
Predicted Realization of Cubic Dirac Fermion in Quasi-One-Dimensional
Transition-Metal Monochalcogenides

Qihang Liu* and Alex Zunger
Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, USA
(Received 30 November 2016; revised manuscript received 13 February 2017; published 9 May 2017)

We show that the previously predicted “cubic Dirac fermion,” composed of six conventional Weyl
fermions including three with left-handed and three with right-handed chirality, is realized in a specific,
stable solid state system that has been made years ago, but was not appreciated as a “cubically dispersed
Dirac semimetal” (CDSM). We identify the crystal symmetry constraints and find the space group P63=m
as one of the two that can support a CDSM, of which the characteristic band crossing has linear dispersion
along the principle axis but cubic dispersion in the plane perpendicular to it. We then conduct a material
search using density functional theory, identifying a group of quasi-one-dimensional molybdenum
monochalcogenide compounds AIðMoXVIÞ3 (AI ¼ Na, K, Rb, In, Tl; XVI ¼ S, Se, Te) as ideal CDSM
candidates. Studying the stability of the AðMoXÞ3 family reveals a few candidates such as RbðMoTeÞ3 and
TlðMoTeÞ3 that are predicted to be resilient to Peierls distortion, thus retaining the metallic character.
Furthermore, the combination of one dimensionality and metallic nature in this family provides a platform
for unusual optical signature—polarization-dependent metallic vs insulating response.

DOI: 10.1103/PhysRevX.7.021019 Subject Areas: Condensed Matter Physics,
Materials Science

I. INTRODUCTION

The crossing on energy bands in complex materials
showing dense manifold of states is a ubiquitous effect
routinely reported in the past ∼50 years in countless
publications, a visual effect often referred to as “band
spaghetti.” For a long time, such crossings have been
known to result from specific space-group symmetries
[1,2], involving various band dispersion EðkÞ with powers
kn and characterized by a band degeneracy gðkÞ at the
crossing wave vector k. With the renewed interest in
materials with strong spin-orbit coupling (SOC), it recently
became clear that such band-crossing points could carry
interesting information on the topological behavior of the
system, leading to specific behaviors of surface or edge
states in reduced dimensions [3–5]. In SOC systems
respecting time-reversal symmetry, the degeneracy of
multiband crossings in momentum space could be
gðkÞ ¼ 2, 3, 4, 6, and 8, and the dispersion power kn with
n ¼ 1, 2, 3 at the crossing point could be linear, quadratic,
or cubic, respectively. Crossings between conduction and
valence bands with linear dispersion in at least one k-space
direction and g ¼ 2-fold degeneracy correspond to Weyl
semimetal (WSM) [3,6–10] and g ¼ 4-fold degeneracy to

Dirac semimetal (DSM) [4,11–16]. The remaining degen-
eracies at band-crossing points g ¼ 3, 6, and 8 correspond
to quasiparticles without analogous states in the standard
model of particle physics [5,17–19]. The latter respects
Poincare symmetry and has but three fermion types—Weyl,
Dirac, and Majorana.
In general, Dirac or Weyl band crossings in bulk solids

could be accompanied by different dispersion powers in
different directions, as constrained by their crystal sym-
metries. At these band crossings (termed “Dirac or Weyl
points”), the dispersion along the principle rotation axis (c) is
linear, whereas the dispersion along the a-b plane could be
either linear (n ¼ 1), quadratic (n ¼ 2), or cubic (n ¼ 3). A
Weyl point with in-plane dispersion power n carries a Chern
number n or −n, corresponding to a degeneracy of n
conventional Weyl fermions (left- or right-handed), all with
the same chirality [7]. In contrast, a Dirac point (DP) with
specific n has zero net Chern number and is a 2n-fold
degenerateWeyl fermionwith half left-handed andhalf right-
handed chirality [15,20,21]. Such Weyl and Dirac fermions
with high-order dispersions, caused by crystalline symmetry
in solids, do not have counterparts in high-energy physics.
While the surface states of DSM are not topologically
protected (unlike those of TI and WSM), such quadratic
(n ¼ 2) and cubic Dirac fermions (n ¼ 3), especially the
latter, are interesting relative to the conventional n ¼ 1Dirac
fermions: Their distinguishing features (as discussed in
Sec. III D) include creation of special WSM with multiple
Fermi arcs, characteristic quantum transport signatures,
quantum criticality, and phase transitions.
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In addition to the efforts to define and classify such
specific “new fermion” band crossings induced by crys-
talline symmetries and topology in condensed-matter
systems [5], an important challenge is to systematically
identify material realization of such unusual fermions. We
summarize all the different types of fermions in solid-state
physics, classified by the degree of band degeneracy (g) and
the highest power of band dispersion (n), with example
materials in Appendix A. Whereas quadratic dispersion
has been predicted to exist in SrSi2 [22] (g ¼ 2), band-
inverted α − Sn (g ¼ 4) [23], and PdSb2 (g ¼ 6) [5], cubic
dispersion, expected to exist both in Weyl [7] and Dirac
semimetals [15], has not been realized as yet in any material
candidates. In part, the difficulty to find such cubically
dispersed Dirac semimetals (CDSM) is related to the
multitude of nontrivial requirements one needs to impose
on such a material search, including appropriate crystal
symmetry, angular momentum, and electron filling.
Finding such materials by accidental discovery or simple
trial-and-error methods would thus be unlikely.
Here, we establish understanding-based design principles

for CDSMand use these to deliberately screen the candidates
that satisfy such conditions by exhaustively looking through
all 230 space groups in 3D.We find that onlymaterials in two
space groups, P63=m (No. 176) and P6=mcc (No. 192), have
the potential to host cubic Dirac fermions. This narrowing
down of the possibilities is then followed up by a (yet-
nonexhaustive) material search of compounds belonging to
these two CDSM-hosting space groups using density func-
tional theory (DFT, see Appendix B for computational
details). We identify a group of molybdenum transition-
metal chalcogenide compounds AI ðMoXVIÞ3 (AI ¼ Na, K,
Rb, In, Tl; XVI ¼ S, Se, Te) with space group P63=mas ideal
candidates. The structure of this type of compound (Fig. 1) is
basically quasi-1D chains ðMo3X3Þ1 running in the direction
of the c axis and separated by the hexagonal A1þ framework.
Most of these compounds have been synthesized in the 1980s
[24], and preliminary electronic structure with linear
dispersion along the chain direction has been reported
previously [25,26]. Recently, Gibson et al. theoretically
proposed this family of compounds as the conventional
linearly dispersed DSM [27]. In the present paper, we find
that the AðMoXÞ3 family exhibits (i) one cubically dispersed
DP; (ii) three linearly dispersed DPs induced by the
nonsymmorphic symmetry within the Brillouin zone (BZ),
like those envisioned for BiO2 in a hypothetical unstable
structure [11]; and (iii) quadratic DPs and another type
of linear DP along the chain direction in the conduction
bands. Furthermore, we predict that because of the 1D
metallic bands embedded in a semiconductor bulk,
AðMoXÞ3 CDSMs will exhibit polarization-dependent
optical response.
To predict realistic CDSM candidates, we systematically

studied the stability of these quasi-1D AðMoXÞ3 com-
pounds under Peierls distortion. DFT results show that

some compounds with strong 1D character inevitably
experience Peierls distortion, indicating a metal-to-
insulator transition below a critical temperature, consistent
with the previous transport measurements [28,29]. In
contrast, we find that the ground states of some com-
pounds, e.g., RbðMoTeÞ3 and TlðMoTeÞ3, are immune to
Peierls distortion even at low temperature, leading to the
retention of the CDSM phase. Another stability issue that
will be explored in the future is the resilience of the
structure to spontaneous formation of intrinsic defects
[such as Avacancies in AðMoXÞ3] that may shift the Fermi
level of the insulating phase.

II. RESULTS

A. Design principle for identifying CDSM

This process involves both crystal symmetry and elec-
tronic occupancy conditions. We will first consider the
crystal-symmetry requirement for DSMwith cubic in-plane
dispersions.
Here, we focus on nonmagnetic materials with inversion

symmetry P and SOC, which respects time-reversal sym-
metry T with T2 ¼ −1. The cubic dispersion at the DP can
only appear as the form of fourfold degeneracy occurring
in the time-reversal invariant (TRI) k point, whose little
group has C6 symmetry [15]. Given that P and T ensure
spin degenerate states ψðk; σÞ and PTψðk; σÞ ¼ ψðk;−σÞ,
we need an extra pair of states Lψ and PTLψ that differ
from ψ and PTψ , where L is a Hermitian symmetry
operator that commutes with the Hamiltonian H. This goal
can be achieved by finding another Hermitian symmetry
operator A to fulfill fA; APTg ∩ fAL; ALPTg ¼ ∅, where A
is the eigenvalue of ψ under A. For the least symmetry
required by the system, we first let L ¼ P; then the extra
degeneracy immediately requires an anticommutation
fA; Pg ¼ 0, implying that A contains a nonsymmorphic
symmetry.
Therefore, to establish cubic in-plane dispersion at g ¼ 4

band crossing, we need at least three symmetry filters:
inversion, C6 rotation, and the presence of nonsymmorphic
operations such as screw axis or glide reflection. These
requirements already exclude most of the space groups and
leave only four possibilities: P63=m (No. 176), P6=mcc
(No. 192), P63=mcm (No. 193), and P63=mmc (No. 194).
All of these space groups have fourfold degeneracy at TRI
k points within the kz ¼ π plane, forced by screw axis
(Nos. 176, 193, and 194) or glide reflection symmetry
(No. 192). However, space groups No. 193 and No. 194
have three mirror planes parallel to the C6 axis; these pose
extra symmetry conditions that force three high-symmetry
lines to be degenerate, and thus, there is no band splitting
along these directions [30]. Therefore, such nodes form an
infinite network through the BZ, leading to new types of
topological semimetals named nodal-line [31–36] and
nodal-ring semimetals [30,37], which are distinct from
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DSM and WSM. Therefore, only materials with space
groups P63=m and P6=mcc can host cubic Dirac fermions
in terms of crystal symmetry (see Appendix C for
details).
To further ensure that the leading order of the in-plane

dispersion is cubic, the states of the conduction band and
valence band at the DP should have opposite eigenvalues of
the C6 operator [15], i or −i. This means that the four
degenerate states at the DP should have an orbital part with
angular momentum lz ¼ �1, e.g., px � ipy or dxz � idyz
components. In addition, the fourfold degenerate DP
bunches conduction and valence bands together (half
filling), which requires the total number of electrons to
be Ne mod 4 ¼ 2. On the other hand, because of non-
symmorphic symmetry, the materials should have at least
two sublattices, indicating an odd number count per
formula unit (f.u.).
We summarize all the requirements for CDSM as

follows: (i) inversion, (ii) C6 rotation, (iii) nonsymmorphic
symmetry, (iv) lz ¼ �1 states, and (v) odd number of
electrons per f.u. Based on these design principles, we
performed a design-principle guided material search and
found that a group of AðMoXÞ3 compounds with space
group P63=m are ideal candidates for CDSM.

B. Crystal structure and chemical bonding
of the AðMoXÞ3 family

The quasi-1D structures AðMoXÞ3 system is derived
from the general family, known as “Chevrel clusters” [38],
that has been synthesized with extended MoX clusters
Mo6X8. The Mo6X8 unit can be viewed as a Mo6
octahedral surrounded by eight X chalcogen atoms, or

two Mo3X3 star-shaped planes capped by two other X
atoms along the c axis (C6 rotation axis), as shown in
Fig. 1(a). This unit cluster can be expanded along the c axis
infinitely and can form a 1D chain by repeating the Mo3X3

unit along the c axis, as shown in Figs. 1(b) and 1(c). Such
an extension provides a transition between a “molecule”
and a chainlike structure, with each equidistant unit of the
chain forming an equilateral triangle by three Mo atoms.
The monovalent cation element A (alkali or In, Tl) forms
linear chains between the Mo3X3 units, as shown in
Fig. 1(e).
The intratriangle (within the a-b plane) Mo-Mo bond

lengths are 2.64–2.65 Å for all the AðMoXÞ3 compounds
considered here, while the intertriangle Mo-Mo bond
ranges from 2.69 to 2.76 Å. These bond lengths are all
well below twice the atomic radius of Mo (2.01 Å),
indicating a strong Mo-Mo interaction. In addition to the
ordinary ionic or valent bonds (e.g., Mo-X), the existence
of an Mo-Mo interaction leads to delocalized electrons
along the chain and complicates the overall bonding types
of Mo atoms. As a result, the average valence state of Mo
can be a fractional number, offering possibilities to have an
odd number of electrons per f.u. Considering AðMoXÞ3
with alkali atom Aðs1Þ, Moðd5s1Þ, and X (s2p4) and that
only the Mo atom can be multivalent, the valence state on
the Mo atom is thusþ1.67. The total electrons per f.u. is an
odd number, 37.
In addition to the odd number of electron filling, we have

also identified this family of compounds as a CDSM
because of its reported space group being nonsymmorphic
P63=m (No. 176) [24]. The structure contains 12 symmetry
operations: identity; inversion; screw axis operation

FIG. 1. (a) Structure of the (Mo6X8) cluster unit with a Mo6 octahedral surrounded by a cubic X8 cage. (b) Top and (c) side view of the
quasi-1D chain ðMo3X3Þ1−. (d) Side view of the quasi-1D chain ðMo3X3Þ1− with Peierls distortion. (e) Crystal structure of the cluster
compound AðMoXÞ3. The blue, orange, and green balls denote Mo, X, and A atoms, respectively. (f) Hexagonal Brillouin zone and the
high-symmetry k path for band structure calculation. The dots mark the inequivalent Dirac points (one A point, three L points, and twoΛ
points representing Λ1 and Λ2) in undistorted structure.
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fC6jð0; 0; 1=2Þg, which is a sixfold rotation about the c axis
followed by a fractional lattice translation c=2; and their
combinations. For example, the combination of threefold
screw axis operation 63 and inversion generate mirror
reflectionMz with the mirror plane contains an Mo triangle,
which does not have the inversion center. It is the operator
A ¼ Mz that bunches the four states ψ , PTψ , Pψ , and Tψ
together at the four TRI k points in the kz ¼ π plane,
corresponding to one cubic DP and three linear DPs.

C. Dirac fermions with different types
of band dispersion

Figure 2(a) illustrates the DFT-calculated band
dispersion of TlðMoTeÞ3—a representative of quasi-1D
AðMoXÞ3 compounds that are immune to Peierls distor-
tion. We find that the dispersion within either the kz ¼ 0
(Γ-M-K-Γ) or kz ¼ π plane (A-H-L) is relatively flat. In
contrast, the bands along the c axis (Γ-A and Γ-L) are
dispersive, indicating the quasi-1D feature of the structure.
Specifically, there are two steep and linear bands from
conduction and valence bands meeting at the A(0, 0, 0.5)
and L(0.5,0,0.5) points from Γ. Note that within the gap
window of about 0.9 eV around the Fermi level, only the
Dirac bands show up within the Brillouin zone. Such a
clean band structure is expected to be easy to capture by
angle-resolved photoemission spectroscopy (ARPES)
measurement. The Fermi velocity of the linear Dirac bands
along the kz direction is 5.2 × 105 m=s, a value approach-
ing that of graphene, indicating massless Dirac fermions
with high mobility.
Next, we discuss the physical properties of the DPs

located at the A and L points, respectively. There are four
inequivalent DPs at the TRI k points of the BZ boundary,
including one A point and three L points, as indicated in
Fig. 1(f). Here, the DPs at A and L are protected by the
screw axis symmetry 21 and are thus stable under adiabatic
transformations that preserve these symmetry operations.
To capture the dispersion physics of the DPs at A and L, we
use a four-band k • p model applied at the high-symmetry
points A and L and then confirm the results by DFT calcu-
lations. In this case, the matrix representation of the
inversion symmetry operator P has the form P ¼ �τx,
while the time-reversal symmetry operator T takes the form

T ¼ iσyK, where τ and σ represent the Pauli matrix
working on the orbital and spin subspaces, respectively,
and K denotes complex conjugation. Taking the four-band
basis fjA;↑i; jB;↑i; jA;↓i; jB;↓ig, with A=B and ↑=↓
denoting orbital and spin degrees of freedom, the
low-energy Hamiltonian of the DP, with both P- and
T-invariance conditions implemented, is written in the
form of a 4 × 4 matrix [15,39]:

TABLE I. Different types of Dirac points and their physical properties in TlðMoTeÞ3. Note that the energy of DP is related to the Fermi
level, and w ¼ eiπ=6.

Wave vector
of DP

Multiplicity
in BZ

Energy
(eV)

In-plane
dispersion

Little group
of DP

Inversion
operator P

Rotation
eigenvalue

A(0,0,0.5) 1 −0.226 Cubic C6h �σx fi;−i;−i; ig
L(0.5,0,0.5) 3 0.007 Linear C2h �σx fi;−i;−i; ig
Λ1ð0; 0; 0.154Þ 2 0.294 Quadratic C6 �σz fw;w5; w−1; w−5g
Λ2ð0; 0; 0.136Þ 2 0.328 Linear C6 �σz fw;w−1; i;−ig

(a)

(b)

FIG. 2. (a) DFT calculated band structure of TlðMoTeÞ3 as a
representative of stable AðMoXÞ3 compounds. The different
types of Dirac points are marked by red, blue, and purple circles.
(b) In-plane band splitting in the vicinity of the four types of
Dirac fermions at A, L, Λ1, and Λ2 points. The solid (dashed)
lines denote DFT band splitting along the kx (ky) direction, within
the coordinate system defined in Fig. 1(f).
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HðkÞ ¼
 
a1ðkÞσz þ a2ðkÞσy þ a5ðkÞσx ða3ðkÞ − ia4ðkÞÞσz

ða3ðkÞ þ ia4ðkÞÞσz −a1ðkÞσz þ a2ðkÞσy þ a5ðkÞσx

!
; ð1Þ

where a0;5ðkÞ are real even functions of k, and a1;2;3;4ðkÞ
are real odd functions of k. By further applying specific
rotation symmetries, the DPs could be classified according
to their leading order of band dispersion based on different
band eigenvalues of the rotation operator. Generally, the
eigenvalues of Cn rotation are α ¼ eiπð2pþ1Þ=n, where
p ¼ 0; 1;…; n − 1. If we use the p value to represent
the rotation eigenvalue of the four-band basis, we have a
fp; q; r; sg list, with the time-reversal symmetry condition
requiring r ¼ n-p-1 and s ¼ n-q-1. Furthermore, the
invariance of the Hamiltonian under Cn rotation forces
all the k-expansion terms km1þ km2− in Hðkþ; k−; kzÞ to vanish
if m1 −m2 ≠ p − q mod n (a more detailed derivation
could be found in Refs. [7,15]). Therefore, the leading
order of k dispersion at the DP can be written as p-qmod n.
In AðMoXÞ3 compounds, the little group of the A point

is C6h with a C6 rotation axis. Indeed, we find that the band

eigenvalues of C6 at the A point are fi;−i;−i; ig,
which means fp; qg ¼ 4; 1 (the order does not matter).
Therefore, the leading order of in-plane k dispersion is 3,
indicating cubic Dirac fermions at A. It describes fermions
having linear dispersion along the C6 axis (kz direction),
while they have cubic dispersion within the kx-ky plane [the
coordinate system is defined in Fig. 1(f)]. This result is
confirmed by DFT calculations shown in Fig. 2(b), where it
is clear that the band splitting between Dirac bands
disperses cubically along both the kx and ky directions.
The cubic Dirac fermion with isotropic dispersion is
famous in the nonlinear self-interacting Dirac model in
quantum field theory [40], while here we report an
anisotropic cubic Dirac fermion in a real material for the
first time. The effective Hamiltonian in the vicinity of the
cubic DP is thus written as

HCubicðkÞ ∼
 
vxðk3þ þ k3−Þσx þ ivyðk3þ − k3−Þσy þ vzkzσz 0

0 −vxðk3þ þ k3−Þσx − ivyðk3þ − k3−Þσy − vzkzσz

!
; ð2Þ

where k� ¼ kx � iky, with the origin at the DP, and vx;y;z
are independent real coefficients. Such a block-diagonal
matrix can be decomposed into two Weyl Hamiltonians,
with each one being characterized by a topological invari-
ant, i.e., a Chern number, which is defined as the number of
monopoles of Berry curvature of a closed 2D surface
enclosing the Weyl nodes. In AðMoXÞ3, the DP at A is
composed of two opposite cubic Weyl fermions [7] carry-
ing Chern numbers þ3 and −3, joining without annihila-
tion. In other words, such a DP can be viewed as being
composed of six conventional Weyl fermions, with three
having left-handed and three having right-handed chirality.
It is known in high-energy physics that the Weyl fermions
with the same chirality cannot be degenerate, so such a
sixfold DP is indeed a “new fermion,” caused by sym-
metries present specifically in crystals.
Next, we consider the L point, which has the little group

C2h with a C2 rotation axis. Thus, the band eigenvalue of the
rotation operator is�i, and fp; qg ¼ f0; 1g. Therefore, the
DP at L has linear dispersion along the kx and ky directions,
as confirmed by the DFT calculation shown in Fig. 2(b). The
type of linear DP at L in AðMoXÞ3 is identical to that of
hypothetical β-cristobalite BiO2 [11] and distorted spinel
BaZnSiO4 [41], but it is more experimentally accessible
because of its stability (as discussed in Sec. II. D) and the
successful history of synthetization [24]. In addition, the DP
at L in TlðMoTeÞ3 is only 7 meV below the Fermi level,
which hopefully could be observed by ARPES.

The crystal symmetry of AðMoXÞ3 compounds can
also host another type of Dirac fermion, which is induced
by the band inversion between conduction and valence
bands with an accidental band crossing inside the BZ.
Examples include Na3Bi and Cd3As2, which were verified
by ARPES measurement [13,14], and ternary honeycomb
materials such as BaYBi (Y ¼ Au,Ag, and Cu) [42], as well
as metastable allotropes of Ge and Sn [43] predicted by first-
principles calculation. However, because the conduction and
valence bands of the AðMoXÞ3 family only meet at A and L
points, such DPs are actually band crossings of two con-
duction bands or twovalence bands atΛ points along theΓ-A
direction. In TlðMoTeÞ3, there are two inequivalent DPs that
have energy of about 300 meV above the Fermi level, as
marked by the purple circles in Fig. 2(a). Interestingly,
although they are located close to each other in terms of both
momentum and energy, the dispersion properties of the two
DPs are quite different. In contrast to the band crossings at
A and L that are protected by nonsymmorphic symmetry, the
DPs atΛ originate from the inversion of bands with different
parities. Thus, the inversionoperator takes the formP ¼ �τz,
and the low-energy Hamiltonian of the DP deviates from
Eq. (1) accordingly [39]. Given the double group represen-
tations of C6, the twofold degenerate Λ bands have three
possibilities: G7 þ G8, G9 þ G10, and G11 þ G12, with the
eigenvalues of C6 being e�5πi=6, e�πi=6, and e�3πi=6, respec-
tively. For the DPs, Λ1 is the crossing point of G7 þ G8 and
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G9 þ G10 bands, and thus, they have fp; qg ¼ f2; 0g,
indicating a quadratic Dirac fermion with quadratic in-plane
dispersion. While the quadratic Weyl points with the Chern
numbers �2 are theoretically predicted in time-reversal
breaking HgCrSe4 [7] and inversion breaking SrSi2 [22],
the quadratic Dirac fermion composed of two quadratic
Weyl fermions with opposite monopole charges has never
been reported before. On the other hand, Λ2 is the crossing
point of G7 þ G8 and G11 þ G12 bands, and thus, we have
fp; qg ¼ f2; 1g, indicating a linear Dirac fermion. We note
that the linear DP atΛ2 can be distinguished from the DP at
L in two ways: First, the DP at Λ2 originates from band
crossing due to band inversion and happens in pairs around
a TRI k point [see Fig. 1(f)], while the DP at L is the
touching point between the conduction and valence bands
at the boundary of BZ due to nonsymmorphic symmetry;
second, like A and Λ1, the DP at Λ2 shows isotropic
dispersion between the kx and ky directions because the
DPs along the z axis feel SO(2) symmetry at small in-plane
k, while theDP at L has anisotropic linear dispersions along
the kx and ky directions, as shown in Fig. 2(b). We
summarize the physical characteristics of the different
DPs in TlðMoTeÞ3 in Table I.

D. Peierls distortion and stable structures
in quasi-1D AðMoXÞ3 compounds

As noted above, the group of materials AðMoXÞ3 with
reported P63=m structure are stable in the laboratory.
However, the structure determination performed so far
[24,44] did not shed light on the possibility of possible
Peierls distortion. It is natural to expect that the ideal 1D
metallic structures are unstable against Peierls distortion and
could have, in the undistorted structure, either soft phonon
modes or higher energy than the distorted phase. Such
distortion could destroy the crystal symmetries responsible
for the DP and thus open a gap. To predict realistic quasi-
1D DSM candidates, we thus studied, systematically by
DFT, the phonon spectra and thermodynamic stability of the
15 AðMoXÞ3 compounds related to Peierls distortion
(shown in Fig. 3 andAppendixB).A number of observations
can be made: (i) Four compounds NaðMoSÞ3, NaðMoSeÞ3,
KðMoSeÞ3, and RbðMoSeÞ3 have soft phonons for the
undistorted structure, indicating dynamical instability (see
Fig. 6). (ii) All six AðMoXÞ3 compounds with A ¼ Na, K,
Rb and X ¼ S and Se, including the four compounds having
soft phonon modes, are highly unstable in the undistorted
structure. As a result, the ground states of these materials
experience Peierls transition to lower the total energy by
5.5–6.9 meV=f:u: and thus become semiconducting.
(iii) TlðMoTeÞ3 and RbðMoTeÞ3 are immune to Peierls
distortion, leading to the retention of the CDSM phase.
(iv) There is an intermediate phase with seven materials.
Their undistorted and distorted structures are both dynami-
cally stable and have somewhat similar total energies,
implying the coexistence of both phases.

Several AðMoXÞ3 compounds are not dynamically stable
in the high-symmetry P63=m structure, e.g., KðMoSeÞ3.
The phonon spectrum of undistorted KðMoSeÞ3 is shown in
Fig. 4(a). By analyzing the evolution of the phonon
eigenvectors, we find that one soft phonon mode is found
at Γ as well as in the kz ¼ 0 plane, indicating that such
high-symmetry metallic structure is dynamically unstable.
The eigenvectors of the soft phonon modes of undistorted
K(MoSe)3 [see Fig. 4(b)] show that Peierls distortion
naturally happens. The Mo triangles tend to become
airs by moving towards each other, forming alternative

FIG. 3. (a) Phase diagram of DSM vs Peierls distortion as a
function of anisotropy parameter λ for 15 AðMoXÞ3 compounds.
The black lines connecting compounds with the same A cation
are a guide to the eye.

FIG. 4. Calculated phonon spectrum of undistorted KðMoSeÞ3.
The red phonon dispersion indicates soft phonon modes. (b)
Vibration modes of the soft phonon at the Γ point in (a). (c)
Calculated phonon spectrum of KðMoSeÞ3 under Peierls dis-
tortion with the soft mode eliminated. (d) Band dispersion of
distorted KðMoSeÞ3 showing a band gap throughout the kz ¼ π
plane (A-H-L).
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short-long-short-long bonding with each other. Intere-
stingly, the three Se atoms within the same plane of each
Mo triangle tend to move oppositely and thus form a
buckled in-plane structure. We applied such a distortion
mode to the undistorted structure, and after relaxation, we
found that such Peierls distortion indeed eliminates the
negative phonon modes [see Fig. 4(c)] as well as lowers the
total energy by 6.8 meV per f.u. The distorted structure [see
Fig. 1(d)] has a reduced symmetry with a space group of P3̄
(No. 147), in which the screw axis symmetry is no longer
preserved. As a result, a band gap is opened at the A and L
points. Figure 4(d) shows that in distorted KðMoSeÞ3, there
is a 280-meV band gap throughout the kz ¼ π plane,
indicating that the relative small change in band length
between Mo triangles (0.03 Å) induces a remarkable effect
in the electronic structure.
Indeed, the existence of Peierls distortion is basically the

competition between band eigenvalues and elastic energy.
If the gain of occupied band eigenvalues induced by
creating a gap is less than the cost of elastic energy by
modulating the atomic positions, Peierls distortion will not
occur. The subtlety of whether a quasi-1D system would
experience Peierls transition is closely related to how “1D”
the system is. To demonstrate this, we investigate the
relationship between the stability of undistorted AðMoXÞ3
compounds and their character of one dimensionality. Since
the linear Dirac bands along Γ-A are mainly contributed by
dxz and dyz orbitals of an Mo atom, these states strongly
extend along the chain direction through the intertriangle
Mo-Mo bonding, leading to large dispersion. On the other
hand, the energy bands within the a-b plane are rather
narrow, implying weak in-plane hopping. In particular, the
flatness of the bands within the kz ¼ π plane reflects the
instability due to Fermi nesting. Therefore, we define a
parameter λ ¼ Wc=Wab to quantify the anisotropy between
the c axis and the a-b plane, where Wc and Wab denote
the widths of the linear Dirac band along Γ-A and the flat
band within the kz ¼ π plane, to find out the relationship
between Peierls distortion and the strength of the “1D-ness.”
More details about λ for the 15 AðMoXÞ3 compounds are
shown in Table III. The phase diagram as a function of λ is
shown in Fig. 3. A clear trend can be found: The compounds
having a stable DMS phase or a competitive DSM phase
compared to the Peierls phase aremostly located at the small
λ area, indicating that they are less 1D-like. On the other
hand, the compounds with λ > 100 are considered more
1D-like and are thus stabilized as a Peierls phase [except
RbðMoTeÞ3]. In addition, for the group of AðMoXÞ3 with
the same A cation, the AðMoSeÞ3 is the most unstable
compared to X ¼ S and Te.
Finally, we predict that the quasi-1D feature of the

AðMoXÞ3 family provides a platform for realizing
low-dimensional physics as well as new electronic and
optoelectronic device concepts. Specifically, the optical
properties of DSM compounds are uniquely interesting

because of the coexistence of a reduced dimensionality
1D metal embedded in a semiconductor bulk, leading to a
polarization-dependent optical signature. As shown in
Fig. 5(a), for TlðMoTeÞ3, there is an absorption peak
starting at 0 eV for z-polarized light originating from the
interband optical transitions between the linearly dispersed
valence and conduction Dirac bands, while there is nearly
zero absorption for x- and y-polarized light up to 0.5 eV,
originating from the insulating states along these directions.
The case of the Peierls semiconductor, e.g., KðMoSeÞ3, is
slightly different in that the z direction behaves like a small-
gap semiconductor, evidenced by the nonzero energy onset
of the absorption peak shown in Fig. 5(b). Future meas-
urement of the polarization dependence will serve to
disentangle the basically different optical properties of
1D metals and the semiconductor.

III. DISCUSSION

A. Metal-insulator transition

We expect that Peierls distortion is more noticeable
at low temperatures, while at high temperatures, the high-
symmetry metallic state is usually more stable because the
gain of band eigenvalues is reduced by the thermal
excitation of electrons across the band gap. Given that
the structural determination of a single crystal assigns
AðMoXÞ3 to the high-symmetry space group P63=m at high
temperature, Fig. 3 could provide some implications on the
metal-insulator transition of this system that can be
compared with the transport measurements [28,29] and
theoretical explanations using electron-phonon coupling
[26]. We conclude that the compounds in the “Peierls
semiconductor” region should undergo a phase transition
from metal to semiconductor when the temperature goes
below a critical value, while at low temperatures, the
compounds in the “Coexistence” region could appear in
both phases based on the growth condition. The phase
diagram with three regions shown in Fig. 3 is in great
agreement with the measurements made by previous
experiments, including that TlðMoTeÞ3 is metallic at low
temperature; AðMoSeÞ3 compounds with A ¼ Na, K, Rb
undergo a metal-insulator transition below 200 K [29];

FIG. 5. Absorption coefficient (αxx ¼ αyy; αzz) of (a)
TlðMoTeÞ3 and (b) KðMoSeÞ3 from DFT calculations.
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and TlðMoSeÞ3 and InðMoSeÞ3 have at least two types of
samples, with one metallic down to low temperatures and
another having a phase transition at a critical temperature
[28]. Our results on thermodynamical stability are also
consistent with the recent calculation using the electron-
phonon coupling, concluding that the main mechanism of
the metal-insulator transition is the dynamic charge density
wave that corresponds to Peierls-type displacement [26].

B. Experimental accessibility

The AðMoXÞ3 compounds were synthesized over 30
years ago [24] at 1000–1200 °C in sealed molybdenum
crucibles under low argon pressure. The single crystals
were needlelike growing along the c axis, indicating the 1D
character. Most of this family of compounds were found
to be stable in air. It is noticeable that NaðMoSeÞ3,
InðMoSeÞ3, and TlðMoSeÞ3 were synthesized and reported
to be quasi-1D superconductors with relatively high critical
fields [28,45,46]. Some compounds from this family were
shown to have metal-insulator transition below a critical
temperature [26,28,29]. According to our DFT calcula-
tions, the compounds that do not have Peierls distortion and
thus tend to stay metallic are TlðMoTeÞ3 and RbðMoTeÞ3.
These tellurides are also predicted to have stronger
dispersion than selenides and sulfides (see Fig. 7), provid-
ing a better chance to resolve the bands by ARPES.
Another challenge for detecting the cubic Dirac fermion

is the possibility that the A cation in AðMoXÞ3 will
show some off-stoichiometry, e.g., deficiency, which is a
natural consequence of the high temperatures required in
crystal growth. Indeed, single-crystal diffraction showed
that while the structure of the quasi-1DMoX chain is nearly
perfect, the A site shows up to 15% under stoichiometric
[46]. One might be able to replenish the A-site deficiency
on the surface by deposition of the cation ultrahigh vacuum
evaporation so as to make the DP measurable by ARPES.
Such a cation deficiency is expected to shift the Fermi
energy downwards relative to the stoichiometric crystal,
leading to unoccupied Dirac states that are not accessible
to ARPES. Fortunately, the cubic DP of TlðMoTeÞ3 is
calculated to be 226 meV below the Fermi level, so the
downward shift may still place the DP near the Fermi
energy.

C. Remarks on surface states

The link between the topological invariant of the bulk
and the surface or edge states, known as bulk-boundary
correspondence, is the central property of a topological
system. For example, in WSMs, there are Fermi arcs
robustly protected at the surface because of a topological
origin [3]: Each 2D plane that lies between a pair of Weyl
points, perpendicular to the separation between them, is a
2D Chern insulator associated with quantum Hall effect.
The edge states of these Chern insulators connect to form
surface Fermi arcs, which end at the projection of bulk

Weyl points. On the other hand, since the DP in DSM could
be understood as two degenerate Weyl points with opposite
monopole charge, one might expect that there are two
copies of Fermi arcs on the DSM surface forming a ring
with two singularities at the surface projection of the DPs in
the bulk. However, a recent theoretical study reveals that
the Fermi arcs on the DSM surface are not topologically
protected and can be continuously deformed into the case
of a topological or normal insulator without any symmetry
breaking [47]. Then the surface behavior of a DSM will
follow the direction where a small perturbation will lead the
system to. For DSMs with a pair of DPs located away from
the TRI k points and P ¼ �τz (parity inversion), such as
Na3Bi and Cd3As2, a small perturbation can open the gap
while preserving the band inversion, leading to a topologi-
cal insulator (TI). Thus, the surface states are robust as a
closed Fermi contour.

D. Why are cubic Dirac fermions interesting relative
to conventional Dirac fermions?

DSMs with a DP located at the TRI k points, such as
BiO2 (in a hypothetical SiO2 structure [11]) and the
AðMoXÞ3 family, behave as a quantum critical point,
rendering it an ideal platform to realize other topological
phases by symmetry tuning [11,15,48]. The main points of
interest are as follows: (i) By breaking time-reversal
symmetry in DSM, e.g., via the introduction of magnetic
ions, such systems are known to transform to WSMs. More
specifically, for CDSM, this was predicted theoretically [15]
to lead to WSM with the unique occurrence of three Fermi
arcs connecting the surface projection of the Weyl node and
its antinode. This is the largest number of pairs of Weyl
nodes that can theoretically be accommodated, leading to an
enhanced conductivity step for the quantum anomalous Hall
effect. (ii) The dispersion power n (¼ numbers of monopole
charges) present in symmetry-broken DSMwas predicted to
produce n-dependent quantum interference effects [49],
leading to dispersion-dependent quantum transport phe-
nomena. For conventional DSM or WSM (n ¼ 1), a
destructive quantum interference results in a weak antiloc-
alization correction proportional to − ffiffiffiffi

B
p

in the weak field
limit. Such negative longitudinal magnetoresistance, also
known as the chiral anomaly [50,51], has been confirmed by
various transport measurements [52–56]. In contrast, for
DSM orWSMwith n ¼ 2, it has been predicted that a weak
localization correction proportional to þ ffiffiffiffi

B
p

applies to the
magnetoconductivity [49], calling for experimental verifi-
cations. With the material realization of CDSM (n ¼ 3), its
transport behavior becomes an accessible and open ques-
tion. (iii) The stronger screening of bare interaction and
disorder in DSM or WSM with high-order dispersions
provides the opportunity for more exotic physics, such as
quantum criticality and phase transition [57–59]. In
DSM or WSM, the density of states at the band-crossing
point behaves as ρðEÞ ∼ jEj2=n. Compared with the
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linear-dispersing direction, the quadratic and cubic-
dispersing directions have enhanced density of states near
the band-crossing point, which results in stronger screening.
Specifically, in CDSM (n ¼ 3), the Coulomb interactions
along the in-plane directions are screened with a faster decay
than that along the rotation axis (r−1). Recently, it was
predicted that WSM with n ¼ 3, in the presence of short-
range interactions, can easily undergo a continuous quantum
phase transition into either a translational symmetry-breaking
axion insulator or a rotational symmetry-breaking nematic
state [60]. Furthermore, the nonlinear dispersion and the 1D
nature of a condensed-matter system would cause a break-
down of the interacting Fermi liquid theory for electron
behavior, leading to Luttinger liquid instead.
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APPENDIX A: CLASSIFICATION OF DIFFERENT
TYPES OF FERMIONS IN SOLID-STATE

PHYSICS

Table II shows examples of materials that host different
types of fermions classified by the degree of degeneracy (g)
and the highest power of band dispersion (n). Here, we
consider three-dimensional crystals with spin-orbit cou-
pling, respecting time-reversal symmetry. We consider
single-point degeneracy in k space, so the materials with
line nodes are not included. Some cases, e.g., g ¼ 8 and
n ¼ 3, are forbidden because of the restriction of crystal
symmetries. Some cases are predicted to exist, but there is
no material realization yet (marked by “?” in the table). The
materials with asterisks have hypothetical configurations,
while the rest of the examples (including our work) have
been synthesized as single crystals.

TABLE II. Different types of fermions in solid-state physics with example materials.

g

n 2 (e.g., WSM) 3 4 (e.g., DSM) 6 8

1 TaAs [9], WTe2 [8] Pd3Bi2S2 [5], WC [19] Na3Bi [4], BiO2
� [11] MgPt [5], Li2Pd3B [5] Ta3Sb [5] Bi2AuO5 [18]

2 SrSi2 [22] ZrTe [19], TaN [17] α-Sn [23] PdSb2 [5] Forbidden
3 ? Forbidden AðMoXÞ3 (this work) Forbidden Forbidden

TABLE III. Calculated intertriangle Mo-Mo bond length (dint) of undistorted and distorted structures, z-direction Fermi velocity vF at
the A point for undistorted structure, anisotropy parameter λ for undistorted structure, and Peierls stabilization energy ΔE (the total
energy difference between undistorted and distorted structures) for 15 AðMoXÞ3 compounds.

Compounds Undistorted dint (Å) Distorted dint (Å) vF (m=s) λ ΔE (meV=f:u:)

NaðMoSÞ3a 2.690 2.666=2.714 8.1 × 105 149 5.5
NaðMoSeÞ3a 2.719 2.691=2.745 8.3 × 105 84.8 6.1
NaðMoTeÞ3 2.762 2.730=2.801 7.0 × 105 50 −0.6
KðMoSÞ3 2.694 2.669=2.719 8.4 × 105 231 6.4
KðMoSeÞ3a 2.723 2.692=2.753 8.0 × 105 157 6.8
KðMoTeÞ3 2.764 2.749=2.781 7.3 × 105 80 0.4
RbðMoSÞ3 2.696 2.672=2.720 9.0 × 105 400 6.7
RbðMoSeÞ3a 2.724 2.696=2.753 8.3 × 105 270 6.9
RbðMoTeÞ3 2.765 2.763=2.768 7.3 × 105 119 −2.6
InðMoSÞ3 2.702 2.678=2.725 8.2 × 105 54.6 −1.4
InðMoSeÞ3 2.724 2.701=2.746 6.9 × 105 31.4 1.3
InðMoTeÞ3 2.759 2.736=2.782 5.4 × 105 17.5 −0.2
TlðMoSÞ3 2.699 2.676=2.722 8.0 × 105 50.9 0.2
TlðMoSeÞ3 2.723 2.701=2.746 6.7 × 105 30.7 1.34
TlðMoTeÞ3 2.760 2.735=2.785 5.2 × 105 17.8 −4.8

aUndistorted structure is dynamically unstable, i.e., has soft phonon modes.
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APPENDIX B: FIRST-PRINCIPLES
CALCULATIONS

All calculations including total energy, electronic struc-
ture, and phonon dispersion were performed by density
functional theory (DFT), where the geometrical and total
energies are calculated by the projector-augmented wave
(PAW) pseudopotential [61] and the exchange correlation is
described by the generalized gradient approximation of
Perdew, Burke, and Ernzerhof (PBE) [62] as implemented
in the Vienna ab initio package (VASP) [63]. The plane-
wave energy cutoff is set to 500 eV, and the electronic

energy minimization was performed with a tolerance of
10−5 eV. Spin-orbit coupling is taken into account self-
consistently throughout the electronic structure calcula-
tions. The atomic projection on band structure is calculated
by projecting the wave functions with plan-wave expansion
on the orbital basis (spherical harmonics) of each atomic
site. The phonon spectra were identified using the PHONOPY

package [64], in which the force constants are calculated in
the framework of density-functional perturbation theory
(DFPT) [65]. Phonon calculations were performed within a
1 × 1 × 4 supercell (56 atoms). To evaluate the anisotropic
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FIG. 6. Phonon spectra of 15 AðMoXÞ3 compounds with undistorted P63=m structure. The red and blue dispersions indicate spectra
with soft phonons and without soft phonons, respectively.
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optical properties of quasi-1D AðMoXÞ3 compounds, we
calculate the frequency (ω) dependent dielectric function
ϵijðωÞ based on DFT. Then, the optical absorption coef-
ficient is evaluated from the dielectric function:

αijðωÞ ¼
ffiffiffi
2

p
ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϵijðωÞj − Re½ϵijðωÞ�

q
; ðB1Þ

where c is the speed of light and Re½ϵijðωÞ� is the real part
of ϵijðωÞ.
In Table III, we show the geometry, electronic, and

stability signatures of undistorted and distorted AðMoXÞ3
structures using DFT calculations. The results indicate that

9 out of the 15 compounds have comparative total energies
for the two structures taken into consideration, and they are,
in general, more 3D-like, as suggested by the anisotropy
parameter λ.
Figure 6 shows the phonon spectra of 15 AðMoXÞ3

compounds with undistorted P63=m structure. We find
that four compounds NaðMoSÞ3, NaðMoSeÞ3, KðMoSeÞ3,
and RbðMoSeÞ3 are dynamically unstable because of
the negative phonon modes for the kz ¼ 0 plane of the
undistorted P63=m structure.
Figure 7 shows the band structure of 15 AðMoXÞ3

compounds with undistorted P63=m structure. We find
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FIG. 7. Band structure of 15 AðMoXÞ3 compounds with undistorted P63=m structure.
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that all the quasi-1D compounds have strong dispersions
along the c axis and flat in-plane dispersions.
Comparatively, the compounds with heavier A and X
elements tend to have stronger in-plane dispersions because
of the relativistic effects.

APPENDIX C: SPACE GROUPS THAT
HOST CUBIC DIRAC FERMIONS

Here, we use symmetry analysis to show how non-
symmorphic symmetry ensures fourfold degeneracy, i.e.,
the Dirac point, at certain time-reversal invariant (TRI) k
points in a spin-orbit system preserving both inversion
symmetry P and time-reversal symmetry T. Then, we show
that out of 230 space groups, only P63=m (No. 176) and
P6=mcc (No. 192) have appropriate symmetries to host
cubic Dirac fermions.
In a spin-orbit system, the anti-unitary operator T

behaves as T2 ¼ −1, leading to Kramers degeneracy.
Together with inversion symmetry, it turns out that all
the energy bands are twofold degenerate with the two
components related to each other by PT, i.e., ψðk; σÞ and
PTψðk; σÞ ¼ ψðk;−σÞ, which is known as spin degen-
eracy. Therefore, to achieve fourfold degeneracy, we need
an extra pair of states Lψ and PTLψ with ½L;H� ¼ 0 that
differ with ψ and PTψ , while L is a Hermitian symmetry
operator of the system. We are thus looking for another
Hermitian symmetry operator A to fulfill the condition
fA; APTg ∩ fAL; ALPTg ¼ ∅, where A is the eigenvalue of
ψ under A. Thus, we get two pairs of bands fψ ; PTψg and
fLψ ; PTLψg that have different eigenvalues of A, so they
must have a band crossing rather than a gap opening. The
task is basically to find the two operators L and A, and the
degeneracy will happen at the k points that are invariant
under these two symmetry operations. For example, if the k
points that are invariant under both L andA form a line, the
system is thus a nodal-line semimetal.
Without adding new symmetries, we first let L ¼ P.

Since the P operator reverses the momentum, there are only
eight TRI k points in the BZ that are P invariant. Now, we
are looking for the operator A that fulfills

fA; APTg ∩ fAP; ATg ¼ ∅: ðC1Þ

We next consider the most common twofold symmetries for
A that all the TRI k points can preserve, which have two
eigenvalues. From Eq. (C1), we have A ¼ −AP, indicating

APψ ¼ APPψ ¼ −PAψ ¼ −PAψ ; ðC2Þ

which leads to the anticommutation relationship

fA; Pg ¼ 0: ðC3Þ

Given that P commutes with any point-group operations,
we conclude that A contains a nonsymmorphic symmetry

that is a combination of point-group operation and frac-
tional translation. In addition, from Eq. (1), there is another
condition A ¼ −AT . Considering ½A;T� ¼ 0, we have

ATψ ¼ TAψ ¼ TAψ ¼ −TATψ ¼ ATTψ ; ðC4Þ

which indicates AT ¼ �i and thus

A2 ¼ −1: ðC5Þ

Therefore, the symmetry operation A that fulfills
Eqs. (C3) and (C5) ensures a DP in certain TRI k points.
Combining three symmetry filters for cubic Dirac semi-

metal (i.e., inversion, C6, and nonsymmorphic symmetry),
only four possibilities [P63=m(No. 176), P6=mcc (No. 192),
P63=mcm (No. 193), and P63=mmc (No. 194)] are left. All
of these space groups have DPs at the four TRI k points (one
A point and three L points) within the kz ¼ π plane. For
space groups No. 176, No. 193, and No. 194, there is an axis
symmetry fC2jð0; 0; 1=2Þg, which transforms (x, y, z) in
position space to (−x, −y, zþ 1=2). Considering the
combination symmetry A ¼ PfC2jð0; 0; 1=2Þg, it is easy
to test that ½A; P� ¼ 0 in the kz ¼ 0 plane and fA; Pg ¼ 0 in
the kz ¼ π plane. On the other hand, A2 preserves (x, y, z)
while it rotates spin by2π, leading to aminus sign,A2 ¼ −1.
Therefore, A protects the fourfold degeneracy at the four
TRI k points within the kz ¼ π plane. However, space
groups No. 193 and No. 194 have three mirror planes
parallel to theC6 axis, posing extra symmetry conditions that
force three high-symmetry lines to be degenerate. Here, we
still take A ¼ PfC2jð0; 0; 1=2Þg but L ¼ Mx, which trans-
forms (x, y, z) in position space to (−x, y, z). The
commutation relationship then reads fA;Mxg ¼ 0 and
½A; PTMx� ¼ 0 in the kz ¼ π plane. In this case, A and L
keep the whole kx ¼ 0 line, as well as another two lines
related by C3 symmetry in the kz ¼ π plane, rendering the
system a nodal-line or nodal-ring semimetal.
On the other hand, space group P6=mcc (No. 192) has

six glide reflection planes that all contain the C6 axis, and
here we take fMxjð0; 0; 1=2Þg, which transforms (x, y, z) to
(−x, y, zþ 1=2). Similarly, considering the combination
symmetryA ¼ PfMxjð0; 0; 1=2Þg, we also have fA; Pg ¼
0 in the kz ¼ π plane and A2 ¼ −1, which protects only
four DPs and no extra symmetries for more degenerate k
points. Finally, we reach the conclusion that out of 230
space groups, only P63=m (No. 176) and P6=mcc (No. 192)
have appropriate symmetries to host cubic Dirac fermions.
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