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Split Dirac cones in HgTe/CdTe quantum wells due to symmetry-enforced
level anticrossing at interfaces
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HgTe is a band-inverted compound which forms a two-dimensional topological insulator if sandwiched between
CdTe barriers for a HgTe layer thickness above the critical value. We describe the fine structure of Dirac states in
the HgTe/CdTe quantum wells of critical and close-to-critical thicknesses and show that the necessary creation of
interfaces brings in another important physical effect: the opening of a significant anticrossing gap between the
tips of the Dirac cones. The level repulsion driven by the natural interface inversion asymmetry of zinc-blende
heterostructures considerably modifies the electron states and dispersion but preserves the topological transition
at the critical thickness. By combining symmetry analysis, atomistic calculations, and extended k · p theory
with interface terms, we obtain a quantitative description of the energy spectrum and extract the interface mixing
coefficient. We discuss how the fingerprints of the predicted zero-magnetic-field splitting of the Dirac cones could
be detected experimentally by studying magnetotransport phenomena, cyclotron resonance, Raman scattering,
and THz radiation absorption.
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The study of systems with gapless and linear-dispersion
states constituting the Dirac cone is central to the physics of
topological insulators (TIs) [1,2]. Such states are formed in
the primary insulating band gap of a bulk material and studied
at the surface via techniques such as angular resolved pho-
toemission [3,4]. While some TI compounds such as Bi2Se3

and Bi2Te3 show an insulating gap in their three-dimensional
(3D) bulk band structure and so the Dirac cones can be studied
at their two-dimensional (2D) surface without modifying the
material, a mercury telluride crystal does not have a 3D bulk
band gap because the Fermi level resides within the fourfold
degenerate �8 band [5]. However, topological insulation is
realized by straining HgTe, which opens a gap within the
otherwise fourfold degenerate �8 states [6,7] or growing
the material in a HgTe/CdTe quantum well (QW) geometry
[8–10]. In the latter case, CdTe (or Cd1−xHgxTe) barriers
create quantum confinement within HgTe with the normal or
inverted band structure depending on the well thickness, so that
HgTe/CdTe QWs belong to the class of normal or topological
insulators.

In HgTe/CdTe QWs of critical thickness, the heavy-hole
subband HH1 switches order with the electron subband E1
[11], the band gap vanishes, and elementary excitations behave
as massless Dirac 2D fermions [12,13]. An early theoretical
description [8] used a model in which the symmetry of the
HgTe/CdTe QW was implicitly assumed to contain an inver-
sion center. Consequently, the point-group representations of
the E1 and HH1 subbands are different, so these states do
not mix with each other and are allowed to cross. In reality,
the host zinc-blende structures lack an inversion center and
the QW structure has a further reduced symmetry compared
to the bulk materials, even if the interfaces are lattice matched
and defect free, and the well is symmetric. Indeed, each
of the two (001) interfaces possesses a C2v symmetry and

taken together the symmetric well has a D2d symmetry. It
is known from analogous GaAs/AlAs QW structures that, in
the D2d group, the E1 and HH1 states transform according
to the same spinor representations [14–16]. Therefore, the
coupling matrix element between E1 and HH1 is nonzero,
and these subbands must anticross rather than cross at zero
in-plane wave vector k. As pointed out in Refs. [17–20],
in the case of HgTe/CdTe QWs, a reduction in symmetry
leads to a splitting of states at k = 0. However, a theory
identifying the source of the splitting (bulk versus interface)
and predicting its magnitude has been lacking. Experimental
data on weak localization and Shubnikov–de Haas oscillations
also indicate strong spin-orbit splitting of the states [21].
Here, we present a microscopic theory of the Dirac states
in HgTe/CdTe QWs that predicts a very large (∼15 meV)
anticrossing gap between the tips of the Dirac cones in
QWs of a critical thickness. We find that this splitting is
predominantly due to the interfacial E1 − HH1 repulsion
mandated by the physical D2d symmetry, which is missed
by naive continuum-medium considerations but seen when
theory acquires atomic resolution. Using this picture we further
provide a detailed analysis of the fine structure of Dirac states,
which is a key to understanding transport phenomena. As the
main result, Fig. 1 shows the energy spectra in QWs of (a)
a critical thickness d = dc and (b) close-to-critical thickness
d �= dc. Even in symmetric structures of the critical thickness,
the Dirac states are split at the zone center and the spectrum
consists of two cones shifted vertically with respect to each
other. For d �= dc, the spectrum becomes more complex: It
has a gap and extrema on a circle in the momentum space.
We analyze the nature of anticrossing, obtain a quantitative
description of the energy spectrum, and discuss the conse-
quences of the splitting on the transport and optical properties
of QWs.
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FIG. 1. Energy spectra of HgTe/CdHgTe QWs of (a) the critical
and (b) close-to-critical thicknesses. The spectra are plotted after
Eq. (3) for (a) δ = 0 and (b) δ = γ /2.

Mechanisms leading to splitting in QWs with a symmetric
confinement potential originate fundamentally from bulk
inversion asymmetry of the host crystal and interface inversion
asymmetry. The relative importance of these contributions
cannot be deduced from model Hamiltonian considerations.
Atomistic descriptions, on the other hand, capture accurately
the relevant asymmetry via the specification of atomic types
and positions.

Figures 2 and 3 show the results of atomistic calculations
of the energy spectrum of HgTe/CdTe QWs obtained in the
screened plane-wave pseudopotential and tight-binding the-
ories, respectively. The pseudopotential method is described
in Ref. [10]; details of the tight-binding calculations are given
in the Supplemental Material [22]. The subband arrangement
as a function of the QW width at k = 0 is presented in
Figs. 2(a), 2(b), and 3(a). Both the pseudopotential and

n(HgTe) (ML)

E
ne

rg
y 

(e
V

)

10 20 30 40 50 60 70

anticrossing

n(HgTe) (ML)

E
ne

rg
y 

(e
V

)

-0.05

0.00

0.05

0.10

20 25 30 35 40
-0.10-0.30

-0.20

-0.10

0.10

0.00

0.20

0.30
(a) (b)

FIG. 2. (Color online) (a) Arrangement of energy subbands in
(001) (HgTe)n/(CdTe)40 QW structures as a function of the number
of HgTe monolayers (ML) obtained by the pseudopotential method.
(b) Zoom in of the anticrossing area.
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FIG. 3. (Color online) (a) Arrangement of energy subbands in
(001) (HgTe)n/CdTe QW structures as a function of the number
of HgTe monolayers obtained by the sp3 tight-binding method. (b)
Electron dispersion E(k) in the 16-ML-wide QW.

tight-binding calculations yield a wide anticrossing gap
between the electronlike E1 and heavy-hole HH1 subbands
at the � point. The two approaches give different values of the
critical QW width because of the sensitivity of the subband
structure to the model. Indeed, the pseudopotential calculation
reveals, for the QW structures, interface-localized bands
located energetically between E1 and the HH1 state (see
Ref. [10]). Nevertheless, all calculations that acknowledge the
atomistic symmetry—as opposed to a continuum view—do
give a large anticrossing at the critical QW thickness. They
both predict a gap of about 15 meV, far exceeding the estimate
of a few meV due solely to the bulk inversion asymmetry
[18,19] and unambiguously indicating that the subband
mixing is dominated by the interface contribution, in a crucial
difference from the naive k· p model. Moreover, despite the
existence of additional interface bands in the pseudopotential
calculation, both models predict the same dispersion of the
Dirac states formed from the E1 and HH1 subbands near the
anticrossing point.

Figure 3(b) demonstrates the energy dispersion E(k) of the
coupled E1 and HH1 states calculated by the tight-binding
method for a well width of 16 monolayers, which is very
close to the critical thickness. The exact condition d = dc

cannot be fulfilled in structures with an integer number of
monolayers. The spectrum consists of four almost linearly
dispersed branches which are split at k = 0. The slope of the
branches yields a velocity 6.1 × 107 cm/s, which is close to the
electron velocity 7.2 × 107 cm/s [13] and 6.4 × 107 cm/s [23]
determined by cyclotron resonance in HgTe/HgCdTe QWs of
critical thickness. The two middle-energy branches anticross
at the finite wave vector k0 ≈ 0.17 × 106 cm−1 with the energy
gap being highly sensitive to the deviation of QW width d from
dc. In QWs with d ≈ dc [Fig. 3(b)], this gap is far smaller than
the splitting at k = 0.

Inspired by the atomistic results, we now present an
effective model Hamiltonian—the atomically inspired k· p
model (AIKP)—which takes into account the correct D2d

symmetry of the quantum well. We limit the AIKP model
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to four basis Bloch state functions forming the Dirac states.
Such an approach is valid as long as the anticrossing gap at
k = 0 is smaller than the energy separation from the coupled
E1 − HH1 subbands to other excited subbands. The basis
functions have the form [8]

|E1,+1/2〉 = f1(z)|�6, + 1/2〉 + f4(z)|�8, + 1/2〉,
|HH1,+3/2〉 = f3(z)|�8, + 3/2〉,

|E1,−1/2〉 = f1(z)|�6, − 1/2〉 + f4(z)|�8, − 1/2〉,
|HH1,−3/2〉 = f3(z)|�8, − 3/2〉, (1)

where f1(z), f3(z), and f4(z) are the envelope functions, z is the
growth direction, and |�6,±1/2〉, |�8,±1/2〉, and |�8,±3/2〉
are the basis functions of the �6 and �8 states at the �

point of the Brillouin zone, respectively. The 4 × 4 effective
Hamiltonian describing the coupling at a finite in-plane wave
vector k can be constructed by using the theory of group
representations. Taking into account that, in the D2d point
group, the states |E1,±1/2〉 and |HH1, ∓ 3/2〉 transform
according to the spinor representation �6 while the wave vector
components kx,ky belong to the irreducible representation �5,
one derives the effective Hamiltonian to first order in the wave
vector as

H =

⎛
⎜⎜⎜⎝

δ iAk+ 0 iγ

−iAk− −δ iγ 0

0 −iγ δ −iAk−
−iγ 0 iAk+ −δ

⎞
⎟⎟⎟⎠ , (2)

where A, δ, and γ are linearly independent parameters, k± =
kx ± iky , and x ‖ [100] and y ‖ [010] are the in-plane axes.
The value 2δ stands for the energy spacing between the E1 and
HH1 subbands in the absence of mixing; δ can be tuned from
a positive to negative value by varying the QW thickness d.
In particular, δ = 0 for the critical thickness d = dc [11]. The
parameter A determines the velocity of Dirac fermions. In
the k· p model, it is given by A = (P/

√
2)

∫
f1(z)f3(z)dz +

δA, where P is the Kane matrix element and δA stands for
the contributions from remote bands. Finally, γ describes the
coupling of E1 and HH1 states at k = 0 in zinc-blende-lattice
QWs [18,19], 2|γ | ≈ 15 meV, as it follows from Figs. 2 and
3, neglecting the influence of additional interface states.

The solution of the secular equation for the matrix Hamil-
tonian (2) yields the energy spectrum

E1,4 = ∓
√

δ2 + (Ak + γ )2, E2,3 = ∓
√

δ2 + (Ak − γ )2.

(3)

The corresponding wave functions are given by

�1,4 = 1

2

⎛
⎜⎜⎜⎝

a1,4

b1,4 e−iϕ

−a1,4 e−iϕ

b1,4

⎞
⎟⎟⎟⎠ , �2,3 = 1

2

⎛
⎜⎜⎜⎝

a2,3

b2,3 e−iϕ

a2,3 e−iϕ

−b2,3

⎞
⎟⎟⎟⎠ , (4)

where a1,2 = −i
√

(E1,2 + |δ|)/E1,2 sgn(Ak ± γ ), b1,2 =√
(E1,2 − |δ|)/E1,2, a3,4 = i

√
(E3,4 + |δ|)/E3,4, b3,4 =√

(E3,4 − |δ|)/E3,4 sgn(Ak ∓ γ ) for δ > 0 and a1,2 = −ib1,2,
b1,2 = ia1,2, a3,4 = ib3,4, and b3,4 = −ia3,4 for δ < 0;

k = |k|, and ϕ is the polar angle of the wave vector k,
eiϕ = k+/k. The coefficients aj and bj are defined in such a
way that the wave functions (4) are continuous in k space.

The electron dispersion (3) is shown in Fig. 1. In the
structure of the critical thickness the spectrum consists of
two Dirac cones shifted vertically with respect to each other
by 2|γ |. At d �= dc, the gap of 2|δ| opens in the spectrum
at the wave vector k0 = |γ /A| and the system behaves
as an insulator. The topological class of the insulator is
determined by the sign of δ, similarly to the model where
interface inversion asymmetry is neglected [8]. To confirm this,
we calculate the Z2 topological index ν following the proce-
dure described in Ref. [1]. The index ν is determined by the
quantities ζ (�α) (α = 1 . . . 4) calculated at four certain points
of the Brillouin zone �α which are invariant with respect to
the time inversion, (−1)ν = ∏

α ζ (�α). We find that

ζ (k = 0) = lim
k→0

Pf[〈�i(k) |
| �j (k)〉]√
det[〈�i(k) |
| �j (k)〉] = sgn δ, (5)

where the indices i and j run over the occupied branches 1
and 2, 
 is the operator of time inversion, and Pf[A] is the
Pfaffian of the matrix A. All other ζ (�α) are determined by
the wave functions at the Brillouin zone edge and are unlikely
to be affected by a small change of δ. Thus, we conclude that
the topological transition occurs at δ = 0: The QW structures
with d < dc and d > dc belong to trivial and topological
two-dimensional insulators, respectively. In the phase of a
topological insulator, one expects the formation of helical edge
states leading to the quantum spin Hall effect and conductivity
quantization [9], although the electron structure of the edge
states is modified by strong interface-induced coupling.

The large anticrossing of the E1 and HH1 subbands at
k = 0 revealed in the atomistic calculations indicates that the
subband mixing mainly originates from the interface inversion
asymmetry related to the anisotropy of chemical bonds. Since
the E1 subband is formed from the electron and light-hole
basis functions and the HH1 subband is of the heavy-hole
type [see Eq. (1)], they are efficiently coupled due to heavy-
hole–light-hole mixing at the interfaces, the effect known
for zinc-blende-lattice QW structures [14–16,24,25]. This
short-range mixing can be modeled by introducing interface
terms to the effective Luttinger Hamiltonian which takes into
account the low spatial symmetry of individual interfaces. The
additional terms related to the left (L) and right (R) interfaces
have the form VL,R = ±�

2tl-h/(
√

3a0m0){JxJy}sδ(z − zL,R),
where tl-h is the (real) mixing constant, a0 is the lattice
constant, m0 is the free electron mass, {JxJy}s = (JxJy +
JyJx)/2, Jx and Jy are the matrices of the angular momentum
3/2, and zL,R are the interface positions. The terms lead to the
coupling of the E1 and HH1 subbands with the parameter

γ = �
2tl-h

2a0m0
[f3(zR)f4(zR) − f3(zL)f4(zL)] . (6)

Since the envelope functions f3(z) and f4(z) have opposite
parities, the parameter γ is nonzero. Comparing the results of
atomistic calculation with the k · p theory we obtain tl-h ≈
1.5. Extrapolation to HgTe/Cd0.7Hg0.3Te QWs, the structures
commonly used in experiment [9,12,13], gives tl-h ≈ 1.1 and
2|γ | = 10 meV.
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FIG. 4. (Color online) Sketch of the density of states in
HgTe/CdTe QWs of the (a) critical and (b) close-to-critical
thicknesses.

The splitting of Dirac states may affect many phenomena,
including weak localization, Shubnikov–de Haas oscillations
and the quantum Hall effect, spectra of THz radiation absorp-
tion, spin-flip Raman scattering, etc. The basic characteristic
of electron systems is the single-particle density of states

ρ(E) =
∑
l,k

δ[E − El(k)] . (7)

For the QW system under study, it has the form

ρ(E) = |E|
πA2

⎧⎪⎨
⎪⎩

0, if |E| � |δ|,
|γ |/√E2 − δ2, if |δ| < |E| �

√
γ 2 + δ2,

1, if |E| >
√

γ 2 + δ2.

Figure 4 illustrates the density of states versus electron
energy for QWs of critical and close-to-critical thicknesses.
The gapless structure behaves as a two-dimensional semimetal
with a finite density of states in the whole energy range
[Fig. 4(a)]. The density of states linearly scales with the energy
ρ(E) = |E|/(πA2) at |E| > |γ | and is energy independent,
ρ(E) = |γ |/(πA2), at |E| < |γ |. In the latter region, electrons
and holes coexist and the conductivity is bipolar. In QWs of
close-to-critical thicknesses [Fig. 4(b)], the density of states
has a gap of 2|δ| and van Hove singularities at E = ±δ.

The splitting of Dirac cones leads to a beating pattern in
the Shubnikov–de Haas oscillations as well as splitting of the
absorbance peak in experiments on cyclotron resonance. The
peak positions are determined by the effective cyclotron
masses ml = �

2k/(dEl/dk). In an n-doped structure with a
Fermi energy EF , one can expect splitting of the resonant
line into two components, their positions at EF � |γ | being
determined by the effective masses m3,4 = (�/A)2(EF ± γ ).

The energy spectrum can be also studied by means of optical
spectroscopy. For direct optical transitions between occupied
and empty states, the QW absorbance at the normal incidence
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FIG. 5. (Color online) Photon energy dependence of the QW
absorbance for structures of (a) the critical thickness δ = 0 and
(b) the close-to-critical thickness δ = 0.5γ . Dashed curves show
partial contributions to the absorbance. The inset sketches the energy
spectrum and allowed optical transitions. The steep spectral edges
are smoothed by convoluting the spectra with the Gaussian function
with a standard deviation of 0.05γ .

of radiation is given by

η = 4π2α�

ωnω

∑
l,m,k

|e · vml|2 δ(Em − El − �ω), (8)

where α is the fine-structure constant, ω is the light frequency,
nω is the refractive index of the medium, e is the (complex)
unit vector of the light polarization, and vml = �

−1(∂H/∂k)ml

is the matrix element of the velocity operator. We consider
undoped QW structures where optical transitions can occur
between the occupied branches 1 and 2 and the empty branches
3 and 4 of the energy spectrum [see the insets in Figs. 5(a) and
5(b)]. For normally incident radiation, the QW absorbance is
independent of the light polarization and has the form

η = παA2

�ωnω

∑
l=1,2
m=3,4

∑
kt

ktfml(kt )

|dEm/dk − dEl/dk|k=kt

, (9)

where kt is the wave vector at which the optical transitions
between the branches l and m occur and is found from
the equation Em(kt ) − El(kt ) = �ω, and fml(k) are the di-
mensionless functions defined by fml(k) = (�/A)2|e · vml|2.
Straightforward calculations yield

f41 = δ2

E2
4

, f32 = δ2

E2
3

,

f31 = f42 = 1

2

(
1 − A2k2 − γ 2 + δ2

E1E3

)
. (10)

Figures 5(a) and 5(b) demonstrate the photon energy
dependence of the QW absorbance for structures of critical and
close-to-critical thicknesses. In a structure with two split Dirac
cones [Fig. 5(a)], the absorption spectrum has a steplike shape
with the edge at �ω = 2|γ |, although there is no band gap in the
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energy spectrum. Such a behavior is dictated by the selection
rules and energy conservation law: Direct optical transitions
in QWs of critical thickness are allowed only between the
branches 1 → 3 and 2 → 4 and these transitions can occur at
�ω � 2|γ |. In QWs of noncritical thickness [Fig. 5(b)], the
branches 2 and 3 anticross at a finite wave vector, and direct
optical transitions between them become allowed. It leads to
the emergence of an additional sharp band in the absorption
spectrum at �ω = 2|δ|. The spectral shape of this absorption
band is determined by the van Hove singularities in the density
of states.

To summarize, we have described the splitting of Dirac
states in HgTe/CdTe quantum wells of critical and close-
to-critical thicknesses. In structures of critical thickness, the
splitting between the Dirac cones reaches a value of 15 meV
and is dominated by symmetry-enforced light-hole–heavy-
hole mixing at the quantum well interfaces. These structures

behave as a two-dimensional semimetal with a nonvanishing
density of states in the whole energy range. In quantum wells
of close-to-critical thicknesses, a gap opens at a finite in-plane
wave vector, which leads to the emergence of extremum
circles in the electron dispersion and corresponding van Hove
singularities in the density of states. We have also discussed
the consequences of level mixing on the optical and transport
properties that await testing.
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54, 5852 (1996).

[15] O. Krebs, D. Rondi, J. L. Gentner, L. Goldstein, and P. Voisin,
Phys. Rev. Lett. 80, 5770 (1998).

[16] R. Magri and A. Zunger, Phys. Rev. B 62, 10364 (2000).
[17] X. Dai, T. L. Hughes, X.-L. Qi, Z. Fang, and S. C. Zhang,

Phys. Rev. B 77, 125319 (2008).
[18] M. König, H. Buhmann, L. W. Molenkamp, T. L. Hughes, C.-X.

Liu, X. L. Qi, and S. C. Zhang, J. Phys. Soc. Jpn. 77, 031007
(2008).

[19] R. Winkler, L. Y. Wang, Y. H. Lin, and C. S. Chu, Solid State
Commun. 152, 2096 (2012).

[20] L. Weithofer and P. Recher, New J. Phys. 15, 085008 (2013).
[21] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov,

S. A. Dvoretski, and N. N. Mikhailov, Phys. Rev. B 89, 165311
(2014).

[22] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.91.081302 for details of the tight-binding
calculations.

[23] J. Ludwig, Yu. B. Vasilyev, N. N. Mikhailov, J. M. Poumirol,
Z. Jiang, O. Vafek, and D. Smirnov, Phys. Rev. B 89, 241406(R)
(2014).

[24] A. A. Toropov, E. L. Ivchenko, O. Krebs, S. Cortez, P. Voisin,
and J. L. Gentner, Phys. Rev. B 63, 035302 (2000).

[25] M. V. Durnev, M. M. Glazov, and E. L. Ivchenko, Phys. Rev. B
89, 075430 (2014).

081302-5

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys2442
http://dx.doi.org/10.1038/nphys2442
http://dx.doi.org/10.1038/nphys2442
http://dx.doi.org/10.1038/nphys2442
http://dx.doi.org/10.1103/PhysRevLett.106.126803
http://dx.doi.org/10.1103/PhysRevLett.106.126803
http://dx.doi.org/10.1103/PhysRevLett.106.126803
http://dx.doi.org/10.1103/PhysRevLett.106.126803
http://dx.doi.org/10.1103/PhysRevLett.112.196801
http://dx.doi.org/10.1103/PhysRevLett.112.196801
http://dx.doi.org/10.1103/PhysRevLett.112.196801
http://dx.doi.org/10.1103/PhysRevLett.112.196801
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1103/PhysRevLett.105.176805
http://dx.doi.org/10.1103/PhysRevLett.105.176805
http://dx.doi.org/10.1103/PhysRevLett.105.176805
http://dx.doi.org/10.1103/PhysRevLett.105.176805
http://dx.doi.org/10.1038/nphys1914
http://dx.doi.org/10.1038/nphys1914
http://dx.doi.org/10.1038/nphys1914
http://dx.doi.org/10.1038/nphys1914
http://dx.doi.org/10.1103/PhysRevB.87.235439
http://dx.doi.org/10.1103/PhysRevB.87.235439
http://dx.doi.org/10.1103/PhysRevB.87.235439
http://dx.doi.org/10.1103/PhysRevB.87.235439
http://dx.doi.org/10.1103/PhysRevB.54.5852
http://dx.doi.org/10.1103/PhysRevB.54.5852
http://dx.doi.org/10.1103/PhysRevB.54.5852
http://dx.doi.org/10.1103/PhysRevB.54.5852
http://dx.doi.org/10.1103/PhysRevLett.80.5770
http://dx.doi.org/10.1103/PhysRevLett.80.5770
http://dx.doi.org/10.1103/PhysRevLett.80.5770
http://dx.doi.org/10.1103/PhysRevLett.80.5770
http://dx.doi.org/10.1103/PhysRevB.62.10364
http://dx.doi.org/10.1103/PhysRevB.62.10364
http://dx.doi.org/10.1103/PhysRevB.62.10364
http://dx.doi.org/10.1103/PhysRevB.62.10364
http://dx.doi.org/10.1103/PhysRevB.77.125319
http://dx.doi.org/10.1103/PhysRevB.77.125319
http://dx.doi.org/10.1103/PhysRevB.77.125319
http://dx.doi.org/10.1103/PhysRevB.77.125319
http://dx.doi.org/10.1143/JPSJ.77.031007
http://dx.doi.org/10.1143/JPSJ.77.031007
http://dx.doi.org/10.1143/JPSJ.77.031007
http://dx.doi.org/10.1143/JPSJ.77.031007
http://dx.doi.org/10.1016/j.ssc.2012.09.002
http://dx.doi.org/10.1016/j.ssc.2012.09.002
http://dx.doi.org/10.1016/j.ssc.2012.09.002
http://dx.doi.org/10.1016/j.ssc.2012.09.002
http://dx.doi.org/10.1088/1367-2630/15/8/085008
http://dx.doi.org/10.1088/1367-2630/15/8/085008
http://dx.doi.org/10.1088/1367-2630/15/8/085008
http://dx.doi.org/10.1088/1367-2630/15/8/085008
http://dx.doi.org/10.1103/PhysRevB.89.165311
http://dx.doi.org/10.1103/PhysRevB.89.165311
http://dx.doi.org/10.1103/PhysRevB.89.165311
http://dx.doi.org/10.1103/PhysRevB.89.165311
http://link.aps.org/supplemental/10.1103/PhysRevB.91.081302
http://dx.doi.org/10.1103/PhysRevB.89.241406
http://dx.doi.org/10.1103/PhysRevB.89.241406
http://dx.doi.org/10.1103/PhysRevB.89.241406
http://dx.doi.org/10.1103/PhysRevB.89.241406
http://dx.doi.org/10.1103/PhysRevB.63.035302
http://dx.doi.org/10.1103/PhysRevB.63.035302
http://dx.doi.org/10.1103/PhysRevB.63.035302
http://dx.doi.org/10.1103/PhysRevB.63.035302
http://dx.doi.org/10.1103/PhysRevB.89.075430
http://dx.doi.org/10.1103/PhysRevB.89.075430
http://dx.doi.org/10.1103/PhysRevB.89.075430
http://dx.doi.org/10.1103/PhysRevB.89.075430



