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The existence of band gaps in both the antiferromagnetic (AFM) and paramagnetic (PM) phases of the classic
NaCl-structure Mott insulators MnO, FeO, CoO, and NiO is traditionally viewed and taught as a manifestation
of strong correlation whereby insulation results from electrons moving across the lattice forming states with
doubly occupied d orbitals on certain atomic sites and empty d orbitals on other sites. Within such theories, the
gap of the AFM and PM phases of these oxides emerges even in the absence of spatial symmetry breaking. The
need for such a correlated picture is partially based on the known failure of the commonly used band models for
the PM phase that assume for such a spin disordered state the macroscopically averaged NaCl structure, where
all transition metal (TM) sites are symmetry-equivalent (a monomorphous description), producing a gapless PM
state with zero magnetic moments, in sharp conflict with experiment. Here, we seek to understand the minimum
theoretical description needed to capture the leading descriptors of ground state Mott insulation in the classic,
3d monoxide Mott systems—gapping and moment formation in the AFM and PM phase. As noted by previous
authors, the spin-ordered AFM phase in these materials already shows in band theory a significant band gap
when one doubles the NaCl unit cell by permitting different potentials for transition-metal atoms with different
spins. For the spin-disordered PM phase, we allow analogously larger NaCl-type supercells where each TM
site can have different spin direction and local bonding environments (i.e., disordered), yet the total spin is zero.
Such a polymorphous description has the flexibility to acquire symmetry-breaking energy-lowering patterns
that can lift the degeneracy of the d orbitals and develop large on-site magnetic moments without violating
the global, averaged NaCl symmetry. Electrons are exchanged between spin-up and spin-down bands to create
closed-shell insulating configurations that lend themselves to a single determinental description. It turns out
that such a polymorphous description of the structure within the single-determinant, mean-field, Bloch periodic
band structure approach (based on DFT + U ) allows large on-site magnetic moments to develop spontaneously,
leading to significant (1–3 eV) band gaps and large local moments in the AFM and PM phases of the classic
NaCl-structure Mott insulators MnO, FeO, CoO, and NiO in agreement with experiment. We adapt to the spin
disordered polymorphous configurations the “special quasirandom structure” (SQS) construct known from the
theory of disordered substitutional alloys whereby supercell approximants which represent the best random
configuration average (not individual snapshots) for finite (64, 216 atoms, or larger) supercells of a given lattice
symmetry are constructed. We conclude that the basic features of these paradigmatic Mott insulators can be
approximated by the physics included in energy-lowering symmetry broken DFT.

DOI: 10.1103/PhysRevB.97.035107

I. INTRODUCTION

The physical origin of the insulating phases occurring
in crystals with partially occupied d shells exemplified by
the transition metal (TM) monoxides MnO, FeO, CoO, and
NiO has held the condensed matter physics community in
constant fascination ever since Mott and Peierls proposed
an explanation [1]. These oxides have a low-temperature
spin-ordered antiferromagnetic (AFM) phase, in which they
exhibit slightly distorted rock-salt structures (rhombohedral
for NiO and MnO and monoclinic for CoO and FeO, the
latter exhibiting Jahn-Teller atomic displacements), and a high-
temperature spin disordered paramagnetic (PM) phase, having
the macroscopically cubic rock-salt structure and globally null
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magnetization. In simplified band structure calculations [2–7],
it has been customary to evaluate the electronic structure of the
PM phase of these oxides using the macroscopically observed
average rock-salt configuration �0. Because there is but a
single transition metal atom in such a unit cell, the condition of
globally zero magnetization in the PM phase leads to vanishing
local magnetic moments μi(�0) at each metal site i, and,
therefore, by symmetry, to zero band gaps Eg(�0) for such
systems with partially filled d orbitals. Here, �0 was taken as
the nonmagnetic, cubic rock-salt configuration in which all TM
sites are equivalent (a monomorphous representation). As is
generally taught [8,9], the ensuing electronic structure of com-
pounds having partially occupied energy bands described in a
structure where all the atoms are equivalent would be metallic
[2,3] with the Fermi level intersecting a band. Yet, experi-
mentally, MnO, FeO, CoO, and NiO are local-moment large
band gap insulators, both in the AFM and PM phase [10–12]
(see Table I).
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TABLE I. Experimental and DFT + U calculated band gaps Egap and magnetic moments of the transition-metal atoms of MnO, NiO,
FeO, and CoO in the following phases: (i) AFM with rhombohedral R3̄m space-group symmetry for MnO and NiO and monoclinic C2/m

space-group symmetry for FeO and CoO, (ii) FM with cubic symmetry calculated using the same volume per formula unit that was found by
total energy optimization for the AFM phase, and (iii) the gap of the PM phases was calculated by a cubic 64-atom 2 × 2 × 2 SQS whose lattice
parameter was fixed and the internal coordinates were allowed to relax. The total energies of the PM phases were calculated using a cubic
216-atom SQS in which the lattice parameter was fixed and the atom was kept at the ideal rocksalt positions. In both sets of SQS calculations,
the volume per formula unit was equal to the optimal volume per formula unit obtained for the AFM phase. The following are the sources for the
experimental values: Ref. [10] for the band gaps of the AFM phases, Ref. [11] for the band gaps of the PM phases, and Ref. [12] for the magnetic
moments in the AFM phases. We were unable to find in the literature the experimental values of the magnetic moments of the PM phases.

R3̄m C2/m

MnO NiO FeO CoO

Exp. DFT + U Exp. DFT + U Exp. DFT + U Exp. DFT + U

μ (μB) 4.58 4.64 1.9 1.68 4.0 3.71 3.8–3.98 2.72
AFM

Egap (eV) 3.5 1.88 3.5 3.00 2.1 1.66 2.8 2.63

μ (μB) – 4.68 – 1.75 – 3.76 – 2.78
FM

Egap (eV) – 0.82 – 2.56 – 1.36 – 2.06
Etot−Etot[AFM] (eV/fu) – 0.059 – 0.121 – 0.102 – 0.196

μ (μB) – 4.65 – 1.70 – 3.73 – 2.75
PM

Egap (eV) 3.7 1.22 4.1 2.16 2.5 1.70 2.4 2.25
Etot−Etot[AFM] (eV/fu) – 0.014 – 0.061 – 0.035 – 0.117

This fundamental disagreement between such band struc-
ture theory and experiment set the historical stage for modeling
the electronic structure of the PM phases of MnO, FeO, CoO,
and NiO, and related quantum materials by many-body, corre-
lated electron descriptions, such as the description based on the
Hubbard Hamiltonian [13,14], or, more recently, the dynamical
mean-field theory (DMFT) [15,16] rendering of the Hubbard
Hamiltonian. Within such theories, the gap of the AFM and PM
phases of these oxides emerges because the d electrons become
localized due to the correlation-induced electron-electron re-
pulsion, even in the absence of spatial symmetry breaking
(symmetry can break afterwards, as a secondary fact). From the
strongly correlated standpoint, the existence of local magnetic
moments is a consequence of the electron localization and not
an essential part of the gap opening mechanism itself. The Mott
mechanism envisions that the electrons move across the lattice
forming states on certain atomic sites with doubly occupied
d orbitals and empty d orbitals on other sites. These types
of excited configurations correspond respectively to the upper
and lower Hubbard bands, which are envisioned to form the
physical band edges, i.e., the valence-band maximum (VBM)
and conduction-band minimum (CBM).

Indeed, one often finds in the literature comments that single
determinant mean-field DFT band theory fails to reproduce the
gap in the absence of long-range magnetic order [4,17–19]. But
such conclusions may have been clouded by a few restrictions
applied unwittingly to band theory itself. For example, the
model that has been often used for the PM phase of MnO,
FeO, CoO, and NiO restricts all metal sites to see identical
local environments and potentials, i.e., such a model uses unit
cells with a single TM per cell. Because such a monomorphous
representation of a disordered PM phase forces upon us in
band theory a zero magnetic moment on an atom-by-atom
basis (instead of nonzero local moments with a global zero
magnetization), the ensuing band gaps in such nonmagnetic
models were always zero, irrespective of the quality of the
description of the interelectronic interaction Exc[n↑(r), n↓(r)]

in DFT band theory. However, as shown here, upon exam-
ining the total DFT energies, one finds that the monomor-
phous nonmagnetic (NM) “phase” is unstable by more than
2 eV/formula unit than a proper DFT paramagnetic phase of
CoO, so the NM phase is but a hypothetical state. In addition
to confusing paramagnetic state with nonmagnetic state, other
approximations may have perhaps prematurely disqualified
DFT band theory from describing even simple Mott systems
and related quantum materials. These approximations include
(i) disallowing geometrical symmetry breaking (such as Jahn-
Teller, atom pairing, or charge disproportionation) or (ii)
using DFT functionals that do not distinguish occupied from
unoccupied states (i.e., lacking exchange correlation discon-
tinuity as in self interaction corrected DFT or its DFT + U
approximant), thus forcing equal, and fractional, occupations
of all components of open shell degenerate states at the
Fermi energy. Since none of these simplifications are defining
features of band theory itself, the failure of such approaches in
explaining Mott insulation may have been prematurely viewed
as a fundamental failure of the single determinant mean-field
approach itself. The path then suggested in the literature to
model the paramagnetic state of Mott insulators has been that of
solving the Hubbard model by strongly correlated approaches.
(Perhaps an early clue that d electron strong correlation is not
the deciding factor for these binary oxide systems is the fact
that the valence band and conduction band edges consist of
oxygen p and transition metal s orbitals, shown below, not the
proverbial d-like lower and upper Hubbard bands, envisioned
by the founding thinkers in this field.) Here, we relax the
restrictions often imposed previously but which are not an
integral part of band theory per se, seeking to understand the
minimum theoretical approach needed to describe the leading
features of the Mott insulating behavior, namely, gap opening
and amplitude and on-site magnetic moment formation in
the AFM and PM phase of the classic, 3d monoxide Mott
systems. To this end, we deliberately use a single-determinant,
mean-field Bloch periodic band structure approach (based
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on DFT + U ), but allow for any energy-lowering symmetry
breaking effects that can be captured by such a mean-field
description.

We find here for the text-book MnO, FeO, CoO, and
NiO Mott insulators that symmetry breaking afforded by
using in band theory sufficiently flexible unit cells (the
polymorphous representation of disorder) and allowing orbital
occupation symmetry breaking and spin unrestricted symmetry
breaking produce in DFT + U [20–24] an insulating solution
(band gaps of 1–3 eV) with strong local magnetic moments
(2–4 Bohr magnetons), in general agreement with experiment.
This symmetry breaking is not assumed, but obtained as an
energy-lowering event within the mean-field-like variational
theory, and differs from a correlation-induced gap opening
mechanism that lacks spatial symmetry breaking. Previous
authors of DMFT calculations [25–27] obtain large moments
and large band gaps in the PM phases of these 3d monoxides,
just as the present single determinant mean-field DFT band
structure study does (see Table I). The DMFT authors state,
however, that “This result is in remarkable contrast to that
previously obtained by standard band-structure methods,
which predict metallic behavior, e.g., for FeO and CoO.
This implies the crucial importance of strong correlations
of localized 3d electrons, to determine the electronic and
magnetic properties of transition metal oxides.” We note
that these authors refer to the nonmagnetic (monomorphous)
metallic DFT description that is ∼2 eV/formula unit higher
in energy than the proper gapped PM phase which we discuss
in the present work. Indeed, such a high energy NM metallic
structure does not appear to be a reasonable representation of
what band theory does. The present single-particle approach
produces detailed geometrical information (such as atomic
displacements and the equilibrium cell structure), magnetic
moments, band gaps, bonding charge density, and the total
energies of all phases, and permits the future use of precisely
the same polymorphous description for studying defects and
doping. The emerging physical picture is that at any given
moment in time, (i.e., a snapshot) each TM atom will have a
finite magnetic moment (but randomly pointing to different
directions), and these moments are rotating with time. So, the
average magnetic moment of each atom will not be equal to
zero due to a quantum fluctuation. The conventional physics
encoded in DFT with current nonlocal functionals—bonding,
magnetism, spin-polarization, Jahn-Teller distortions,
hybridization and selective occupation of the components of
the eg and t2 orbitals—suffices to produce large moments if
not disallowed by imposing artificially high symmetry. As
a result of these symmetry-breaking channels, electrons are
exchanged between spin-up and spin-down bands to create an
insulating closed shell configuration that lends itself to a single
determinant description. Whereas the final expression would
involve a (macroscopically symmetrized) combination of all
individual symmetry broken configurations, the crucial fact
is that such individual symmetry broken configurations have
closed shells with large band gaps and magnetic moments,
suggesting that such configurations would have but weak
mutual interaction, so dynamically correlated approaches are
not forced upon us by the physics at hand. We note that it
is entirely possible that some other Mott compounds would
remain metallic in a single-particle treatment even if the

monomorphous description were replaced by a polymorphous
representation. It is also possible that DFT with the current
functional could miss properties other than the insulating
character of the PM phases. We are not claiming otherwise.
These are open, future research questions.

The fact that the main attribute of the classic Mott insulators
(i.e., the existence of gaps) could be described by mean-
field, single configuration band theory is consequential, as it
redefines the minimal level of physics and computational effort
required. Indeed, such single-determinant mean-field-like DFT
approaches have recently successfully described in agreement
with experiment the hole density in p-type doped NiO [28],
the metal-insulator transition in rare-earth nickelates [29], and
the n-type doping of SmNiO3 [30], discussed in Ref. [31].
Such results may open the door for reexamination of the utility
of non-naïve DFT based band theory methods for studying
the basic attributes of more complex Mott systems, including
ternary and quaternary oxides, as well as defects, doping, and
interface characteristics.

II. DUAL INPUTS TO ELECTRONIC
STRUCTURE THEORY

Any electronic structure method requires specifying (a)
a representation for the crystal structure (and, for random
systems such as the PM phases, the way the configurational
average is performed), as well as (b) the type of electronic
interactions allowed by the Hamiltonian and its solver (e.g.,
the forms of exchange and correlation in band theory or the
dynamic correlation in explicitly correlated theories). In regard
to (b), Table I shows the magnetic moments and band gaps
calculated by ordinary DFT + U for the AFM as well as
the assumed ferromagnetic (FM) phases of MnO, FeO, CoO,
and NiO. Recall that the DFT + U method [24] as well as
related methods such as the self-interaction corrected DFT
[32] and the hybrid functionals [33] are all single-particle
schemes in which the wave function of the N -electron system
is a single determinant. We see from Table I that even in the
single-determinant DFT + U description with a reasonable
value of U, i.e., 5 eV, which we used across the board for
all compounds and spin configurations, these transition-metal
monoxides, regardless of the type of magnetic ordering (AFM
or FM), exhibit large local moments and band gaps. This
opens the possibility that the actual magnetic order may not be
the primary reason for these materials to be insulators, but the
existence of on-site magnetic moments caused by the breaking
of the symmetry between spin-up and spin-down electronic
states may. We will follow this hint by removing in band theory
the conceptual and computational barriers to the formation of
energy-lowering symmetry breaking.

III. ALLOWING FOR A POLYMORPHOUS DESCRIPTION
OF THE MAGNETIC STRUCTURE OF THE

PARAMAGNETIC PHASES: BASIC CONCEPTS

Gapping in 3D metals can occur due to magnetic spin
effects even without symmetry breaking (as is the case for the
hypothetical FM phase in Table I). In this case, there is no
atomic symmetry breaking and the presence of a band gap is a
local electronic effect due to the possibility to make majority
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spin and minority spin occupy different states with the result of
forming spin up and spin down closed shells. (Note, however,
that the FM phase is not a viable representation for the PM
phase because the PM phase is disordered while the FM is
ordered; what is more as Table I shows, the total energy E(FM)
of the FM phase is higher than the total energy E(PM) of the
PM phase even at low temperature.) However, gapping in a
3D metal can also occur due to nonmagnetic atom symmetry
breaking effects because of their ability to create closed shell
structures. This is illustrated by the emergence of a gap in a
metal as a result of the geometric flexibility that enables elec-
tronic symmetry lowering. For example, the DFT total energy
of cubic perovskite BaBiO3 with a single Bi4+ site per cell (a
metal) is lowered by doubling the cubic perovskite primitive
cell, allowing two Bi4+ ions to express their multivalent nature
by disproportionation into Bi3+ + Bi5+ (see Ref. [34]) with
each site having its own local bond geometry, i.e., a symmetry
lowering that causes gapping. Similarly (see Ref. [35]) for
CsTlF3 being allowed to express the multivalence of Tl in
Cs2 [Tl1+Tl3+]F6 leading to the gapping of a previously metal-
lic state. In all such cases, a restricted structural description
(one type of octahedron) incorrectly produced a metal, whereas
a more flexible description of the cell lowered the total energy
and produced the observed insulating gap in band theory. Such
geometrical freedom needs to be exercised also for spin alloys
to concomitantly examine its effect on the total energy and
possible gapping.

Here, we wish to examine if significant on-site magnetic
moments might produce a gap also in the PM phases within
a single-determinant approach, had these moments not been
eliminated at the outset by selecting for the representation
for the crystal structure the monomorphous macroscopically
averaged configuration �0 where each TM site sees the same
local environment. In the latter case, the global zero moment
characteristic of the PM phase is interpreted on an atom by
atom basis so μi(�0) = 0 at each metal site i, leading in band
theory (where large moments mean large exchange splitting)
to a band gap Eg(�0) = 0. The polymorphous approach allows
each TM atom to see a distinct local magnetic environment and
a locally varying density-functional potential V [ρ(r),m(r)]
[where ρ(r) and m(r) are, respectively, the electron density and
magnetization at position r] subject to the constraint that the
total magnetic moment is zero as must be in a paramagnet. We
will enquire if such a representation has sufficient geometrical
freedom (e.g., unrestricted spatial symmetry) to allow in a
self-consistent DFT(+U ) calculation the evolution of local
magnetic moments on individual sites, if this would lower the
total energy. In band theory language, large moments imply
large exchange splitting which could enable large gaps.

A. Using the average 〈P〉 of the properties {pi} of individual
configurations {σi} versus using the property P(�0) of the

average configuration �0 = 〈σi〉
A common misconstrued naïve DFT approximation in

calculating an observable macroscopic electronic or magnetic
property 〈P 〉 of a disordered random alloy AxB1−x of com-
position x is to substitute the calculation of the ensemble
average 〈P 〉 for property P by the calculation of the property
P (�0) of the macroscopically averaged configuration �o. This

monomorphous approximation has been used in the single-site
coherent potential approximation (s-CPA) for chemical alloys
[36] where all A (B) sites in the random alloy see the same
potential VA (VB), irrespective of the existence of different
local environments for different A (B) sites (characterized by
different numbers of A versus B nearest neighbors to a given
central atomic site). This approach in alloy theory forced van-
ishing charge fluctuations (hence zero Madelung contribution
to the total energy [37,38]) and vanishing atomic displacements
[39–42], both in conflict with more general theories (such as
supercells [37,39,43,44] having a polymorphous distribution
of different A sites each with its local environment (and same
for B sites)).

The correct way to calculate the property P of a phase
that can have numerous individual configurations {σ (n)

i } each
with property P (σ (n)

i ), where n is the index of the config-
uration, is to calculate the polymorphous statistical average
〈P 〉 = ∑

n cnP (σ (n)
i ) over the ensemble of microscopic spin

configurations accessible to the system, instead of assuming
〈P 〉 = P (�o). The former approach has largely replaced the
monomorphous approaches (s-CPA, virtual crystal approxima-
tion) in the theory of disordered substitutional alloys AxB1−x ,
producing qualitatively different results [37,39,43,44] in much
better agreement with experiment. The same polymorphous
approach can be applied to spin disordered phases, i.e., the
PM phase of Mott insulators.

B. Time average versus spatial average

In a spin-disordered phase, the orientation of the on-site
magnetic moments μi can change over time showing spin
wave excitations representing the low-energy scale of the
problem; such fluctuations in the orientation of the moments
have zero overall average. In single-impurity DFMT, the
Hubbard model is mapped onto an equivalent Anderson single
impurity model in which the electrons at the impurity interact
with a mean-field bath that models the rest of the system.
There is but a single impurity, which fluctuates in time to give
a time average of zero spin.

We examine instead how accurately can one predict the
gaps of the PM phases of MnO, FeO, CoO, and NiO within
a single-determinant description, if one correctly estimates
the statistical average 〈P 〉 = ∑

n cnP (σ (n)
i ) over the ensemble

of microscopic spin configurations accessible to the system
instead of forcing a zero moment on an atom-by-atom basis.
Using a supercell consisting of 2 × 2 × 2 or 3 × 3 × 3 primitive
cells, rather than a single NaCl primitive cell (N = 1) permits
different local environments around each TM atom. Such a
polymorphous representation allows for a number of degrees
of freedom, consistent with an overall paramagnetic state,
including (i) different numbers of TM neighbors to each central
atom with spin up and spin down (geometric fluctuations),
(ii) different occupations of the 3d orbitals on each TM
(occupation number fluctuation), as well as (iii) different local
displacements (positional fluctuations), and consequently, (iv)
different local magnetic moments. The magnitude (zero or
otherwise) of these fluctuations is determined in a charge
self-consistent DFT calculation by seeking lower total ener-
gies. This provides for an intrinsically multisite representation
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involving a distribution of transition metals, each with its own
local environment. No mean-field-embedding bath is needed,
and no arbitrarily selected symmetry breaking is involved.

Our underlying conjecture is that time fluctuations that
could average the magnitude (not orientation) of the magnetic
moment to zero would involve excitations across the band
gap, so the time scale for such fluctuations is slow in relation
to the relevant electron energy scale. Thus the magnitude of
the on-site moments |μi |2 in gapped PM systems will not be
zero, deciding the higher energy scale of the problem. As a
result, the time average of the gaps of all configurations could
be nonzero. Even though the average 〈P 〉 = ∑

n cnP (σ (n)
i )

over the ensemble of microscopic spin configurations is
involved, the band gaps and moments P (σ (n)

i ) of individual
configurations are nonzero.

Indeed, the fact that the antiferromagnetic ordering
disappears at TN does not mean that the magnetic moments at
the transition metal sites go to zero too. On the contrary, the
transition metal atoms retain robust local magnetic moments
as evidenced by the Curie-Weiss behavior of the magnetic
susceptibility as a function of the temperature. This means
that the symmetry between spin-up and spin-down electronic
states is instantaneously broken at each site thus allowing the
localized magnetic moments to form. In contrast, in the naïve
DFT nonmagnetic approximation to the PM spin configuration
[4,17–19], one imposes perfect symmetry between spin up and
spin down, which is the symmetry that one obtains via time
averages. However, properties such as band gaps calculated
by using this zero average magnetic configuration does not
correspond to the property calculated as an average of the
properties of the spin configurations that the system traverses.
A possible way to allow for a polymorphous description of the
PM phase that permits the development of local moments in
a variational calculation is the special quasirandom structure
(SQS) construct.

C. The special quasirandom structure (SQS) as a finite supercell
realization of a polymorphous paramagnet,

not a snapshot configuration

Let us focus on the band gap as the property P to be calcu-
lated. Instead of calculating the band gap for many snapshot
configurations {σ (n)

i } and averaging the corresponding band
gaps P (σ (n)

i ), we construct a single supercell of N sites that
approximates the polymorphous configurational average. This
is done by requiring that the pair and multibody atom-atom
correlation functions in this special N site cell best match
the analytically known correlation functions for the infinite,
perfectly random configuration [45,46]. Convergence with
respect to N must be examined; we use N � 216 atoms/cell
finding that the moments and the total energy have stabilized.
The SQS fully complies with the polymorphous description
of the PM phases that we want to apply here. An observable P

calculated for such a structure is not simply the property of a
single snapshot configuration but approximates the ensemble
average 〈P 〉 for the random configuration (see Sec. A in the
Supplemental Material, see Ref. [47], for the SQS construct
[48–50] and the explanation of how an SQS approximates the
ensemble average for a random system).

It is clear that describing random alloys by periodic struc-
tures will introduce spurious spatial correlations in the moment
configuration beyond a certain distance (“periodicity errors”).
However, many physical properties of solids are characterized
by microscopic length scales that can be ordered according to
their typical size so as to establish a hierarchy. For instance, in-
teractions between distant neighbors generally contribute less
to the total energy than do interactions between close neigh-
bors. Therefore the guiding idea in the construction of special
quasirandom structures is to obtain within such structures a
close reproduction of the perfectly random atom arrangement
for the first few shells around a given site, while the periodicity
errors originate from the arrangement of the more distant
neighbors. In this respect, the SQS construct is reminiscent
of the “special k points” used for Brillouin zone integration
[51,52] in the sense that the selected k points are not meant to
reproduce properties that reflect mostly the long-range order.
The accuracy of the SQS improves as one uses larger SQS
cell representation (analogous to using more k points in BZ
sampling methods) in which longer range correlation functions
can be matched. We have used 64-atom (2 × 2 × 2 primitive
cells) and 216-atom (3 × 3 × 3 primitive cells) SQSs.

The SQS, as we just pointed out, is a convenient compu-
tational tool to approximate ensemble averages. It has been
shown that relatively small SQS produce numerically the same
property values as well as larger (ergodic) randomly selected
supercells do (see Ref. [53]). Note, however, that the SQS
approach is not to be confused with the commonly practiced
supercell approach. In the supercell approach, one occupies
lattice sites by different spins using, say, a random statistics
(i.e., via coin toss) or some choice of short-range order.
However, each such occupation pattern corresponds to a single
snapshot and in order to calculate the observable property
〈P 〉, which is an ensemble average, one should average the
properties {Pi} of different supercell snapshots. In the SQS
approach, the property PSQS calculated for one SQS provides
an approximation of the average 〈P 〉, which is progressively
improved by increasing the size N of the SQS and by extending
the order and size of the figures that the SQS algorithm tries
to hierarchically match. Because the SQS is a polymorphous
approach, it allows chemically identical sites to develop their
own, energy-lowering displacement patterns. In the transition
metal monoxides investigated here, the minimization of the
total energy for the PM phases shows negligible positional
atomic displacements relative to the rock-salt positions (less
than 0.07 A in amplitude). Examples of previous works that use
the SQS construct to model magnetic disorder are Refs. [54,55]
in which magnetic SQSs were used to model UO2 and CrN,
respectively, finding encouraging results.

Figure 1 shows the SQS we use for the random PM phase.
The histogram in Fig. 1 illustrates that, while in the AFM
phase (formed by doubling of the primitive rock-salt cell)
each metal atom has six spin-up and six spin-down metal
neighbors [denoted by (6,6)], in the SQS representation of
the high-temperature PM phase there is a distribution of local
environments, e.g., (4,8), (6,6), (8,4), etc. The landscape of
the self-consistent DFT potential V [ρ(r),m(r)] corresponding
to the SQS, in effect, allows each metal site to experience its
own distinct “particle-in-a-box” type potential, simply because
chemically identical metal sites that have different neighbors
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FIG. 1. Percent fraction F (n↑
NN ) of cation sites as a function of the

number n
↑
NN of spin-up nearest-neighbor (NN) metal site of a central

cation site in (a) the AFM-II phase and (b) the PM phase modeled here
by the 216-atom rock-salt SQS shown in the insert (in this model only
the metal sublattice of the underlying rock-salt structure is shown).
In the AFM phase, n

↑
NN = 6 for all cations, while in the PM phase,

n
↑
NN varies between 0 and 12 and F (n↑

NN ) approximates a binomial
distribution. The frequency of local environment types F (n↑

NN ) was
calculated averaging over a 216-atom SQS with A0.5B0.5 composition
and its complementary B0.5A0.5 spin configuration. The band gap and
the TM magnetic moment are reported for CoO in the AFM phase
and the PM phase, which was calculated using the displayed 216-atom
3 × 3 × 3 SQS.

“see” different local potentials. Just as the doubling of the
primitive cell is needed to produce antiferromagnetism in
the low-temperature AFM phases, the magnetic SQSs allow
capturing the different local patterns in the distribution of the
magnetic moments that characterize the PM phases. As we
will see below, such polarization of the charge density into
certain areas of space (not necessarily localization in the sense
of two electrons on one site as in the Mott-Hubbard picture)
is important in driving the selective occupation of certain d

orbitals out of the originally degenerate ones. The consequence
is the development of large energy gaps.

D. Allowing geometrical broken symmetry
and occupation broken symmetry

Within the SQS construct, we consider four types of
fluctuations introduced by broken symmetry (with respect to
NaCl with one TM/cell and nonmagnetic).

(a) Geometric fluctuation: different local geometrical en-
vironments for chemically identical TM atoms in the lattice.

Specifically, a different number of spin-up vs spin-down sites
can exist around each TM site, see Fig. 1. Here, the 12
(next-nearest) neighbor TM atoms to a central TM atom can
have 6 up spin +6 down spin, or 4 up +8 down, etc.). This
is afforded by the SQS construct, treating the PM phase as a
spin alloy. The system is in PM phase (total magnetic moment
equal to zero).

(b) Occupation number fluctuations whereby atomic sites
with partial occupation of initially degenerate levels (e.g.,
two electrons in the threefold degenerate t2 level) can have
different assignments of the electrons to the degenerate part-
ners. Occupation broken symmetry means that for every cobalt
atom, the occupations on different d states are always integer
[such as (1,0,1) in two electron t2, or (1,0) in single electron
e level, rather than using fractional and equal occupation such
as (2/3,2/3,2/3) in the t2 case, or (1/2,1/2) in the e1 case.
In a charge self-consistent DFT calculation, the fluctuations
(a) and (b) could lead also to further energy lowering via
the following mechanisms: (c) Site-to-site local magnetic
moment fluctuations and (d) displacement fluctuations (i.e.,
atomic relaxation). The key point is that in the polymorphous
approach used here all such symmetry breaking mechanisms—
geometric [(a) and (d)] or non-geometric [(b) and (c)]—are
considered simultaneously as long as they lower the energy. On
the technical side, we note that to ensure that the occupation
pattern does not correspond to a local minimum, one initially
applies a “nudge” in the occupation matrix (see Refs. [54,56–
58]) and then proceeds with the charge self-consistent DFT
calculation. Section B in the Supplemental Material (Ref. [47])
describes the protocol used for nudging the site occupations
and site relaxations.

E. The role of U in DFT + U

To treat open shell systems with degenerate orbitals (such
as one or two electrons in a triply degenerate t2 level), one
requires in DFT an exchange correlation (XC) functional that
distinguishes occupied from unoccupied orbitals (so one or two
of the degenerate t2 partners will be occupied by integer elec-
tron(s) and the other will be kept empty, rather than occupying
all partners by fractional electrons). This requirement means
that the XC functional contains an exchange correlation deriva-
tive discontinuity, i.e., that the functional should belong to rung
4 or 5 of the DFT hierarchy: meta-GGAs (like SCAN) are
“semilocal” functionals of the noninteracting density matrix,
and belong to rung 3. In contrast, DFT + U , hybrid functionals
and self-interaction corrected (SIC) functionals are all nonlocal
functionals of the noninteracting density matrix and they are
classified as rung 4. RPA, which is a nonlocal functional of all
occupied and unoccupied orbitals and of their orbital energies,
belongs to rung 5. The derivative discontinuity of the exchange
correlation energy is missing in the first three rungs of DFT
functionals, but present in the fourth and fifth rungs.

We use here the simplest nonlocal XC, i.e., DFT + U , a
method that can be seen as an approximation to the more rigor-
ous self-interaction correction. We used the PBE + U nonlocal
approximation to the exchange and correlation functional;
for simplicity, we use a constant value of U−J = 5.0 eV
(where U−J is the parameter in the DFT + U formulation of
Ref. [59]) for all materials in this study, although, most likely
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FIG. 2. Schematic of the sequence of level splittings and combinations for the d orbitals in MnO, NiO, FeO, and CoO as the exchange
coupling and the crystal field of the symmetry appropriate to each phase are progressively imposed: (a) splitting of the d orbitals into the
transition-metal atoms subjected to exchange coupling. (b) Splitting of the spin-up and spin-down d levels subjected to a cubic Oh crystal field:
this is the case of a rock-salt structure with hypothetical Fm3̄m magnetic ordering. (c) Splitting of the d level in the D3d crystal field in the
distorted rock-salt lattice with the rhombohedral R3̄m AFM-II magnetic ordering. (d) Splitting of the d orbitals in a tetragonal crystal field as in
the monoclinic C2/m phases of FeO and CoO. Note that in this schematic we emphasize the effect of the relevant interaction in progressively
removing the degeneracy of the d orbitals, while we do not intend to reproduce to scale the position of the spin-up and spin-down energy levels.
The reader should inspect the projected DOSs of Figs. 3 and 4 to obtain the actual calculated energy position of the d bands.

one can improve agreement with experiment by tweaking
U separately for each compound. In the DFT + U method,
the DFT total-energy functional is corrected by two terms
(Refs. [20–24,59–63]). The first term is a mean-field approxi-
mation of the electron-electron interaction within a subset of lo-
calized orbitals (here, the d orbitals). The second term subtracts
the contribution of the electron-electron interaction already ac-
counted for in the approximate functional and largely consists
of the self-Coulomb interaction (a manifestly one body effect).

Despite the impression suggested by the letter (Hubbard)
“U ,” the DFT + U method (perhaps better renamed DFT + V

to avoid such confusion) does not imply correlation in the Hub-
bard Hamiltonian sense. We note that numerous practitioners
apply these methods with the belief that they model many-body
correlations. DFT + U , as well as the hybrid functionals and
SIC DFT, are all methods in which the wave function of the N -
electron system is a single determinant. In single-determinant,
band structure approaches, each band structure calculation
occupies its levels in a single specific manner by electrons
(a single Slater determinant). Different possible patterns of
occupation of levels by electrons (which can be built in separate
band structure calculations) have no way of seeing each other.

F. The role of spin disorder versus spin order

We note from Table I that the FM spin arrangement is
monomorphous and has a gap due to its long-range order, but it
is obviously not a good model for the paramagnetic phase that
is magnetically disordered. In a disordered phase, we allow for

identical atoms to have the opportunity to experience different
local structural environments. The exchange and crystal-field
interactions modeled by DFT applied to SQSs are local effects
that do not need a long-range magnetic ordering to mix and
split the d levels, and as such these local effects drive the
opening of a gap in the overall magnetically disordered phase.
Furthermore, the SQS PM phase has lower energy than the
FM phase by 59.5, 45.1, 67.6, and 79.0 meV/formula unit for
NiO, MnO, FeO, and CoO, respectively (see Table I), so the
FM description is not selected.

Table I shows that the internal energy at T = 0 of the spin
disordered PM phase is higher than that of the AFM phase at
T = 0, as expected. We clarify that for the spin disorder PM
phase the free energy is F = E−T S, where S is the entropy,
so at T = 0, the AFM phase is lower in energy, and as T grows
the free energy E−T S of the PM phase decreases until this
becomes the lowest energy phase. However, we do not aim to
calculate the Néel temperature. Such calculations within DFT
are known in the literature (e.g., Franceschetti et al. [63] and
Daene et al. [64]).

IV. SUMMARY OF THE MAIN RESULTS
ON THE PM PHASES

Before we discuss the physical picture that emerges, we
state the results obtained for the magnetically ordered AFM
and FM phases and for the magnetically disordered PM phases,
which we modeled by a polymorphous description. As we
are not interested here in fitting the calculated gaps and
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FIG. 3. Projected density of states (PDOS) on the transition metal s and d orbitals (t2g and eg components) calculated by DFT + U

(U = 5 eV) for MnO and NiO in (a) and (b) the AFM phase with fully relaxed R3̄m structures, and [(c) and (d)] the PM phase modeled by a
cubic 64-atom 2 × 2 × 2 SQS. The lattice parameters of the SQSs are set so that the volume per formula unit is equal to the calculated volume
per formula unit of the DFT + U relaxed R3̄m structures of MnO and NiO.

moments to experiment, for simplicity we use DFT + U with
the same constant U = 5 eV for the FM, AFM, and PM phases
and all compounds. We also assume collinear moments and
neglect short-range order in the PM phase assuming perfect
randomness (the high-temperature limit). All such fine-tuning
corrections can be used in the future if one seeks more accurate,
material-dependent physics.

The schematic of Fig. 2 summarizes the hierarchy of site-
specific effects that remove the degeneracy in the four monox-
ides. The calculated values of moments, total energies and band
gaps are listed in Table I and reported in the projected density
of states plots of Figs. 3 and 4. The key ingredient of the present
theoretical approach is to allow for chemically identical sites
to develop their own unique local environments and potentials
rather than forcing a monomorphous representation, which
leads in the PM phase to nonmagnetic unit cells. We see from
Figs. 3 and 4 and Table I that a straightforward band structure
description with an appropriate structural/configurational input
and a reasonable value of the self-Coulomb U parameter
captures the moment formation and gapping in the AFM as
well as PM phases of the classic Mott insulators.

V. ANALYSIS OF THE RESULTS

A. Analysis of the occupations of the localized orbitals

For our analysis of the DFT + U results, we sought linear
combinations of the d orbitals that form a good representation

of the point-group symmetry at the TM sites. The d-orbital
occupation matrix that enters the “+U” term of the DFT + U

energy functional is calculated using the t2g and eg orbitals
as basis. However, the actual magnetocrystalline order in the
AFM phases, or the lack of it in the PM phases, breaks the
cubic point-group symmetry at the TM sites. In such a case, a
good representation for the d orbitals, which is often referred
to as the “crystal-field representation,” is that defined by the
eigenvectors of the occupations matrices. This representation
is also meaningful in terms of the mechanism that drives the
band gap opening. The sum of the probability distributions
of the eigenvector functions with spin down each weighted
by its occupation gives the distribution of the minority-spin
electrons density around the transition metal sites that we
inspect in the following. See Sec. B 1 in Ref. [47] for more
details on this representation.

B. Making sure that the electronic structure DFT description
does not get trapped in a high-symmetry basin

On the technical side, one needs to assure that the self-
consistent procedure for the charge density optimization and
relaxation of the atom positions does not get trapped in a
high-symmetry solution but can explore a broad range of
positional as well as wave function symmetries. In the case
of systems in which the crystal-field produces degenerate
states that are partially filled, one must explore lowered
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FIG. 4. Projected density of states (PDOS) on the transition metal s and d orbitals (t2g and eg components) calculated by DFT + U

(U = 5 eV) for FeO and CoO, in (a) and (b) the AFM phases with the fully relaxed monoclinic C2/m structures, and in (c) and (d) the
paramagnetic phases modeled by a cubic 64-atom 2 × 2 × 2 SQS. The lattice parameters of the SQSs are set so that the volume per formula
unit is equal to the calculated volume per formula unit of the DFT + U relaxed C2/m structures of FeO and CoO.

symmetries of the electronic state by allowing for distortions
of the lattice [23,24,65]. Thus we permit an initial “nudg-
ing” of the atoms off the high-symmetry sites (and see if
the quantum-mechanical forces tend to restore such high-
symmetry positions or prefer Jahn-Teller-like displacements).
At the same time, one needs to assure that the electronic
self-consistency cycle could explore a broader range of wave
function symmetries without getting trapped in high-symmetry
solutions. To this end we avoid charge density symmetrization
during the electronic self-consistent iterations. In the case of
the PM phases, we “nudge” the systems initially with unequal d
orbital occupations. See Sec. B 2 in the Supplemental Material,
Ref. [47] for the details of the nudging protocol. Starting from
such an orbital configuration helps the self-consistent solver
to converge towards a solution in which the d orbitals mix
to form linear combinations whose occupations ultimately are
either close to one or zero.

VI. RESULTS: THE MAGNETICALLY
ORDERED AFM PHASES

The AFM phases of MnO, FeO, CoO, and NiO have
been studied by DFT [67–69] as well as its extensions and
corrections, including DFT + U [23,66], hybrid functionals
[70], and SIC [71]. Here we briefly describe our results of the
evolution of the band gaps (Fig. 2) and provide the density of
states [Figs. 3(a), 3(b), 4(a), and 4(b)] to establish a common

basis for discussing later the generalized supercells needed to
capture the physics of the PM phases. As shown in Fig. 2,
in the ideal cubic rock-salt structure (Fm3̄m space group),
the crystal-field splits the atomic d levels into spin-up and
spin-down t2g and eg levels. The AFM-II magnetic order-
ing already breaks the cubic space-group magnetocrystalline
symmetry even without distortions to the ideal cubic lattice.
The lattice relaxations that are experimentally observed in the
low-temperature phases of these monoxides [72–74], lower
the point-group symmetry of the crystal field at the TM sites
with respect to that of the ideal cubic structure. See Sec. C in
Ref. [47] for the details of the relaxed crystal structure of the
AFM phases that we obtained by our DFT + U calculations.
Qualitatively, a similar combined effect of the exchange and
crystal-field interaction is the mechanism that drives the gap
opening in the PM phases and provides a unifying, single-
particle description of the insulating character of both the
magnetically ordered and magnetically disordered phases. We,
therefore, illustrate this mechanism starting with the AFM
phases, as well as the hypothetical FM phases, through the
same protocol used for the PM phases.

A. AFM MnO and NiO

AFM MnO and NiO exhibit a R3̄m magnetocrystalline
structure in which the TM crystal field has the rhombohedral
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D3d point-group symmetry. A crystal field of this symmetry
mixes the t2g orbitals so as to give the a1g singlet and the
e′
g doublet [Fig. 2(c)]. The eg orbitals are invariant to the D3d

symmetry operations and are often indicated as e′′
g . Figures 3(a)

and 3(b) depict the DOS of MnO and NiO projected onto the
cubic t2g and eg orbitals. In MnO, the Mn2+ ions exhibit the
d5 electronic configuration which results into the five spin-up
d↑ being orbitals fully occupied. A band gap opens in MnO
between the fully occupied spin-up d↑ orbitals and the empty
spin-down d↓ orbitals. In NiO, the Ni2+ ions exhibit the d8

configuration which corresponds to the five spin-up d↑ orbitals
being fully occupied and the t

↓
2g-derived orbitals being also

fully occupied. A band gap opens in NiO between the occupied
t
↓
2g-derived levels and the empty e

↓
g -derived levels.

B. AFM FeO and CoO

Fe2+ and Co2+ in FeO and CoO are, respectively, in the
d6 (meaning one electron in the spin-down d states) and d7

(meaning two electrons in the spin-down d states) configura-
tions. Our DFT + U calculations, in line with earlier studies
[23,24,66], show that a gap opens in FeO and CoO already in
the undistorted cubic lattice because of the symmetry lowering
induced by the AFM-II ordering. FeO opens a gap by occupy-
ing the a

↓
1g singlet, while the e

′ ↓
g doublet is in the conduction.

The opposite occurs in CoO with the e
′ ↓
g doublet occupied

by two electrons and the a
↓
1g singlet in the conduction. FeO

[75] and CoO [73,74] lower their total energies with respect
to the ideal cubic lattice through tetragonal distortions of the
metal-oxygen coordination octahedra that are accommodated
within a monoclinic cell with C2/m space-group symmetry
(see Fig. 6 and Table A1 in the Supplemental Material,
Ref. [47] for a description of the calculated equilibrium crystal
structure). In FeO, there is a compression of the in-plane
bonds and an expansion of the out-of-plane ones, while the
opposite occurs in CoO. Figures 4(a) and 4(b) depict the
DOS of monoclinic FeO and CoO projected onto the cubic
t2g and eg orbitals: FeO and CoO continue to be insulating
in the stable AFM monoclinic phase as in the higher-energy,
AFM undistorted cubic phase. The orbital mixing that occurs
due to the tetragonal distortion of the coordination octahedra
is reflected by the shape of the spin-down electron density
ρ↓(r). In FeO, ρ↓(r) has a square-planar shape rotated by 45◦
degrees around the z axis [see Fig. 5(a)]. In CoO, ρ↓(r) has an
octahedral shape with the vertical axis lying along the diagonal
of the x−y plane [see Fig. 5(b)]. A detailed analysis of ρ↓(r) in
terms of the orbital mixing obtained in the DFT + U solution is
performed in Sec. D 1 in the Supplemental Material, Ref. [47].

VII. RESULTS: THE MAGNETICALLY DISORDERED
PARAMAGNETIC PHASES

The DFT + U calculations of the PM phases of the
four monoxides modeled with the magnetic SQS produce
insulating solutions with strong magnetic moments at the TM
sites (see Table I for the gaps and magnetic moments at the
transition metal sites obtained in these SQS calculations).
The minimization of the total energy for the PM phases of
NiO, MnO, and FeO, modeled by the SQS shows negligible

FIG. 5. (a) and (b) depict the minority-spin electron density ρ↓(r)
at the Fe and Co site in the AFM monoclinic phases of, respectively,
FeO and CoO calculated by DFT + U . (c) and (d) depict the minority-
spin electron density ρ↓(r) at the Fe and Co site in the PM phase of,
respectively, FeO and CoO modeled by the magnetic 64-atom cubic
SQS used for the calculation of the PDOS shown in Figs. 5(c) and
5(d). The full ρ↓(r) of PM FeO and CoO in the SQS is shown in
Figs. 6(a) and 6(b).

positional atomic displacements relative to the rock-salt
positions, thus, no significant broadening of Bragg diffraction
peaks is expected. The projected DOS (PDOS) on the metal
d orbitals are depicted in Figs. 3(c) and 3(d) for MnO and
NiO and Figs. 4(c) and 4(d) for FeO and CoO. For the sake
of comparing the PDOSs across the whole series of oxides
and magnetic phases included in this study, we project the
DFT + U wave functions on t2g and eg orbitals. However, in
the polymorphous description, which is implemented through
the magnetic SQSs, the crystal field at each TM site shows a
low point-group symmetry, which in turn allows for the t2g

orbitals to mix among themselves and possibly also with the
eg orbitals. The magnetic disordered phases of MnO and NiO
exhibit gaps that in both cases, as can be seen from the PDOSs
in Figs. 3(c) and 3(d), open between subbands that derive
predominantly from the t2g and eg orbitals and are both filled in
a similar fashion as in the magnetically ordered AFM phases.

The PDOS plots of FeO and CoO in Figs. 4(c) and 4(d),
respectively, show that the gap originates in both systems
mainly from a splitting in the t2g-derived states. An inspection
of the density ρ↓(r) of spin-down electrons of PM FeO and
CoO [see Figs. 6(a) and 6(b)] and of the eigenvectors of the
occupation matrices calculated at the TM sites (see Sec. D 2 in
the Supplemental Material, Ref. [47]) shows that the gap is the
result of the mixing of the d orbitals in the low-symmetry
crystal field that characterizes each site in the disordered
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FIG. 6. Minority-spin electron density ρ↓(r) in the regions with
positive magnetization m(r) = ρ↑(r) − ρ↓(r) > 0 within the mag-
netic 64-atom SQS cell used in the DFT + U (U = 5 eV) calculations
of the PM phases of (a) FeO and (b) CoO. To avoid visual clutter, we
masked out the regions of space within spheres of of radius centered
at the oxygen sites.

phases and of the splitting of these mixed orbitals that lifts
the degeneracy of the unperturbed d states. In PM FeO, ρ↓(r)
at the Fe sites [Fig. 6(a)] has a square-planar shape lying on
one of the Cartesian planes and it is not tilted by 45◦ around
a Cartesian axis as in AFM FeO [see Fig. 5(a) and 5(c) for a
comparison between ρ↓(r) in AFM FeO and PM FeO], with
the specific plane varying randomly from site to site. Sites 4
and 14 in Fig. 6(a) are examples of two distinct orientations
of ρ↓(r) around the Fe sites in PM FeO. The analysis of the
eigenvectors of the occupation matrices in Sec. D 2 in the
Supplemental Material, Ref. [47] shows that this square planar
shape originates from one t2g orbital almost completely filled.

In PM CoO, we observe [see Fig. 6(b)] that ρ↓(r) shows
two types of shapes at the Co sites: a cylinderlike shape [e.g., at
site 14 in Fig. 6(b)] aligned to one of the Cartesian axes, and an
octahedronlike shape [e.g., at site 4 in Fig. 6(b)], with the apex
of the octahedron that, as opposed to the similar octahedral
shape that ρ↓(r) displays in AFM CoO, is tilted away from
the Cartesian planes and points into a direction that varies
randomly from site to site. Figures 5(b) and 5(d) display ρ↓(r)
at the Co sites in AFM CoO and PM CoO, respectively, and
show the different orientation of the octahedral shape in the two
cases. From an inspection of the eigenvalues of the occupation
matrices at the Co sites within the SQS (see Sec. D 2 in the
Supplemental Material, Ref. [47]), we observe that at each
site two eigenvectors φ

(1)
Co and φ

(2)
Co have occupations of ∼0.9,

that is, are almost completely full and make for the dominant
contribution to ρ↓(r) at the Co sites. The two different types
of the shape of ρ↓(r), found, for example, at site 4 and 14 in
Fig. 6(b), originate from two distinct modes of mixing of the d

orbitals to which correspond two distinct pairs of nearly fully
occupied eigenvectors {φ(1)

Co ,φ
(2)
Co}. At the sites where ρ↓(r)

shows a cylindrical shape [e.g., site 14 in Fig. 6(b)], the nearly
fully occupied eigenvectors {φ(1)

Co,φ
(2)
Co} are two of the three t2g

orbitals. At sites where ρ↓(r) shows a tilted octahedral shape,
the eigenvectors {φ(1)

Co ,φ
(2)
Co} are normalized linear combinations

of the three t2g orbitals with contributions also from the eg

orbitals. Analytic models of the probability densities |φ(1)
Co |2 and

|φ(2)
Co |2 and of their sum |φ(1)

Co |2 + |φ(2)
Co |2 are displayed in Fig.

A3 in the Supplemental Material; these models are consistent
with the tilted octahedral and the cylindrical shape of ρ↓(r) at
the Co sites in PM CoO obtained in the DFT + U solution.

The modality of orbital mixing and level splitting revealed
by the present calculations is similar in the AFM and PM phases
of the respective oxides. This helps explain the fact that the
magnetic moments in the SQS PM configurations converge to
values whose average is within less than 1% of the AFM values
(Table I). At the same time, the magnetic disorder decreases
the band gap of MnO, NiO, and CoO with respect to the value
in the AFM phase.

VIII. DISCUSSION

A. The physical picture of gapping of the PM phase:
The role of different symmetry- breaking modes in the PM phase

We considered the following degrees of freedom that
induce the symmetry breaking with respect to nonmagnetic
NaCl-structure with one TM per primitive cell: (a) geometric
symmetry breaking via the local environment distribution
supplied by SQS; (b) occupation number broken symmetry
(OBS); (c) displacement fluctuations (i.e., atomic relaxation);
(d) site-to-site local magnetic moment fluctuations. In CoO,
we illustrate the effects of these fundamental fluctuations in
Fig. 7 by starting from the most complete calculation (“level
IV” below) and “peeling of the onion” (i.e., removing the
effects one by one), inspecting total energies, band gaps, local
moments, and atomic displacements for the following 4 levels.

Level IV theory: SQS + OBS, with relaxation; allows
effects (a), (b), (c), and (d). Figure 7(a) shows the projected
density of states as well as the total energy, band gap, and
average cobalt local magnetic moment for level IV of the
216-atom rock-salt CoO supercell. It represents a very large
energy lowering of −2219 meV/formula units relative to the
monomorphous nonmagnetic description (level I below) and
yields a band gap of 2.39 eV and local moment of 2.75 BM.
Some of its properties include the following.

(i) Although the tg and eg representations are mixed by
the various symmetry breaking channels, one can observe that
the hole is localized predominantly on the tg↓ derived state
rather than the eg state: the occupation broken symmetry is
manifested by the fact that two electrons occupying the T1,
T2, and T3 components in the spin-down tg band cause the
band to split into the fully occupied (by two electrons) VBM
and an empty tg (CBM) derived spin-down conduction band.
Together with the three electrons in the deeper spin-up tg band
and two electrons in the spin-up tg band, this leads to the t3

+e2
+t2

−
configuration akin to the 3T1 multiplet (spin 3/2) where the
hole is distributed in the tg-like band. Placing instead the hole
in the eg-like band leads to a higher energy 2E multiplet.

(ii) The atomic displacements are configuration-dependent
and average to small amplitudes. Relaxation causes small
atomic displacements, with displacement directions depending
on the configuration selected, so the orientation average of the
displacements is far smaller than in any particular configura-
tions.

(iii) The band edges do not look like upper and lower
Hubbard states but are oxygen derived. The orbital make up
of the band edges [Table II and Fig. 7(a)] shows that the
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FIG. 7. Analysis of the effects of different symmetry breaking modes on the electronic structure, total energy, band gap, and local moment
of paramagnetic CoO. We show the projected density of states (PDOS) on the transition-metal s and d orbitals (t2g and eg components) and
oxygen p orbitals from levels (a) IV, (b) III, (c) II, and (d) I (see Sec. VII A for definition of these symmetry breaking levels) of rock-salt CoO.
(a)–(c) are calculated in a 216-atom cubic rock-salt supercell with SQS, while (d) is calculated in a two-atom rock-salt primitive cell. All lattice
parameters are the same as the one used in Fig. 4(d).

VBM is made predominantly of oxygen p orbitals (down-spin
VBM) and roughly equal amounts of oxygen and cobalt d

(up-spin VBM) whereas the lowest CBM is predominantly
oxygen p with some cobalt d hybridization. Thus CoO (as
well as the other oxides discussed here with late transition
metal cations having rather deep 3d orbitals) does not have
the proverbial lower Hubbard d VBM and upper Hubbard d

CBM, but are in fact charge transfer type band edges more
similar to ordinary semiconductors such as ZnO rather than
to early transition metal oxides (of V and Ti) that have more
significant d character in at least one of the two band edges.

Level III theory: SQS + OBS but no relaxation; allows
effects (a), (b), and (d). This level is the same as level IV
but no sublattice relaxation. Figure 7(b) shows the density of
states and provides the total energy and other characteristics.
The effect of atomic displacements is small. The total energy
of relaxed system is 9.5 meV/atom lower than the unrelaxed
one, and the orbital make up of the band edges [Table II]

is rather unchanged. By comparing the occupation matrices,
we also find that in the unrelaxed solution the eg states
do not mix with the tg states, e.g., the spin-down valence
states are a superposition of the type, e.g., dxy, dyz. After
relaxation the valence band remained basically pure tg with
little contamination from the eg states.

Level II theory: SQS, no OBS (freezing equivalent occupa-
tion on each t-like state), no relaxation; allows effects (a) and
(d). This level of theory includes different local environments
(via SQS) in the 216-atom rock-salt CoO supercell, but
forces equal occupation of the members of a degenerate tg
-like spin-down state with components T1, T2, and T3, i.e.,
instead of placing two electrons in two of the partners and
zero in the third, this central field like approximation places
(2/3, 2/3, 2/3) electrons in each partner. This places the
Fermi level inside the down-spin tg band leading to a metal.
Figure 7(c) shows the density of states and total energy
revealing a dramatic increase (494 meV/f.u.) in total energy
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TABLE II. Energies (in eV) and orbital make ups of band edges from DFT + U (U = 5 eV) calculations for (a) level IV (SQS + OBS
with atomic relaxations) and (b) level III (SQS + OBS but no atomic relaxations) using the 216-atom rock-salt CoO supercell. Level IV started
initially from level III calculation. The occupation configuration given by level III in this table is also shown as pattern 1 in Table III.

(a) CoO level IV up-spin VBM down-spin VBM up-spin CBM down-spin CBM

Energy (eV) (EFermi = 0) –0.022 –0.022 2.367 2.453

Co s 0.64% 0.31% 9.00% 0.41%
Co d eg 52.12% 4.47% 2.80% 2.41%
Co d tg 1.96% 25.63% 20.78% 95.14%

O p 45.28% 69.59% 67.44% 2.04%

(b) CoO level III up-spin VBM down-spin VBM up-spin CBM down-spin CBM

Energy (eV) (EFermi = 0) –0.022 –0.022 2.220 2.393

Co s 0.74% 0.32% 6.66% 0.31%
Co d eg 51.68% 4.96% 1.94% 1.50%
Co d tg 1.93% 24.92% 23.86% 96.15%

O p 45.65% 69.80% 67.55% 2.04%

relative to level III, just 1706 meV/formula unit below the
level I. Despite the gap being zero, this approximation gives a
nonzero local magnetic moment.

Level I theory: no SQS (nonmagnetic monomorphous de-
scription), no OBS, no relaxation; allows no symmetry break-
ing effects. This lowest level, often used in the past as the DFT
rendering of paramagnets, involves a primitive NaCl-structure
unit cell (1 Co + 1 O). There is no spin polarization, so the
two spin channels (with plus and minus values) are exactly
the same. The total energy is very high relative to all other
theoretical levels; the band gap and moments vanish, and the
Fermi energy lies in an eg-like band instead of the correct
tg-like band as in the other levels of theory.

B. The existence of many broken symmetry
configurations in the PM phase

Each independent broken symmetry configuration corre-
sponding to a choice of occupation patters can have, in
principle, different charge density, total energy, local moments,
and band gaps. The ultimate solution for the PM phase
should correspond to a symmetrized combination of these
configurations. Indeed, as explained in Sec. III A above,
the correct way to calculate the property P of a phase that
can have numerous individual configurations {σ (n)} each with
property P(σ n)

i ), is to calculate the polymorphous statistical
average 〈P〉 = ∑

n cnP(σ (n)) over the ensemble of microscopic
configurations. In general, the combination needs to be sym-
metrized, and if many-body configuration interaction is to
be considered, the problem needs to be subjected to this
additional diagonalization step. Table III illustrates different
configurations for the 216 atom SQS of the PM phase of CoO
(level III). We see that each of these configurations are closed
shell and have rather similarly large band gaps and moments.
According to our basic conjecture discussed in Sec. III B, we
expect that the symmetrized superposition state will also have
similarly large gaps and moments, i.e., that the interaction
between these base configurations will be weak. The single
determinant band approach used here neglects such dynamic
interaction between configurations and would fail when the
neglected interaction is strong. This is not the case in the

currently considered compounds, which are closed shell (level
IV or III) with large band gaps and are thus expected to be well
represented by a single-determinant approach.

C. Mott localization and double occupation is not involved
in the present physical picture

The bands obtained in the current single-determinant mean-
field band structure theory are conventional single-particle
states and should not be confused with the lower and upper
Hubbard bands [76,77] that characterize the solutions of
the Hubbard model. The Mott mechanism requires that the
electrons move across the lattice forming states on certain
atomic sites with doubly occupied d orbitals and empty d

orbitals on other sites (i.e., not a Bloch periodic band structure
picture) while the overall charge number is conserved. These
types of excited configurations correspond respectively to the
upper and lower Hubbard bands, which are truly “dynamic”
charge bands and correspond to many-body configurations,
whereas the present approach produces gapping without such
a mechanism, different than the Mott gap opening mechanism
described in the textbooks. That it is not entirely surprising
that d electron strong correlation is not the deciding factor for
these binary oxide systems as can be gleaned from Fig. 7 and
Table II showing that the valence band and conduction band
edges consist of oxygen p and transition metal s orbitals, not
the proverbial d-like lower and upper Hubbard bands.

TABLE III. Comparision of the properties of four different con-
figurations of SQS-PM CoO obtained by different initial occupation
broken symmetries. All are closed shells. Shown are the total energies
(in eV per formula unit), band gap (in eV), and average magnetic
moment (in Bohr magnetons) at the transition-metal sites. Table A3
in the Supplemental Material also illustrates some typical output
configurations.

d occupation pattern Etot (eV/f.u.) Egap (eV) μ (μB)

1 –11.561 2.26 2.75
2 –11.560 2.37 2.75
3 –11.559 2.26 2.75
4 –11.560 2.35 2.75
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D. Comparison with other approaches

Previously, the paramagnetic phases, including those of the
present TM oxides, have been modeled by the disordered
local moments (DLMs) [78–80] approach, which has been
implemented within the single-site coherent-potential approx-
imation (CPA) [11,36,65,81]. This approach assumes that the
Schrodinger equation potential seen by chemically equivalent
atoms in the disordered PM phase are all equal even though
such atoms have distinctly different local environments (such
as number of neighbors with spin up versus spin down, see
Fig. 1). This picture automatically ignores the existence of
inhomogeneous distribution of moments and charges. This is
valid only when the local environment flips its spin so fast that a
central atom does not distinguish if its environment is made of
up spins or down spins but all can be described as some average.
This is unlikely to be the case in insulators (such as Mott
insulators) where the screening is ineffective. This DLM view
leads to equal local moments on all TM atoms irrespective of
their environments. The DLM approach is virtually equivalent
to the so-called “Hubbard III” approximation [14] in regard
to the treatment of the spin disorder. DLM and Hubbard III
are in turn related to the DMFT approach, with the difference
that DLM and Hubbard III are unable to describe quantum
fluctuations, which are instead described by DMFT [16].
Similarly to the DLM description, DMFT is inherently a single-
site theory in which all sites of a given species (e.g., all the Co
sites in paramagnetic CoO) are geometrically equivalent.

The special quasirandom structure construct is an effective
way to establish a physically grounded representation of the
random magnetic configuration for three reasons. First, an
SQS is constructed so that a property calculated using it is
a close estimate of the ensemble statistical average that would
be required to calculate that property for a fully disordered
phase. Therefore, using one SQS, one can obtain reliable
estimates of ensemble averages, i.e., the relevant quantities
for the paramagnetic phases, by calculating one configuration
instead of many randomly-generated configurations. Second,
an SQS allows for a variety of local magnetic environments
and for multiple patterns of uneven d orbital occupations that
both concur to breaking the cubic symmetry and fully lifting
the degeneracy of the d orbitals. Finally, it is straightforward
to construct SQS that represent the property of imperfectly-
random ensembles, i.e., those that have short-range order
(SRO) and are thus better representative of PM phases closer
to the Néel temperature. Instead of constructing the SQS
by fitting to the analytically known random pair and many-
body correlation functions (see Sec. A in the Supplemental
Material), one can fit to independent measures or calculated
correlation functions that incorporate SRO [82].

In conclusion, in the present study we find that the DFT +
U method, which is a generalized Kohn-Sham approach,
reproduces the insulating character and on-site magnetic mo-
ments of the prototypical Mott insulators MnO, NiO, CoO,

and FeO when applied to SQSs, which approximate closely the
ensemble average over the random magnetic configurations.
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APPENDIX

For AFM phases, we use low-temperature lattice vector
symmetry. Even in NiO and MnO, the spin symmetry alone
changes the space group from NaCl to Rhombohedral R3-m
[because we selected (111) type AFM]. For FeO and CoO,
the lowest energy AFM cell symmetry is monoclinic C2/m.
We then optimize the structure to achieve very small quantum
mechanical forces. Note that the AFM structure can be Jahn
Teller distorted (FeO, CoO, see Fig. 2).

For PM phases, we use the supercell shape as the macro-
scopically observed high-T cubic lattice vectors, keeping only
the cell-internal atomic positions as variables during force cal-
culations. In practice, this can be done in steps such as (i) freeze
one choice at the time of OBS, and a frozen cell-internal atomic
geometry, and run charge self-consistency. Do a few OBS
choices independently, called “configuration i”; (ii) unfreeze
the OBS choice starting from (i), while the geometry is still
unrelaxed, and perform charge self-consistency; (iii) unfreeze
the previously unrelaxed geometry, seeking a minimum. In
practice, to avoid local minima, this requires an initial nudge in
the form of small random atomic displacements, then following
the calculated forces to geometries with vanishing forces.

Another protocol involves performing atomic relaxation
concomitantly with steps (i) and (ii). Here in step (i’) one
freezes a given choice of OBS, and performs a charge self-
consistent calculation on that frozen OBS while at the same
time relaxing the cell internal atomic positions. Do a few
OBS choices independently called “configuration i”: (ii’)
unfreeze OBS starting from (i’), while the geometry is being
reoptimized and do charge self-consistency. In the present case
both protocols (i) + (ii) or (i’) + (ii’) lead to virtually identical
results.
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