right experimental conditions have not yet been
found), and such combinations may also be used to (mis)train
ML, whereas DFT will identify them as stable.

First-principles calculations based on DFT provide a means
to identify stable, or weakly metastable materials. A particular
implementation is based on “high-throughput calculations” in
which a large series of DFT calculations are evaluated in an
automatic high-throughput (HT) fashion. The total energy data
for the compounds in the HT-DFT data set can then be used to
perform a CH analysis in which the lowest energy combination
of phases can be identified for an arbitrary stoichiometry (say,
ABO3) and the structure type (or types) that leads to the
lowest energy from a group of pre-selected competing phases
is identified. The preselected competing phases include (i) al-
ternative crystal structures of the target compound ABO3 itself
(i.e., nonperovskite ABO3) and (ii) decomposition products of
the target compound (such as A + B + 3/2O2 or AO + BO2).
A target compound with an energy lower than those in the
combined groups (i) and (ii) is declared a stable ground-state
structure. If its energy is higher, then it is declared unstable.
If unstable, but close to the CH, the compound might still be
potentially formable as a metastable phase with a reasonable
level of DOM.

A number of open source implementations of the DFT-
CH approach to predicting compound stability are available
[14,35,36]. In the analysis that follows, we used the results of
the predictions available from the OQMD. Instead of referring
to these results as DFT-CH, we refer to them as OQMD to be
specific about the source of the DFT-CH predictions. Different
open source databases can give different predictions depending
on the details of the DFT and the construction of the CH.
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III. INPUTS AND METHODS

A. Database of known ABO3 compounds

Our database of ABO3 compounds consists of 390 com-
pounds and was created via an augmentation of the database
of 354 ABO3 compounds explored earlier by Pilania et al.
[26]. These data included those compiled by Zhang et al. [5]
who gathered their data from a number of resources, including
the Inorganic Crystal Structure Database (ICSD) and other
published data. We added to our earlier 354 compounds 36 new
ABO3 compounds taken from Ref. [37] and those compiled by
Emery et al [15]. We note that in all 390 compounds the sum
of the valences of A and B adds to six so these are “charge
balanced compounds.” For example, each A-B pair has nom-
inal I-V, II-IV, or III-III valences. No A-B pairs in this set
have IV-II or V-I valences. Each previously documented ABO3

compound has a label signifying whether it is a perovskite
or not. Compounds with the ABO3 formula that satisfy the
definition of “perovskite” (given in Introduction) are labeled
“perovskite.” Compounds with the ABO3 formula that do not
satisfy the definition, for example, ones whose octahedra are
not corner-sharing and ones that decompose into constituents
without forming any ABO3 compound (failed synthesis [37]),
are labeled “nonperovskites.” This definition is consistent with
that of Zhang et al [5]. Of the 390 compounds, 254 are
perovskites and 136 are not perovskites (Table I, Ref. [6]).
We changed the label for BaRuO3 from nonperovskite to
perovskite (but not cubic), following the work of Jin et al
[38]. Each perovskite is also labeled signifying whether it is
cubic or not; 22 perovskites are cubic and 232 are noncubic
perovskites.

The structures for most materials were experimentally
determined at ambient conditions; however, some were de-
termined under nonambient conditions. Those designated as
a perovskite are single-phase materials and could be either
thermodynamically stable or metastable. Those designated as
nonperovskite could be a single phase or mixed phase material
that is thermodynamically stable or metastable. Our database
lacks this more descriptive information.

For each compound, we include values of various chem-
ical coordinates (features) associated with their A and B

atoms or the chemical bonds. Initially, our database had 30
features. Most were classical chemical constructs obtained
independently of structure classification such as atomic radii,
orbital radii, and electronegativities. Other chemical scales,
the Mendeleev numbers, were selected explicitly for struc-
tural classification without attributing intrinsic, independent
chemical significance to these numbers. Our preprocessing,
however, showed that many features in the database were not
as influential in classifying the compounds as perovskite or not
or as cubic or not as four sets of feature pairs previously used
in structure plots [5,39–41]. These pairs are: the Shannon ionic
radii [42] of the A and B atoms, the tolerance and octahedral
factors, the bond valence theory estimates of the A-O and B-O
bond lengths [43], and the Villars’ Mendeleev numbers [44].
With the exception of the Mendeleev numbers, these feature
pairs provide a geometric characterization of a hard-core ionic
sphere model of the crystal structure. The values of these
features for each compound in our database are given in Table I
of Ref. [6].

The Shannon radii are well-used estimates of an element’s
ionic hard-sphere radii extracted from experiment. With them,
we computed the octahedral and Goldschmidt tolerance fac-
tors. These dimensionless numbers are commonly used metrics
in studies involving perovskite or nonperovskite structures of
materials. They measure the ionic misfit of the B atom and the
deviation of the structure from an ideal cubic geometry. The
octahedral factor for an ABO3 solid is

O = rB/rO, (1)

where rB and rO are the Shannon radii for the B atom and
oxygen. We used rO = 1.4 Å. The tolerance factor is defined
as

t = rA + rO√
2(rB + rO)

. (2)

From empirical studies of stable ABO3 solids [5,39–41],
it is well known that hexagonal nonperovskite structures
are favored if t > 1, cubic perovskite if 0.9 < t < 1.0, and
orthorhombic perovskite if 0.75 < t < 0.9. If t < 0.75, the
compound is generally not a perovskite. If t = 1, the material is
perfectly cubic. Sixfold coordination seems to require 0.414 <

O < 0.732. O = 0.435 corresponds to the arrangement where
hard sphere B and O ions are touching in a close-packed
arrangement. Empirical studies have also correlated crystal
structures with ranges of rA and rB values: generally, we must
have rA > rB. The A atoms are in a 12-fold coordinated site
if rA > 0.9 Å and in a sixfold coordinated (octahedral) site if
rA < 0.8 Å, as long as rB < 0.7 Å.

In bond valence theory, a valence

Vi =
∑

i

νij (3)

is assigned to an ion (cation or anion) as the sum of valences

νij = exp (d0 − dij)/b (4)

associated with its chemical bonds with neighboring ions
of opposite charges. dij is the bond length, and d0 and b

are parameters fit to experimental data. d0 depends on the
cation-anion pair. b has a nearly universal value of 1.4 Å. If
νij is taken to be the nominal valence of atom i divided by the
number of its nearest neighbors, then the dij bond length is
easily computed from (4). The Zhang et al. database has two
features, the bond valence theory predictions, which account
for a bond length increasing or decreasing to accommodate
the changes in the valence of ion pairs due to charge transfer
among the ions, of the A-O and B-O bond lengths dAO

and dBO.
Whereas the best known Mendeleev numbers are due to

Pettifor [20] (replacing the atomic numbers by numbers deter-
mined by their ability to fit the observed crystal structure in a
structure map), we use here the Mendeleev numbers of Villars
et al. [44]. These numbers sequence the elements in structurally
similar groups. Villars labels the elements sequentially in their
periodic table columns always from top to bottom. The s-block
elements are in {1,10}, Sc=11, Y=12, the f -block elements
(lanthanides and actinides) are in the interval {13,42}, the
d-block elements are in {43,66}, and the p-block elements are
in {67,10}. The lanthanides and actinides are regarded as ten
columns as opposed to two rows. The message from Pettifor,
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FIG. 2. The perovskite (black) or not (red) structure plots of the known ABO3 compounds for the four features pairs we adopted for our
analysis. The top left is the structure plot when the Villars’ Mendeleev numbers are used; top right, the Shannon radii for the A and B atoms
(divided by Shannon’s ionic radii for oxygen); bottom left, for the bond valence theory A-O and B-O bond lengths; bottom right, the tolerance
and octahedral factors.

Villars, and others who proposed permutations of the atomic
numbers of the elements to accentuate grouping of materials
is that chemical trends in atomic co-ordination and crystal
structure are best seen by grouping elements by column as
opposed to grouping by rows.

The structure plots for each of the four feature pairs are
given in Fig. 2. A black dot marks a perovskite; a red dot, a
nonperovskite. These plots clearly illustrate the difficulty one
would have drawing a single few-sided polygon to separate
cleanly the perovskites from those that are not. These plots
illustrate the challenges confronting ML.

B. Technical details on ML classifiers

Classification is a form of supervised learning, meaning the
prediction of one variable (the class label) is based on the values
of the other variables (the features). We used the random forest
(RFC) [45] and gradient tree boosting (GTBC) [46] classifiers,
as implemented in the open-source software package SCIKIT

learn [47], to build our ML models. These classifiers are
ensemble methods, meaning they use a combination of many
models, each trained on the data, to produce the final model.
At the core, RFC and GTBC use a decision tree classifier.
A random forest is a simple average of the sum of many
classifiers, each a decision tree fit to a bootstrap sample of
the training data. Gradient tree boosting is a weighted sum

of many decision trees of shallow depth, which makes the
model a weak classifier of the data. The individual weak
classifiers are built recursively such that in constructing the
new classifier from the current one, the data are reweighted.
What was misclassified by the present classifier is weighted
more heavily in the construction of the new classifier. To set
the hyperparameters in the models, we used a stratified shuffle
split cross-validation scheme where we created our training and
test data sets on the basis of a 50/50 split, formed randomly but
in such manner that the percentage of perovskites was the same
in each split as it was in the entire data set, and for the cubic or
not case, the percentage of cubic was the same in each split as
it was in the perovskite subset of the database. In this scheme,
we create the model and perform its testing on subdatabases
having similar populations. While a 50/50 split means building
the model with a smaller database, we found the adopted
scheme useful for the cubic or not case. The cubic structures are
only 10% of the perovskite data. A more conventional 75/25
or 90/10 split has large fluctuations in the number of cubic
structures in the training and test sets and subsequently larger
variances in the predictions. The 50/50 spilt seemed to help
control the means and variances of the test set predictions.

The relevant hyperparameters for random forests were the
number of bootstrap samples, which we set at 200, and the
maximum tree depth, which we set at 6 for the perovskite
or not case and at 4 for the cubic or not case. For gradient
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tree boosting, we set the subsampling of the training data at
50%, the number of ensembles at 2500 for the perovskite or
not case and 2000 for the cubic or not case, and the learning
rate at 0.001. In the RFC case, deep tree depths resulted in a
significant overfitting of the training data, often approaching
100% accuracy but with a large variance. We simply decreased
the depth, observing the accuracy of the predictions on the
test data increasing and the variance decreasing. When the
mean accuracy started to decrease, we stopped. We adjusted
the hyperparameters for GTBC similarly but set the maximum
tree depth of its trees to 3 to make the classifier weak. We made
these adjustments for the octahedral and tolerance factor case,
whose model gave the initial highest accuracy and hence had
the greatest likelihood being overfit, and applied them to the
classifiers for the other feature pair cases.

In Table I, we give the mean and standard deviations of
the different model predictions for the test data. We computed
these on the basis of 100 runs for each classifier (model) built.
The histograms of the predicted accuracy were reasonably
symmetric with the median of the predictions nearly equal to
the mean. By accuracy of the predictions, we mean the number
of times the model predicted correctly the entries in the training
or the test data divided by the number of data in the given
sub-data-set.

C. Technical details on DFT calculations of stability of different
ABO3 compounds

The OQMD [13,14] calculations were performed using
the Vienna ab initio simulation package (VASP) [48,49]
using projector-augmented wave method potentials (PAW)
[50] and the Perdew-Burke-Ernzerhof (PBE) [51] generalized
gradient approximation to the exchange-correlation functional.
DFT+U [52,53] was used for some elements (V, Cr, Mn, Fe,
Co, Ni, Cu, Th, U, Np, Pu, see Table II) and calculations
containing 3d transition elements (Sc-Cu) or actinides are
spin-polarized with ferromagnetic alignment of spins.

For all calculations, �-centred k point meshes are used.
The electronic self-consistency (for a given set of ion posi-
tions) is converged to within 10−4 eV/atom. Any calculations
containing d-block or actinide elements are spin polarized
with a ferromagnetic alignment of spins to capture possible
magnetism, with initial magnetic moments of 5 and 7 μB for the
d-block and actinide elements, respectively. It should be noted
that this approach will not capture more complex magnetic
ordering, such as antiferromagnetism. For several 3d- and
f -block elements, the GGA+U approach is implemented to
improve the exchange and correlation description of the lo-
calized charge density when these elements are in compounds
with oxygen.

All calculations were completed in a two-step scheme.
First, the structures were fully relaxed, followed by a static
calculation. The relaxation calculations are performed at a
plane-wave basis-set energy cutoff at the energy recommended
in the VASP potentials of the elements in the structure, and
6 000 k points per reciprocal atom. The quasi-Newton scheme
is used to optimize the structure to within 10−3 eV/atom. The
final static calculation of the structure is performed at an energy
cutoff of 520 eV using tetrahedral k-point integration. The 520
eV cutoff is chosen because it is 25% higher than the highest

recommended energy cutoff over all of the potentials used.
This constant cutoff for all calculations ensures that all the
energies calculated in OQMD are compatible, and can be used
to evaluate the formation energies of compounds and T = 0 K
ground-state phase diagrams. More details on the OQMD DFT
framework can be found in Kirklin et al. [14].

The OQMD currently contains over 470 000 DFT calcu-
lations consisting of ∼40 000 experimentally observed com-
pounds from the ICSD [21,22] and ∼430 000 hypothetical
structures. Among those hypothetical structures, the OQMD
contains 5329 ABO3 cubic perovskite and 2162 rhombohedral,
tetragonal, and orthorhombic perovskites that were calculated
in a previous HT-DFT study [15,54]. Those three distortions,
in addition to the cubic phase, are the most common perovskite
structures found in the ICSD and in the literature. From OQMD
we extract two quantities, �H (in eV/atom) and �E (in
meV/atom), which refers to formation enthalpy and distance
from the CH, respectively.

Thus OQMD contains DFT calculations of both exper-
imentally observed compounds from ICSD plus those for
hypothetical compounds that are not found in the ICSD. To
construct the convex hull for a given A-B-O element set, it uses
the total energy data computed by DFT of all compounds in the
data set—both existing and hypothetical. As a result, if we have
an ABO3 compound which is already in the OQMD (because
it is in the ICSD), then the distance from the convex hull will be
either a positive value or zero. On the other hand, if we have a
new, hypothetical ABO3 compound (not in the OQMD), then
its distance from the convex hull will be evaluated with respect
to the stable compounds in the OQMD. In this case, the distance
from the convex hull can take either a positive (the hypothetical
ABO3 compound is metastable or unstable) or negative value
(the hypothetical ABO3 compound is more stable than other
compounds that lie on the convex hull). The routines for
extracting these data are available through a web interface on
https://www.oqmd.org or through the QMPY PYTHON package
(https://github.com/wolverton-research-group/qmpy).

We note an alternate way to define the convex hull distance is
just the energy of the compound minus the energy of the convex
hull for all compounds in question, including the proposed
compound. Under this definition the convex hull for a stable
compound is zero, and there can be no negative value of the
convex hull distance. The definition we adopted gives more
information about whether a compound is “barely” on the
convex hull or whether it breaks through the hull significantly.

Hypothetical prototypes are generated by a combinatorial
analysis of possible combinations of atoms satisfying certain
constraints with respect to valence, compatibility with certain
crystal structures, etc. Both the OQMD and ICSD databases
are constantly evolving as new compounds are added to ICSD
and new prototypes are added to OQMD. Out of the 390
compounds in our database, the stability of 387 were computed
in OQMD, and out of the 625 compounds in our list of
possibilities, 598 were computed in OQMD.

D. Phonon calculations

We also performed spot DFT phonon calculations to provide
additional information to address the discrepancy in the pre-
dictions of new cubic perovskites between ML and OQMD. To
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accomplish this, we could have compared the total energy of
ABO3 in cubic structure to that of the other 14 perovskite
structures. Another approach is to examine if at T = 0 K
an assumed structure has dynamically unstable phonons. If
it does, then another structure will need to replace the cubic
structure at some temperature if the compound is to be stable.
We note that these calculations are not part of the data stored
in the OQMD database.

For these phonon calculations, we used the plane-wave
pseudopotential code, QUANTUM ESPRESSO (QE) [55]. A plane-
wave cutoff of 60 Ry was used during the ionic and electronic
relaxation steps. We explored two flavors of the generalized
gradient approximation (GGA), namely PBE and PBE for
solids (PBEsol), to calculate the total energies. Within the
PBE [51] and PBEsol functionals [56], we used the projector
augmented-wave (PAW) [50] and ultrasoft method [57] for
generating the pseudopotentials, respectively [58]. We used
PBE PAW with QE for establishing a direct comparison with
OQMD, which also uses PBE PAW functionals but with
VASP. We also performed calculations using PBE ultrasoft
functional with QE and found negligible difference in the
results (lattice constant of the cubic ABO3 perovskites and
the phonon spectra) between PBE ultrasoft and PBE PAW
functionals with QE. In addition, we explored the PBEsol
ultrasoft functional because it provides an improved de-
scription of the crystal structure for solids [59–68]. Having
learned that PAW and ultrasoft produce comparable results
with negligible differences, we chose the PBEsol ultrasoft for
our calculations. Our spot calculations involving vanadium
(e.g., BaVO3) were performed within the DFT+U formalism
[69] with a ferromagnetic spin-order imposed on the V atom.
An effective Hubbard-U of 2 eV was chosen. In calculations
involving rhenium (Re) atoms, we explored DFT, DFT+U

(U = 1.5 eV), spin-polarized (ferromagnetic spin order), and
non-spin-polarized calculations. All Re-containing calcula-
tions converged to a nonmagnetic ground state and, therefore,
we only report the results from non-spin-polarized DFT cal-
culations. The DFT optimized lattice constants for the ABO3

compounds in thePm3̄m cubic structure are given in Table V in
Ref. [6].

To determine the dynamical stability, we performed frozen
phonon calculations using the PHONOPY code [70], which uses
the DFT forces from QE as input for calculating the dynamical
matrices and interatomic force constants. We employed a
supercell of size 2 × 2 × 2 with 40 atoms for the frozen phonon
calculations. Our DFT phonon calculations were performed by
assuming a ferromagnetic spin-order imposed on the V atom.

IV. RESULTS

Using the two classifiers (random forest and gradient
tree boosting), built from the four different feature pairs
(Mendeleev numbers of the A and B atoms, the bond valence
theory A-O and B-O bond lengths, the Shannon ionic radii of
the A and B atoms, and the tolerance and octahedral factors),
and applying them to the case of perovskite or not and cubic
perovskite or not yields 16 sets of results. In Figs. 1 through 8
of Ref. [6], we give results for all 16 sets. Here we present two
sets of representative results, both obtained by the gradient tree
boosting method.

Because of their length, we provide comprehensive tables
of the ML classification and the OQMD DFT-CH descrip-
tion of the 390 known ABO3 perovskites, cubic perovskites,
and nonperovskites as well as the 625 corresponding cases
for compounds not included in the learning set in Ref. [6]
(Tables II–IV). All these tables represent the state-of-the-
art understanding of the capabilities and possible shortcom-
ings of the two leading approaches to predictive theories of
structures—ML based on learning from experiment and ab
initio DFT-CH T = 0 K thermodynamics.

A. ML classification of experimentally synthesized
perovskite vs nonperovskites

We first consider the ML classification of the known formed
ABO3 compounds into a perovskite or nonperovskite. In Fig. 3,
we present for octahedral and tolerance factor feature pair
the compounds that GTBC misclassifies and for each the
number of times the misclassification was a false positive or
false negative. For the false positives, the solid was classified
as a perovskite but is listed in the data as not being a
perovskite. For the false negatives, the solid was classified
as not being a perovskite but is listed in the data as being
a perovskite. Compounds not listed in these figures were
always classified correctly as a perovskite or nonperovskite.
A total of 100 classification attempts were made, each with
a different random stratified 50/50 spilt into training and test
data. Because of the stochastic nature of the analysis, some of
the ABO3 compounds are generally weakly misclassified as
a consequence of statistical fluctuations producing an outlier.
The ones that are strongly misclassified point to a possible
mislabeling of the data or a material that had or is about to have
a structural transition if the temperature or pressure is varied
from ambient conditions. Alternatively, it could also be an ML
error due to either insufficient representative samples in the
training set or the lack of meaningful features in representing
that specific chemical space. Within statistical fluctuations,
the misclassification plots for the other feature pairs are very
similar to Fig. 3. In general, the same false positives and
false negatives reoccur. The frequency at which a particular
misclassification occurs is what principally changes.

The number of compounds in the training set that are
classified as nonperovskites by ML is 125 (out of which 118
are in agreement with the experimentally determined label).
The ABO3 compounds that are classified as nonperovskites
by ML, but that are experimentally known to be perovskites
are the I-V valence compound NaIO3, the II-IV compounds
CaSiO3, MgSiO3, PbGeO3, and the III-III compounds ScAlO3,
ScCrO3, and DyInO3. On the other hand, compounds classified
by ML as perovskites that are actually nonperovskites, are the
I-V members AgBiO3, AgSbO3, LiNbO3, LiSbO3, LiTaO3,
LiVO3, NaBiO3, NaVO3, KBiO3, the II-IV members CdPbO3,
CdTeO3, HgTeO3, MnSnO3, MnTiO3, and the III-III members
SrThO3, CeErO3, InFeO3, and InMnO3.

B. ML predictions perovskite vs nonperovskites
of new compounds

Next, we use our ML models created from the data of
known ABO3 compounds, to predict possible new perovskite
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FIG. 3. For the octahedral and tolerance factor feature pair case,
plots of the number of times a ABO3 compound was classified false
positive or false negative as a perovskite or not for 100 trials at
classification of the entire database. Compounds from the database
not listed in either figure were always classified correctly.

compounds. For the experimentally observed compounds, 41
elements occur as A atoms and 54 as B atoms. Using these
elements, we created 625 possible combinations of ABO3

compounds consistent with the requirements that the sum of
the valences of the A and B atoms was 6 and the pair was
not already in our database. By imposing the constraint that
the sum of the valences equal 6, we are omitting cases that
are potentially stable with other valences. However, our initial
data set of 390 compounds does follow this constraint with
no exception. For several A atoms, such as Fe, Eu, and Tl,

FIG. 4. For octahedral and tolerance factor feature pair case, the
structure plot for the predictions plotted as a function of the Mendeleev
number of the A and B atoms. Black dots mark predicted perovskites;
red dots, predicted nonperovskites.

we admitted multiple valence states of +2/+3, +2/+3, and
+1/+2, meaning these atoms occurred as A atoms with two
different sets of B atoms. This combinatorial exercise yielded
our list of possible ABO3 solids not present in our training set.
We next generated the feature set for each proposed compound.
These solids had no label assignment. Predicting their labels
is the task of the ML model constructed from the labeled data.

Out of 625 possible ABO3 compounds, ML classifies 235 as
perovskite and 390 as nonperovskites. Figure 4 is the predicted
structure plot for the new compounds for each octahedral
and tolerance factor feature pair. Although predicted for a
model constructed for this feature pair, we chose to present
the result as a function of the Mendeleev numbers (M) for
easier chemical identification and to promote the grouping of
chemically similar solids. Apart from statistical fluctuations,
the predictions for the other three feature pairs are quite similar
and are given in Ref. [6]. The octahedral and tolerance factor
feature pair model predicts more perovskites for M in the
interval {51, 71} than other models that are built from other
feature pairs.

Figure 4 places possible perovskites into vacant spaces
near other perovskites in the Mendeleev structure plot of
Fig. 2. Very generally, perovskites exist or are predicted to
exist for A atoms being an s-block or lanthanide atom. Some
additional perovskites are predicted when the A atom is from
the d-block and the B atom is from the d- or f -blocks. These
generalizations are consistent with our past ML analysis [26]
and the substitution probability analysis [32,33] as well as
some of the prior HT-DFT [15] results. With respect to Fig. 2,
for ease of convenient reference, M = 25, 55, 76, 81, and 86
are Eu, Fe, Tl, Pb, and Bi. With the exception of Fe, the other
4 are predicted to form a perovskite with a variety of B atoms
spread across the periodic table.

Our ML methods also estimate empirically the probabilities
of the predictions. Figure 5 shows these estimated probabilities
for the octahedral and tolerance factor pair case. The classifiers
label their predictions as a perovskite if the probability is 0.5
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FIG. 5. For the octahedral ratio and tolerance factor feature pair
case, the probabilities for the predictions in Fig. 4 plotted as a function
of the Mendeleev numbers. Black dots marked materials predicted to
be a perovskite with a probability greater than 0.5; red dots for those
predicted to be a perovskite with a probability less than 0.5.

or greater (black dots) and a nonperovskite if the probability
is less than 0.5 (red dots). From the plot, one sees most of the
predictions have a probability well below or well above 0.5.
The others are basically “coin-flip” cases. The octahedral and
tolerance factor feature pair model is more optimistic in some
of its predictions than the other three models, which tend to be
more consistent with each other.

C. ML classification of cubic versus noncubic perovskites of
known compounds

The cubic or not case is a more difficult ML problem than
the perovskite or not case because only 10% of the perovskite
data are cubic and hence there are just a few from which to
learn. Furthermore, cubic phases are often high-T phases, and
some are classified as cubic only because the synthesis was
performed at high-T following by quenching to low-T . Fig-
ure 6 shows the structure plots for the known data as a function
of our four sets of feature pairs. In each case, a black dot marks
a cubic perovskite and a red dot a noncubic perovskite.

In Fig. 7, we present for the Shannon radii of the A and B

atoms feature pair the ABO3 solids that are misclassified by the
GTBC method. In addition, we also show for each misclassified
ABO3 compound, the number of times the misclassification
was a false positive or false negative. For the false positives, the
compound was classified as cubic but is listed in the data as not
being cubic, and vice versa for the false negatives. Compounds
not listed in these figures were always classified correctly as
cubic perovskites or not. As in the perovskite or not case, the
models built with the different feature pairs showed similar
misclassifications.

What distinguishes this case from the perovskite or not case
is the misclassification tends to have mainly the A atom being
Sr or Ba (M = 8 or 9) and with less frequently being K or
Rb (M = 3 or 4). This points to the feature pairs used for the

classifiers as not capturing a trend that would enable a more
accurate classification. Other features, such as Born charge
and Villars elemental property parameters [71], were explored
without any significant improvement in the predictions.

The number of compounds in the training set that are
classified as noncubic perovskites by ML is 246, out of which
225 are correct. There are 232 noncubic perovskites in the
database. The number of compounds classified by ML as cubic
perovskites is 19 (out of which 19 are correct). There are 22
cubic perovskites in the database. There were no notable ABO3

compounds that are classified as cubic perovskites by ML, but
are actually determined as noncubic perovskites or nonper-
ovskites from experiments. Notable compounds classified as
noncubic perovskites by ML that are actually cubic perovskites
include only three cases: KTaO3, BaMoO3, and SrVO3. We
note that the cubic phase is stable at high temperatures and often
transforms at low temperature into other noncubic phases. So,
it is possible that the above misclassified compounds may
transform at lower temperatures to noncubic. For example,
consider KTaO3. Feng et al. [40] note KTaO3 as formable in a
cubic perovskite structure. Phonon calculations from density
functional theory (DFT) also find no phonon instability in
the bulk cubic KTaO3 structure at T = 0 K [72]. Therefore
we assign a cubic label to KTaO3 in our data set of 254
formable perovskites. After training our ML models using
this data set, we find that ML “misclassifies” KTaO3 as
noncubic with about 65% confidence. Experimentally, KTaO3

has been shown as an incipient ferroelectric with anomalous
dielectric behavior [73], indicating that it is poised to undergo
a ferroelectric phase transition below a critical temperature,
so the ML classification as noncubic could pertain to a low-T
phase. Intriguingly, HT-DFT data in OQMD predict KTaO3

as a cubic perovskite. Similarly, our trained ML models also
classify SrVO3 as a noncubic perovskite with greater than 90%
confidence. The HT-DFT data in OQMD also predict SrVO3 as
stable in the orthorhombic (Pnma) perovskite structure. But,
the observation based on high temperature synthesis conditions
(1000 ◦C) under reduction atmosphere is cubic [74]. We recom-
mend low-temperature x-ray diffraction studies to find if this
compound is noncubic at low-T and resolve the discrepancy.
In Table III, we summarize the training performance of the
ML (for the t and O features), where the sum of the entries
across a row equals the total number of noncubic perovskites,
nonperovskites, and cubic perovskites in the experimental data
set. Similarly, the sum of the entries down a column equals
the total number of noncubic perovskites, nonperovskites, and
cubic perovskites as classified by ML after training. Diagonal
entries are the number of cases where ML exactly captures
the experimental data. For example, down the ML: noncubic
column ML classifies 225 compounds in agreement with the
experimental data, and only 18 of its noncubic predictions are
experimentally nonperovskites and 3 are cubic perovskites in
the data. The experimental data had a total of 232 noncubic
perovskites.

D. ML predictions of new cubic perovskites

Recall that of 625 possibilities, 235 are predicted to
be in the perovskite structure by ML. Our ML models
here used the Shannon’s ionic radii as features and predict
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FIG. 6. The cubic perovskite (black) or noncubic perovskite (red) structure plots of the known perovskite compounds for the four features
pairs we adopted for our analysis. The top left is the structure plot when the Villars’ Mendeleev numbers are used; top right, the Shannon radii
for the A and B atoms (divided by Shannon’s ionic radii for oxygen); bottom left, for the bond valence theory A-O and B-O bond lengths;
bottom right, the tolerance and octahedral factors.

a total of 20 new cubic perovskites. They are BaVO3,
CsBiO3, CsPaO3, CsReO3, CsSbO3, CsTaO3, CsUO3, CsWO3,
KReO3, KWO3, RbBiO3, RbReO3, RbSbO3, RbWO3, TlBiO3,
TlNbO3, TlPaO3, TlReO3, TlTaO3, and TlUO3. Most of the
new cubics predicted by ML have the A atom being an
alkali atom (K, Rb, Cs). About a third are TlXO3 solids with
element X sprinkled across the periodic table. Figure 8 is
the structure plot for the predicted new cubic perovskites.
Although predicted for models constructed for the selected
feature pair variables, we again chose to present the results
as a function of the Mendeleev numbers for easier chemical
identification and better similar solid grouping. The model for
the Shannon radii is the most optimistic one as it predicts
about five times the number of cubics as the model for the
Mendeleev number feature pair and twice the number as the
model for the bond length pair (Fig. 7 of Ref. [6]). The
model for the octahedral and tolerance factor feature pair
predicts no new cubic perovskites. Figure 9 shows the ML
estimated probabilities for the cubic or not predictions. About
half the predicted cubics are in the coin-flip range (around 50%
confidence); however, the probabilities of the cubics predicted
by the models constructed from the other feature pairs (Fig. 8
of Ref. [6]) are almost all coin-flips and generally involve an
alkali A atom; that is, the other feature pairs predict few if any

cubic zinc-based perovskites. Because of this disagreement
among the predictions of the different feature pair models, we
believe the probabilities of our predicted new cubics should be
regarded as coin-flips.

Thus there is a striking contrast whereby ML predicts
20 and OQMD predicts six cubic perovskite compounds,
which are also included in the 20 as predicted by ML. The
six compounds include CsPaO3, CsUO3, KReO3, KWO3,
TlPaO3, and TlUO3. We checked the dynamical stability of
the remaining 14 compounds predicted by ML to be in cubic
perovskite structure by using phonon calculations. The results
are given in Table IV. We find that five to six compounds
(depending on the pseudopotential and functional used) have
imaginary frequencies at one or more high-symmetry points
in the irreducible Brillouin zone indicating that they are
dynamically unstable as a cubic structure (in disagreement
with ML that says they should be cubic) whereas seven are
locally dynamically stable as cubic (in agreement with ML,
which predicts them as cubic). However, even if they are dy-
namically stable, the DFT-CH calculations in OQMD predict
that they are statically unstable, i.e., in the OQMD database,
these 14 compounds are either predicted as nonperovskite or
they are predicted to decompose (data given in Table III in
Ref. [6]).
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FIG. 7. For the Shannon radii feature pair case, plots of the
number of times a perovskite compound was classified false positive
or false negative as a cubic or not for 100 trials at classification of
the entire database. Compounds from the database not listed in either
figure were always classified correctly.

E. Comparison of ML and OQMD classifications
and predictions

The stability predictions of OQMD offer a complementary
means to evaluate the ML prediction of new materials. We
first compare OQMD predictions of stability in the noncubic
perovskites, cubic perovskites, and nonperovskites with the
classifications of the experimental data for the synthesized
compounds. A summary of these comparisons is given in
Table V (Tables II–IV in Ref. [6] give the full details). In

FIG. 8. For the Shannon radii feature pair case, the structure
plot for the cubic perovskite predictions plotted as a function of the
Mendeleev number of the A and B atoms. Black dots mark predicted
cubic perovskites; red dots, predicted noncubic perovskites.

Table V of the manuscript, the sum of the entries across a
row equals the total number of noncubic perovskites, non-
perovskites, and cubic perovskites in the experimental data
set. The sum of the entries down a column equals the total
number of noncubic perovskites, nonperovskites, and cubic
perovskites predicted stable by OQMD. Diagonal entries are
the number of cases where DFT T = 0 K stability agrees with
experimental data. The sum of the diagonal entries divided
by the total number of entries is the estimated fraction of
experimentally synthesized phases that are thermodynamically
stable. For example, down the OQMD: noncubic column
OQMD predicts 163 stable, noncubics in agreement with the

FIG. 9. For the Shannon radii feature pair case, the probabilities
for the predictions in Fig. 8 plotted as a function of the Mendeleev
numbers. Black dots marked materials predicted to be a cubic per-
ovskite with probability greater than 0.5; red dots for those predicted
to be a cubic perovskite with a probability less than 0.5.
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TABLE V. Comparison of the classifications of experimentally
synthesized ABO3 compounds (referred to as “DATA” in the table)
with the stability predicted from the OQMD database. Out of the
390 compounds in our database, the stability of 387 were computed
in OQMD. The word “cubics” refers to a perovskite in the cubic
structure (Pm3̄m). Similarly, “noncubics” refers to a perovskite in a
structure other than cubic. Finally, “nonperovskites” refers to all other
cases.

OQMD: OQMD: OQMD:
cubics noncubics nonperovskites

DATA: cubics 10 6 5 21
DATA: noncubics 7 163 61 231
DATA: nonperovskites 0 14 121 135

17 183 187

experimental data, and only 14 of its noncubic predictions are
experimentally nonperovskites and six are cubic perovskites
in the data. The experimental data had a total of 232 noncubic
perovskites.

Interesting cases comparing OQMD with experiments in-
clude: (a) OQMD predicts noncubic perovskite as stable
whereas synthesized as nonperovskite: these include NaPO3,
BaCO3, HgSeO3, MgCO3, PbCO3, and PbSO3, where the B

atom is an element that is either too small to occupy the octa-
hedral site or acting as a cation whereas it belongs to normally
anionic species. This could reflect either an insufficient number
of nonperovskite structural candidates, experimental error or
the compounds synthesized at nonambient conditions (i.e.,
high-T or high-P ).

(b) OQMD finds nonperovskite as stable but noncubic
perovskite synthesized: examples for the I-V cases include
KNbO3, RbNbO3, RbTaO3, and AgNbO3, the II-IV cases
include CaIrO3, CaMnO3, CaPbO3, CaSiO3, BaIrO3, BaRuO3,
BaTiO3, MgSiO3, PbGeO3, PbZrO3, SrMnO3, and HgTiO3,
the III-III cases include BiAlO3, BiFeO3, DyMnO3, and
YGaO3. These cases reflect examples of experimentally syn-
thesized metastable perovskite phases rather than a failure of
the DFT calculations.

(c) OQMD predicts cubic perovskite as stable and non-
cubic perovskite or nonperovskite synthesized: examples are
EuAlO3, EuNiO3, SrMoO3, SrTiO3, and YbAlO3. These could
correspond to noncubic structural distortions missing from the
OQMD database.

(d) OQMD predicts noncubic perovskite as stable and cubic
perovskite synthesized: these cases are NaWO3, BaNpO3,
BaPaO3, BaThO3, and BaUO3. This could reflect the fact that
OQMD determines the ground state T = 0 K stability, whereas
cubic perovskite is often a high-temperature phase.

(e) OQMD perovskite compounds that are predicted solidly
unstable (>100 meV above the CH), that is, predicted to
decompose to other phases, yet they are experimentally
formable: notable cases include compounds with a single
actinide or lanthanide element in the A or B positions: CaUO3,
CeYbO3, PbCeO3, SmYO3, TmYO3, YbYO3, or interlan-
thanides NdDyO3, NdYbO3, PrDyO3, PrHoO3, and PrYbO3.
In addition, a few other examples include InCrO3, InRhO3,
CoSiO3, and CoTeO3. These cases might reflect either intrinsic
DFT errors in the exchange-correlation functional, or CH

TABLE VI. Comparison of the classifications of possible new
ABO3 compounds as predicted by ML and from the OQMD database.
Out of the 625 compounds in our list of possibilities, 598 were
predicted from the OQMD database. The word “cubics” refers to
a perovskite in the cubic structure (Pm3̄m). Similarly, “noncubics”
refers to a perovskite in a structure other than cubic. Finally, “non-
perovskites” refers to all other cases.

OQMD: OQMD: OQMD:
cubics noncubics nonperovskites

ML: cubics 6 0 14 11
ML: noncubics. 3 78 129 210
ML: nonperovskites 2 22 344 368

11 100 487

errors (insufficient number of trial ABO3 structures especially
for the rare cases of lanthanides), or that some metastable
compounds can form despite having an energy much above
the stability limit.

From Table V, we see that in many cases the OQMD
predicts synthesized perovskites to be metastable (i.e., stable as
nonperovskite). For instance, the 61 compositions, which are
experimentally observed to form perovskites (albeit noncubic),
are predicted by OQMD to be stable but in different structures,
i.e., (noncubic) nonperovskites. The DFT calculations are
performed at T = 0 K, where a lower-energy nonperovskite
structure can exist, whereas for T > 0 K synthesis temperature
a perovskite phase can be stabilized relative to a nonperovskite
phase. More details on the stability of each compound are given
in Table III in Ref. [6]. On the other hand, if OQMD predicts a
compound to be stable in a perovskite crystal structure (cubic
or noncubic), then it is very likely it can also be experimentally
synthesized. This is consistent with our hypothesis that stable
compounds can often be synthesized.

Table VI compares the predictions of ML with OQMD for
our list of possible new compounds. Out of 235 compounds
that are predicted by ML as perovskite, 87 are also OQMD
stable. Examples of OQMD predicted unstable compounds,
which ML predicts as perovskites include compounds where
the B position is a rare earth (actinide or lanthanide). In
Appendix, we list all 87 compounds predicted to be stable by
DFT and as perovskite by ML. These compounds we regard as
the most likely candidates for experimental synthesis of new
perovskites. Those with �E � 0 are more likely to be stable
than those with �E > 0.

Out of 390 new compounds that are predicted by ML
as nonperovskites, only 24 are OQMD stable (DOM=100
meV/atom) in one of the perovskite structures. The agree-
ments are CuMoO3, CuPaO3, CuUO3, ErCuO3, EuNpO3,
EuThO3, HoCuO3, LiPaO3, LiUO3, LiWO3, LuCuO3,
MnPaO3, PbCrO3, PbMnO3, PuFeO3, PuNiO3, PuScO3,
TlAlO3, TlCuO3, TmCuO3, YCuO3, ZnPaO3, EuIINiIVO3, and
EuSiO3. Amongst these 24 compounds, 11 have an actinide
element (Pa, U, Np, Th, or Pu) in either A or B site of the
perovskite lattice. Even with respect to known materials the
tendency of OQMD is to predict the compound to be other
than a perovskite.
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FIG. 10. Summary of the key outcome related to data from this work. (a) Out of the known 390 ABO3 compounds, there are 254 perovskites
and 136 nonperovskites. Our ML models, which were trained using the 390 ABO3 compounds, classified 247 and 118 as perovskites and
nonperovskites, respectively. On the other hand, OQMD predicts 186 and 121 as perovskites and nonperovskites, respectively. Similarly, among
the 254 ABO3 perovskites, there are 22 compounds in the cubic structure and 232 in the noncubic structures. ML classified 19 in the cubic
and 228 in the noncubic structures. OQMD, on the other hand, predicted 10 and 163 in the cubic and noncubic structures, respectively. Not all
known compounds were accurately captured by both ML and OQMD, which we discuss in detail in the Results section. (b) We enumerated
a total of 625 compounds that were not present in the training set and then used our trained ML models and DFT-CH data in the OQMD to
predict if there are potential perovskite compounds among them for synthesis. ML predicts 235 compounds in the perovskite structure, which
in turn can be further subdivided into 20 and 215 cubic and noncubic structures, respectively. On the other hand, OQMD predicts 111 ABO3

compounds in stable perovskite structure, including 11 and 100 in the cubic and noncubic structures, respectively. In total, we have 87 ABO3

compounds that are predicted to be perovskite by both ML and OQMD of which both methods predict that 6 are cubic and 77 are noncubic
(details given in Appendix). We identify these 87 compounds as promising for synthesis. We note that because of different methodologies
involved, a direct comparison between ML and OQMD may not be appropriate.

We also note that from OQMD we obtain a more detailed
description of its classifications and predictions than implied
by Tables V and VI. OQMD predicts whether the compound
is in a stable perovskite structure and if so, whether that
structure is cubic, is in a stable structure but one that is not a
perovskite structure, or decomposes into some mixed phase of
other compounds or possibly a single phase with a chemistry
other than ABO3 (Tables III and IV, Ref. [6]). In Fig. 10,
we summarize the key outcomes from both ML and OQMD
in terms of their relative performances with respect to the
experimental data (training set for ML) and those that were
not included in training the ML models.

F. Validation of ML and OQMD predictions for recently
synthesized ABO3 perovskites

We now directly evaluate the predictive capabilities of
ML and OQMD stability using BaVO3, PbMoO3, KWO3,
and CaCoO3 compounds. We note that BaVO3, PbMoO3,
KWO3, and CaCoO3 were not part of our ML training data
set. Nishimura et al. [75] recently experimentally synthesized
pure BaVO3 perovskite in the cubic structure using high-
pressure synthesis conditions. This experimental synthesis is
in agreement with our ML predictions. Further, our phonon
calculations using PBEsol predict a locally stable cubic phase
for BaVO3 (Table IV). OQMD, on the other hand, gives a �E of
+105 meV/atom for BaVO3 in the cubic (Pm3̄m) perovskite
structure, but it predicts the ground state of BaVO3 as a nonper-
ovskite. Similarly, Takatsu et al. [76] very recently synthesized
PbMoO3 in cubic perovskite structure by high-pressure and

high-temperature synthesis methods. Our ML models predict
PbMoO3 as perovskite, but with noncubic crystal structure. The
�E from OQMD for PbMoO3 in the cubic Pm3̄m perovskite
structure is +137 meV/atom, indicating that the compound
will likely decompose at P = 0 and T = 0 K. In both cases, the
instability predicted by T = 0 K DFT-CH is entirely consistent
with the need for nonambient conditions in experimental
synthesis.

Ikeuchi et al. [77] recently synthesized KWO3 in cubic
perovskite structure by using a high-pressure (7 GPa) and
high-temperature (1600 ◦C) synthesis route. Both ML models
and DFT-CH calculations in OQMD also predict KWO3 in the
cubic perovskite structure. More recently, Osaka et al. [78]
synthesized CaCoO3 in noncubic perovskite structure using
high-pressure oxygen annealing. ML and OQMD predict that
this compound is a perovskite. Both also predict that this will be
noncubic, in agreement with the experimental work. More such
comparisons are warranted to fully understand the advantages
and limitations of ML and DFT-CH stability analysis.

V. CONCLUSIONS

We performed an ML analysis of experimental data of
ABO3 solids known to be a perovskite or not and known to
be a cubic perovskite or a noncubic perovskite. From a list
of possible new ABO3 solids, we obtained similar perovskite
or not and cubic or not predictions from two different ML
methods. For additional consistency, we used the same cross-
validation procedure for both the perovskite or not and the
cubic or not cases. In choosing the cross-validation procedure,
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we were mainly targeting consistent performance for the cubic
or not case which was difficult to achieve because so few
cubics are in the data. In particular, we found that other cross-
validation techniques were giving predictions that sometimes
had large variances most likely due to overfitting the training
data.

We emphasize our ML analyses and predictions are statis-
tical in nature and hence are always subject to changes caused
by fluctuations. Further, other ML approaches might produce
results with higher accuracy if they were to use more features
and optimize their hyperparameters for each case considered
as opposed to our selecting just two features and using a
one-size-fits-all setting of the hyperparameters. In another
paper [26], for example, we demonstrated that using more than
just pairs from the set of four feature pairs we could increase
the accuracy of the predictions to nearly 95%. However, similar
predictions of possible new perovskites were still made. In part,
this improved accuracy is likely a consequence of using more
parameters to fit the data as opposed to using features that
delineate trends in the data better. Increasing the number of
cubics in the database should improve the probability estimate
of a predicted new cubic.

The feature pairs we considered were known beforehand
to predict the formability of perovskites well. We did observe
that in our training of the ML models for the cubic or not
case, known perovskites with the A atom being Sr or Ba were
misclassified as false positives or false negatives frequently.
This systematic misclassification occurred to a lesser extent
for compounds with the A atom being K or Rb. As already
mentioned, all these misclassifications point to the need for at
least one more feature with a chemical trend correlated with
the labels in the database to improve classification accuracy
with respect to this subclass of compounds.

In closing, we note our use of OQMD and ML has produced
a relatively large list of possible new perovskite compounds.
While DFT-CH and ML are not predicting the same thing, we
have made a hypothesis that when their predictions agree, the
suggested compounds merit experimental study. While we are
asserting that for many DFT-CH predictions T = 0 K stability
is a sufficient indicator for synthesizeability (i.e., most stable
phases can be synthesized), we remark that it is not a necessary
condition (i.e., a compound does not need to be stable in order
to be synthesized). Now, we comment on the issues that warrant
a better understanding and shed light on the plausible reasons
that may have caused the DFT-CH and ML predictions to
disagree on a relatively large number of known and possible
new perovskites.

We first emphasize that what is known experimentally cer-
tainly includes a number of metastable compounds, something
that DFT-CH can only address through including as possibly
synthesizeable compounds those with a positive distance [a
degree of metastability (DOM)] from our definition of the con-
vex hull. Indeed, increasing the DOM from 0 to 100 meV/atom
increased the OQMD agreement with known compounds from
60% to 70%.

Other reasons for the discrepancies between the experi-
mental observations and OQMD predictions are common to
all DFT-CH analyses and have at least two types of origins,
physical and computational: (i) physical origins mean that
the synthesized compound could correspond to a metastable

structure of the element set A + B + O, i.e., what forms in syn-
thesis is not the lowest energy compound for these elements,
but instead is a composition and structure kinetically trapped
in a particular reaction path. Different synthesis methods and
even different reaction protocols for the same synthesis method
often produce different final products. (ii) Computational
origins pertain to imperfections in the prediction engine. For
example, the outcome of high-throughput calculations depends
on how versatile is the set of prototype structures used to gauge
the stability of the target structure (here, ABO3). If the set of
competing constituent phases (components into which ABO3

can decompose) is restricted, the calculations might predict
a false positive stability of ABO3, or if the set of candidate
structures of the target phase ABO3 is restricted, they might
predict a false negative instability. An imperfect exchange
correlation functional or an inappropriate assignment of a mag-
netic configuration (such as ferromagnetic, anti-ferromagnetic
or paramagnetic) may sway a stability prediction to reactants
instead of products or vice versa. Although one could research
type (ii) discrepancies methodically by studying different
approximations in a low-throughput manner, at this time,
we cannot determine how many of the present discrepancies
are due to metastable synthesis conditions versus imperfect
theoretical predictions.

For the present work, there might be a more material specific
reason for some of the discrepancies. What we learned from
the ML, relative to both the known and possible compounds, is
OQMD and ML have systematic disagreements with respect
to known and possible compounds involving lanthanide and
actinide elements. Accurate energy calculations via DFT+U

for such materials, which are typically strongly correlated,
can be difficult. Clearly, with a material class as broad as
the perovskites, we suggest that it is important to consider
computational variations within a DFT-CH scheme to address
the specific classes of chemical and structural complexity.

There is another aspect for reconciliation that is more
difficult to address computationally. A DFT-CH analysis is
performed at zero temperature with the expectation that the
CH analysis with a nonzero DOM will adequately embrace
what is happening at finite temperatures. In essence, the CH
analysis is providing the likely positions of minima in the
internal energy for different compounds, crystal structures,
etc., and finding the one that is global. What is missing is
how the entropic contributions (−T S term) to the free energy
at finite temperatures will shift these positions and change
their relative importance. Thus, for a number of materials,
the DFT-CH approach suffices but for others that are rich in
structural and other phase transitions, such as the perovskites,
it might not be so.

As we were concluding our manuscript, we became aware
of a just released manuscript by Legrain et al. [79] that
has a similar intent and conclusions as ours with respect to
prediction of new materials using ML on data for known
compounds versus using HT-DFT and CH analysis on lists of
compounds without exploiting what is known experimentally.
These authors compared the effectiveness of ML and DFT-CH
calculations for the discovery of new half-Heuslers compounds
instead of perovskites. The predictions of ML and DFT-CH
for compounds not yet known to be formed also showed
significant inconsistencies. In these regards, their experience
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for the half-Heuslers is similar to our experience for the
perovskites.

We note that there are some important differences between
our and their studies. One is the number of possible half-
Heusler structures is three and hence considerably smaller
than the number of possible perovskite structures. In principle,
the CH analysis and construction are less complex. Another
difference is the known and predicted new half-Heuslers are a
small fraction of the total known and the total number of new
possibilities. In this regard, the prediction task difficulties are
similar to our cubic or not case. Nevertheless, Legrain et al.
offer similar reasons for the inconsistencies between ML and
HT-DFT, such as too few structures in the CH analysis and the
inherent inaccuracies of DFT calculations. Their comparisons
observed inconsistencies in the predictions of three different
HT-DFT studies and underscore the importance of controlling
these issues. Our phonon calculations, yielding different pre-
dictions for DFT calculations using different functionals and
pseudopotentials, also reinforce the importance of controlling
these issues.
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APPENDIX

List of 87 promising ABO3 compounds predicted as po-
tentially formable in the perovskite structure by ML and as
thermodynamically stable or nearly stable (DOM threshold
set at 100 meV/atom) in the perovskite structures by HT-DFT
in OQMD. Labels CP and P indicate cubic perovskite and
noncubic perovskite, respectively. �H (in eV/atom) and �E
(in meV/atom) refer to formation enthalpy and distance from
the CH, respectively; SG stands for space group number in
the International symbol for which the OQMD energetic data
(�H and �E) is reported. Predictions of compounds on the
CH are “stronger predictions” and ones that are near the
CH are metastable phases, which could also be synthesized.
In OQMD, the CH distance for each ABO3 compound is
calculated in the same manner and thus their distances are
comparable. Additional details can be found in Tables I–IV of
Ref. [6].

ML OQMD
Formula prediction prediction �H �E SG

CsPaO3 CP CP −2.87 0 221
CsUO3 CP CP −3.04 10 221
KReO3 CP CP −1.92 8 221
KWO3 CP CP −2.37 0 221
TlPaO3 CP CP −2.56 −358 221
TlUO3 CP CP −2.75 −108 221
EuCuO3 P CP −1.78 60 221
HgPaO3 P CP −2.17 1 221
NaReO3 P CP −1.93 7 221
AgPaO3 P P −2.33 −361 167
AgUO3 P P −2.51 −9 167
BiCrO3 P P −1.96 19 62
BiCuO3 P P −1.06 30 62
BiLuO3 P P −2.69 32 62
BiRhO3 P P −1.18 60 62
BiVO3 P P −2.05 7 62
CaCoO3 P P −1.89 37 167
CaPuO3 P P −3.34 −109 62
CdPaO3 P P −2.37 −13 167
CdPuO3 P P −2.49 4 167
CeCoO3 P P −2.42 −36 62
CeCuO3 P P −2.15 4 167
CeInO3 P P −2.69 −4 62
CeNiO3 P P −2.29 2 167
CeRhO3 P P −2.29 −61 62
CeRuO3 P P −2.29 37 62
CeScO3 P P −3.7 −38 62
DyCuO3 P P −2.28 47 62
DyGaO3 P P −2.97 17 62
ErCoO3 P P −2.55 24 62
ErGaO3 P P −2.99 21 62
EuIICoIVO3 P P −2.14 −38 62
EuIIICoIIIO3 P P −2.14 −38 62
EuCrO3 P P −2.8 −51 62
EuGeO3 P P −2.7 −212 167
EuHfO3 P P −3.84 −182 62
EuIrO3 P P −2.1 −43 62
EuMnO3 P P −2.61 3 167
EuMoO3 P P −2.81 −101 62
EuNbO3 P P −3.21 −53 62
EuPaO3 P P −3.34 −123 62
EuPbO3 P P −2.18 −150 62
EuPuO3 P P −3.5 −187 62
EuIIRuIVO3 P P −2.26 −112 62
EuIIIRuIIIO3 P P −2.26 −112 62
EuSnO3 P P −2.7 −171 62
EuTiO3 P P −3.56 3 167
EuIIVIVO3 P P −3.1 −93 62
EuIIIVIIIO3 P P −3.1 −93 62
EuZrO3 P P −3.69 −152 62
GdCuO3 P P −2.26 43 62
HgHfO3 P P −2.42 67 167
HgPuO3 P P −2.17 −28 167
HgZrO3 P P −2.28 86 167
HoGaO3 P P −2.98 20 62
HoVO3 P P −3.27 1 62
LuCoO3 P P −2.57 35 62
LuGaO3 P P −3 30 62
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(continued.)

ML OQMD
Formula prediction prediction �H �E SG

LuNiO3 P P −2.44 37 62
NdCuO3 P P −2.18 74 62
NdRuO3 P P −2.34 41 62
PbPaO3 P P −2.41 −22 62
PbPuO3 P P −2.54 −55 62
PrCuO3 P P −2.17 3 167
PrInO3 P P −2.71 5 62
PuGaO3 P P −2.9 −28 62
SmCuO3 P P −2.22 47 62
SmGaO3 P P −2.92 6 62
SmRuO3 P P −2.37 49 62
SrCrO3 P P −2.56 41 62
SrNpO3 P P −3.42 −14 62
SrPaO3 P P −3.18 −144 62
SrUO3 P P −3.49 −18 62

(continued.)

ML OQMD
Formula prediction prediction �H �E SG

TbCuO3 P P −2.14 −40 62
TbGaO3 P P −2.83 15 62
TbNiO3 P P −2.27 8 62
TbScO3 P P −3.66 19 62
TlMnO3 P P −1.43 51 62
TmCoO3 P P −2.57 27 62
TmGaO3 P P −3 19 62
YbCoO3 P P −2.11 −79 62
YbRhO3 P P −2.11 −89 62
YbRuO3 P P −2.25 −83 62
YbScO3 P P −3.21 98 62
EuErO3 P P −3.21 98 62
EuLuO3 P P −3.26 94 62
EuTmO3 P P −3.23 90 62
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