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One of the grand challenges facing materials-by-design approaches for com-
plex oxide deployment in electronic devices is how to balance transformative
first-principles based predictions with experimental feasibility. Here, we briefly
review the functionality-driven approach (inverse design) for materials discov-
ery, encapsulated in three modalities for materials discovery (m3D) that integrate
experimental feedback. We compare it to both traditional theoretical and high-
throughput database-directed approaches aimed at advancing oxide-based materials
into technologies. C
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Ternary and multinary complex oxide materials could o↵er a superior platform for elec-
tronics owing to the allure of phenomena that silicon-based electronics simply cannot deliver:1
transparent electronics leading to invisible circuitry,2 optoelectronics based on absorbers having
direct bandgaps, high-temperature electronics that can operate in oxidizing hostile environments,
high-power electronics, and hyper-sensitive sensors that significantly outperform today’s sensors.
However, to achieve this potential, one would have to overcome numerous critical obstacles, includ-
ing realization of bipolar dopeability and defeating polaron formation to the benefit of high-mobility
carriers at room temperature. Finding oxides with an optimal feature set has been di�cult: on one
hand, empirical trial-and-error approaches have their limitations. On the other hand, theoretical first
principles methods are reasonably accurate when applied one at a time to specific compounds. Yet,
the selection problem is immense—there are many thousands of candidate oxides from which to
choose.3 This clearly calls for sophisticated materials selection strategies. The problem is challeng-
ing in that the physical properties “living” in each compound depends sensitively on (local and
crystal) structure and composition. This fact is to some extent magnified in oxides and is at origin of
their widespread and continued interest to the community.

To innovate in the field of complex oxides for electronics requires a change to the standard
discovery operating procedure—new cooperative approaches for materials-by-design (MBD) and
property prediction in complex ceramics that lead to e�cient experimental realization. By this, we
mean that such approaches should attempt to balance prediction with experimental feasibility, while
at the same time, challenging synthetic chemists and materials scientists to advance new growth
techniques. One solution includes the reformulation of the MBD challenge into a manageable
workflow that relies on drawing a distinction between properties of materials (electronic, optical,
thermodynamic, mechanical, magnetic, etc.), which describe the response to a generalized force
via a generalized displacement,4 and the very description of what defines a material that we dub
as “‘ACS.” It consists of the Atomic identities involved (elemental species), Composition (either
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integer stoichiometry in compounds or continuous variable, “subscript engineering,” in alloys and
ceramics), and Structure (i.e., where the atoms are as pertaining to crystallographic structure, or
broadly, from nanoscale to microscale and mesoscopic morphology).

Property prediction has made tremendous strides owing to (i) advanced material-dependent
electronic structure methods that (unlike material agnostic model Hamiltonian theories) accept
ACS as input: primarily, density functional theory (DFT) and its ACS-recognizing extensions that
incorporate many-electron e↵ects (Configuration Interaction, Dynamical Mean Field Theory, GW,
and Quantum Monte Carlo methods);5–9 and (ii) new protocols to compute complex functional-
ities, combining a few target properties such as dopeability,10,11 coexistence of transparency and
conductivity,12–14 and topological insulation.15,16 However, protocols to identify specific, includ-
ing unknown, ACS for oxides that have the required technology-enabling properties and func-
tionalities have only recently been o↵ered. This in part relies on establishing structure-property
relationships and stability conditions from structural-chemistry data and calculable material prop-
erties,17–23 which are often established from disparate yet physically motivated models and domain
knowledge. Such protocols address the question of how to go beyond calculations of individual

materials (“given an ACS, predict its properties,” i.e., the “direct approach”) and simple exploita-
tion of available materials data to intelligent exploration of those ACS that have a target property
(“inverse approach”), including unknown compounds? Doing so requires approaches that both are
conscientious of experimental feasibility and embrace functionality-first predictive methods.24

Figure 1 illustrates the recently proposed modern modalities for functionality-directed mate-
rials discovery, which we refer to as m

3D. Each poses the question of “given the property, find the
material/structure (ACS),” subjected to multiple constraints. Di↵erent modalities address di↵erent
circumstances of material selection and synthesis. Note that other useful approaches exist; owing to
our focus on oxide materials for electronics, we elect to describe those methods we believe could
spur successful experimental validation of materials predictions. Below, we describe the essential
tasks associated with each modality (m), which provide solutions to this question as additional
unknown features, i.e., phase stability, properties, and ACS, are examined.

We first provide an overview of the three modalities, before describing each separately. Modal-
ity 1 explores artificial materials, e.g., those realized through (generally metastable) layer-by-layer
growth, whereas m2 and m3 concern mostly stable compounds grown in bulk form. Also, m2
focuses on finding the targeted functionality among groups of previously made compounds (so, the
structure and composition are generally given and need not be optimized), whereas m3 deals with

FIG. 1. The objective of rational discovery and laboratory realization of functional oxides requires a number of tasks
heuristically described by the braided cords on the left. Such requirements can be implemented through three search
modalities (m1-m3). Each modality pertains to a di↵erent set of growth conditions from which functional oxides may be
discovered. Synchronously, data analytic methods can be applied to refine materials selection and aid knowledge discovery
through the creation of suitable descriptors for predicting functionality. Uncovering the optimal oxides may take several
development cycles indicated by the green loop before a new missing and functional compound is ultimately deployed.
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discovery of unreported compounds (“missing materials”) with desirable properties (so, stability
and stable crystal structures need to be computed). The distinction between the various modalities
stems in part from the di↵erent theoretical approaches required: m1 focuses on properties of an
artificially grown, kinetically frozen layer sequence which need not be globally stable as long as it
is locally stable, while m2 (sometimes) and m3 (always) require thermodynamic structure stability
calculations. Also, m1 involves exploration of the almost infinite number of possible assemblies
of building blocks (as pulsed-laser deposition (PLD) and molecular beam epitaxy (MBE) layer
sequences) and thus cannot be addressed, even in principle by database approaches that attempt to
enumerate and compute all structures. Instead, m1 would require search methods that do not require
“visiting” all possible structures (such as genetic algorithms and other evolutionary approaches).

All modalities focus on functionality-driven discovery and thus require that a computable
expression or functionality metric (FM), being a quantitative model of the target functionality, ex-
ists. Such functionality metrics are created in practice using a combination of detailed study of the
underlying physics of the problem, and more recently facilitated by statistical learning tools.25–28

Note that whereas a FM is an a priori quantity developed from a theoretical or empirical model
from domain knowledge, the related but distinct term of “descriptors” is typically distilled ex post

facto from mining data. Calculations such as those based on DFT then provide a theoretical value
for the functionality metric—usually some composite parameters beyond total energies and stan-
dard single-particle band structures—that reflects the desired functionality. The FM may then be
used “on-the-fly” to refine the material’s atomic configuration having the target property (as in m1)
or chemical makeup (as in m2 and m3). It is important to emphasize that m2 and m3 consider
phase stability in parallel with the functionality, because an oxide could decompose into simpler
composition-equivalent phases and make the intriguing predicting properties experimentally inac-
cessible. Such compounds, nonetheless, can contribute to understanding and inform functionality
metric and model generation needed to both predict behavior that has not yet to be observed and
connect oxide properties to device functionality.

m1—Searching the Configuration Space for Structures with Target Functionality. Many arti-

ficial oxides can be realized in the laboratory, via layer-by-layer growth, whereby cations can be
digitally arranged in numerous sequences by interleaving various oxide building blocks such as
those obtained in m2 or m3.29,30 In oxide electronics, two-dimensional thin films are obtained
through layer-by-layer growth methods. These approaches include PLD, MBE, or sputtering. The
selection of suitable substrate surface orientations and layering sequences available to these ap-
proaches produces the pertinent configurational problem: Which sequence of oxide-A and oxide-B
(or oxide-C, etc.) layer arrangements and layer orientations gives the property of interest? The
ensuing multi-layered configuration is not necessarily the global ground state of the system (hence,
global stability calculations need not be applied), but represents a locally stable structure. This
modality addresses the question of how to examine the very large (in fact, astronomic) number of
spatial configurations, each having, in principle, di↵erent properties and finding the configuration(s)
that have a target functionality such as maximal electric polarization or optical response. This
modality thus involves a search of atomic identities (A) and composition (C) under the constraint
that the structure (S) is limited to locally relaxed layer-by-layer configurations of a specified lattice
type, mimicking that of the building blocks and the substrate (say, perovskite units). Under such
constraints, configurational search optimization techniques (such as genetic algorithms) are used
to search for the atomic configurations that satisfy the targeted function by on-the-fly calculation
of properties24,31–33 or via a surrogate model such as cluster expansion.34,35 Good optimization
methods find the optimal configurations by sampling only a tiny fraction of the configurational
space—typically, a couple of thousands when the size of the space is 1014–1020.

Examples of m1 from non-oxides include finding the sequence of indirect gap Si and Ge
building blocks that produce a superlattice with direct and optically strong absorption, a classic36

and, until recently, unsolved problem in semiconductor physics.31 A functional oxide example
was recently demonstrated for the case of ferroelectric heterostructures comprised of PbTiO3 and
SrTiO3 building blocks, where the polarization does not obey a simple Vegard’s law behavior as
a function of mixing the end members.37 Approximately 3 ⇥ 106 heterostructures were searched
for those that yield the maximal ferroelectric polarization by calculating the polarization of only
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⇠50 configurations to construct a robust cluster expansion.35 The outcome was that new configura-
tions consistent with recent design guidelines for obtaining additional contributions to ferroelectric
polarizations in perovskites through improper mechanisms38 immediately appear. Thus, m1 makes
it possible to both identify optimal chemical sequences to be recommended for experimentation and
to discover novel physical mechanisms in cases where such knowledge may not exist for property
enhancement. Feedback from experiment to theory includes observations on the degree on inter-
facial intermixing—a fact that can be incorporated in the next step theory as a constraint on the
search procedure (such as “find configurations with the target properties and interfacial sharpness
not exceeding "”).

m2—Searching Chemical Compound Space for Target Functionality. Electronic based prop-
erties of most oxides such as photovoltaic absorption, transparent conductivity, photo-electro-
chemical water-splitting ability, or thermoelectricity are intimately tied to metal-oxide coordina-
tion preferences and polyhedral connectivity, which change with cation-anion ratios and structure
in a material. Modality 2 explores bulk materials where structures and compositions are known,
e.g., from previous studies, but the properties for a set of atomic identities are unknown. The
concept here is to search through ACS-space (albeit, within a specific compositional group such as
A2BO4, ABO3, and ABO2) to design a material with the set attributes that give the optimal value
to the functionality metric. The steps then involve (a) identifying a calculable FM that is simpler
to compute than the final functionality sought; (b) calculating the FM in the ACS space while (c)
navigating in the space of compounds to specifically identify the “best of class” compounds deemed
to have the highest probability for laboratory realization through some evaluation of material stabil-
ity. The rationale for the above functionality-driven strategy is that it is much faster to screen the
functionality assuming a given crystal structure than to investigate the existence of a functionality
and the ground state crystal structures simultaneously.

For example, a quantum-mechanical generalization of the Shockley-Queisser criteria, called
the “Spectroscopic-Limited Maximum E�ciency” (SLME) functionality metric, was created in step
(a). It was tested on several hundred ternary materials using m2 to identify candidate photovol-
taic absorbers,18 followed by exploration of a select chemical group of semiconductors in search
of maximal SLME. Note that m2 is distinct from making all possible chemical substitutions and
optimizing over that set as in high-throughput searches. In m2, there is no need to compute many
properties of a broad range of compounds, albeit that information could be useful to data-driven
discovery approaches. In m2, one thus uses the strategy of narrowing down a large number of an a

priori set of compounds by using the FM as a preliminary initial filter. This filter does not address
all aspects of the functionality (such as material performance, durability, and economic factors), but
focuses on a number of “first-filter,” critical attributes needed for a particular functionality (such as
FM = dopeability for making junctions or FM = strong SLME absorption for solar cells, depending
on the need). Following such initial screening, one is left with a handful of candidate materials.
The second step involves application of more accurate high-level methods (such as beyond-DFT
methods). Now the calculation of a broader range of material functionality that transcends the
simpler principles involved in the FM may occur; e↵orts to include such features as durability,
reliability, and economics are already appearing.17 It is important to emphasize that this di�cult
detailed screening occurring in the second step is required only for a much smaller group of “best
candidates,” rather than for all materials, thus providing a significant discovery acceleration factor.
In the last step, the “best of class” materials are handed over to experimental validation, which very
often leads to a refined FM, to be used in the next iteration. This protocol defines an iterative loop,
whereby theory and experiment work hand in hand.

Examples of m2 applications include both successful confirmation of known absorbers and
identification of previously unappreciated new candidate compounds that have been proposed and
experimentally realized.39 Another example is the use of FM = dopeability to search the space of
ABX “half Heusler” compounds looking for transparent conductors. This resulted in the theoretical
identification and eventual laboratory synthesis of the new, previously never before made, high hole
mobility (2700 cm2/V s at room temperature) TaIrGe transparent conductor.14

m3—Exploring Missing Compounds for Target Functionality. This modality explores “missing

compounds,” that is, members of known chemical groups, that were never made. For example,
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in A2BX4 spinels or ABX half-Heusler like compounds, one can readily identify hundreds of
cases—specific selection of A, B, and X elements—that are undocumented. Here, m3 searches
theoretically the thermodynamic stability and stable structure thus establishing which of the missing
compounds are inherently unstable (thus, understandably missing) and which is predicted to be
stable (thus, just overlooked). In m3, the crystal structure is initially unknown and phase stabil-
ities of numerous structures with variable composition require exploration under the constraint
of atomic identities, such as spinel and non-spinel (variable 2:1:4 stoichiometry and competing
phases) structures.40 Here, a thermodynamic-based search for missing but stable (and low-energy
metastable) compounds is essential to reduce the large chemical phase space into a digestible
set of materials for the synthetic chemist or thin film grower. (We include in the identified list
also low energy metastable predicted structures because in some cases, oxides with low forma-
tion energies or those deemed to be metastable can indeed be realized in the laboratory, but may
require non-equilibrium, kinetic-limited growth approaches.) The key tasks include (a) screening
of candidate structure types,41,42 (b) unconstrained composition and structure prediction,43–45 and
(c) evaluation of competing phase stability with respect to decomposition to simpler phases under
the constraint that the desired atomic identities are fixed; iteration of m3 for di↵erent element
species enables exploration of broad chemical space. An outcome of m3 is accelerated discovery of
materials in the laboratory. Note that in the ideal case where a handful of compounds are recom-
mended for synthesis and growth following identification of phase stability, the required processing
conditions may be unknown. Realizing any new materials in the laboratory, therefore, can become a
challenge to perseverance.

As an example of m3, Gautier et al. recently reported the first-principles evaluated phase sta-
bility of more than 400 ternary ABX compounds which fulfill the 18-electron rule and predicted 54
of the previously unidentified compounds to be stable; shortly afterwards, 15 new materials were
obtained, including new topological insulators.42 Implicitly, the properties are also unknown in m3,
and a parallel property search can occur, or alternatively, once a stable new material is identified,
strategies in m1 or m2 may be applied. Feedback from experiment to theory to be used in the next
iteration includes focusing attention on previously overlooked daughter structure types. A recent
example of functionality search includes the discovery of a previously missing half Heusler com-
pound TaIrGe that was predicted to be stable14 and a wide gap compound (despite the strongly held
intuition that high-Z compounds are generally narrow gap or metals) while also being conductive.
This new type of transparent conductor was recently synthesized and confirmed experimentally to
have high hole mobility.14

Integrating the described modalities with feedback from experimental synthesis. Often referred
to as “closing-the-loop,” the process is schematically illustrated in Figure 1. An interesting question
arises as to the necessity and number of iterations required and to what extent the number of cycles
may be predicted. Ideally, a single cycle should give convergence to the optimal oxide. This is
possible if our materials knowledge relating structure and chemistry to properties and functional-
ities is formally uniquely quantifiable and approximations in electronic structure methods are fully
controlled. Advances in laboratory discovery of missing materials by in situ studies and combina-
torial synthesis methods also make it possible to navigate broad areas of phase space e�ciently.46

However, our knowledge is not complete, and this is reflected in the limited size of the data from
which most of our models are based. Iterative progress in the discovery loops is therefore far more
common before immediate convergence of the best oxide occurs. One may then want to assess and
estimate the extent to which improvement can be achieved by an additional iteration through the
workflow cycle. This return on investment can be informed through application of adaptive learning
strategies47 and should be considered in any materials discovery program.

Finally, we contrast the functionality-driven m

3
D platform to the data-driven discovery para-

digms.

48 The latter focuses on high-throughput computations of many properties for many materials
being cataloged in databases22,49–51 or combinatorial synthesis for MBD.52,53 The high-throughput
and combinatorial synthesis approaches have in part been energized by national materials discovery
initiatives around the globe and have encouraged data organization and curation, which is invalu-
able to achieving data-mined materials discoveries.54 These e↵orts generate enormous amounts of
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data quickly. Materials selection is made ex post facto and based on sorting/ranking a pre-defined
figure-of-merit and occur within a limited ACS space.55 Thus, high-throughput approaches make
it possible to identify previously known but unidentified functional materials from a database of
known compounds. New understanding may then be gleaned from the down-selected compound
and become useful for practitioners of first-principles materials-by-design methods that fall outside
the mentioned modalities to predict new functional materials.56 The functionality-directed approach
m

3D is distinct from the high-throughput approach in that if it focuses directly on the subset of
materials that has the required target property rather than attempting all combinations. Compu-
tationally speaking, the m

3D approach then focuses on optimization theory and search methods,
whereas the high-throughput focuses on fast direct computations and databases.

Given availability of such data, more researchers are applying big data science analytics to
address the materials chemistry and structure-property challenges.57 We contend, however, that it
remains to be determined whether the real challenges in oxide-based electronics are of the sort suit-
able for only data-driven scientific discovery approaches. For instance, the subject of m1—di↵erent
configurations of artificially grown structures—cannot be captured even in principle by any data-
base because of the limitless configuration space. Second, the data sets, features, and prior knowl-
edge in condensed matter systems are significantly smaller than those available to biology and
health, communication networks, and finance, where big data science dominates. One therefore
needs to consider nuances in the informatics methods for materials science data58–60 and whether
the “correct” questions are asked about the data.61 Black-box application of machine-learning algo-
rithms to small data sets without careful data cleaning and feature selection could also lead to
further complexity and minimal understanding of the underlying structure. Note that in some areas
of materials science, “big” data sets exist, for example, from high-resolution imaging techniques or
synchrotron based scattering and spectroscopy measurements.62,63

Perhaps the oxide electronics challenges are rather better described as “small” and “deep”
functionality-targeted data problems, where the necessary prior knowledge required to make prog-
ress still remains to be uncovered from hypothesis- and exploration-driven scientific discovery
methodologies and personal communications between theorists and experimentalists. The inability
of informatics-based data analyses alone to create robust, i.e., optimal model design and error esti-
mation, mechanistic knowledge from small data sets, typical of what we can expect in oxides, has
been borne out in biology and genetics;64–66 similar pitfalls should be avoidable in materials science.
The field should establish to what extent statistical inference and learning methods can benefit mate-
rials discovery by including authentic structure-property relationships guided by physical models.
This is an important open question that will be addressed in the next few years as the number
and the large size of materials structure, property, and calculated quantity databases available for
scientific query continue to grow.67

In summary, we described a functionality-first view for oxide electronics materials discovery
through three computational materials science modalities that can synchronously dovetail with
experimentation. Once theory has narrowed the range of oxide materials that are predicted to
have the target properties, interactive rather than sequential cycles of synthesis, characterization,
and theory validation should ensue. If these approaches are applied and fostered while searching,
designing, or predicting the properties of oxides, we are hopeful that the promised impact of oxides
for future electronics is not far o↵. Many more predictions are likely to be realized and found in new
electronic devices.
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