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We introduce an ab initio self-consistent approach —the quasiband crystal-field (QBCF)
method —to calculate the electronic structure of localized defect states in solids within a
density-functional Green s-function approach. The method is simple, yet it produces very

accurate self-consistent solutions both for s-p as well as for the hyperlocalized transition-
atom d-electron impurities. This is made possible by four ideas: (1) Following the
pioneering work (1929) of Bethe and Van Vleck and results of modern computations, it is

recognized that whereas the defect and host wave functions may be extended and highly
anisotropic in coordinate space, for deep defects the density and potential perturbations
b p(r ) and b, V( r ) are considerably more localized and have a reduced directional aniso-

tropy. We therefore describe the latter in a crystal-field one-center expansion
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gular KI(r ) variables. The defect problem, treated by contemporary Green's-function tech-
niques as a multicenter scattering problem, is then transformed into a far simpler atomic-
like problem, characterized by analytic angular integrals (Gaunt coefficients) and simple
one-dimensional radial integrals. This permits a simple and highly precise treatment of
self-consistency, incorporation of accurate (first-principles) nonlocal pseudopotentials, and

the use of variationally flexible and computationally simple single-site basis functions in-

troduced in chemistry in 1933 by Mulliken. (2) The standard Koster-Slater Green's-
function approach to defects uses an expansion of the impurity wave functions in terms
of (often chemically and physically unrelated) host-crystal Bloch eigenfunctions. It is
shown that when the perturbation approaches a characteristic atomic length scale (or
when the impurity is chemically sufficiently different from the host atom), such expan-
sions converge exceedingly slowly. We have reformulated the Koster-Slater resolvent

problem in terms of quasiband wave functions that incorporate from the outset not only

aspects of the host, but also the characteristics of the defect. A large number of conduc-
tion-band wave functions, which would have been needed for an adequate representation
of localized defect states, are renormalized into a much smaller number of quasiband
wave functions. Expansion in terms of quasibands results in a rapidly convergent and ef-
ficient description even of very localized defect wave functions. (3) A new Newton-

Raphson Jacobian update technique is used to establish self-consistency in the screening
potential. It does not require any new information; it "remembers" information from all

past iterations, but automatically discounts information from the distant past and is hence
not confused by nonlinearities. The method is far more efficient than all standard self-

consistency methods and permits a precise assessment of charge-redistribution effects in

the system. (4) The lengthy summations over the Brillouin zone encountered in spectral
Green s-function methods are transformed into a simpler rapidly convergent series in a
supercell representation. This allows one to treat impurities in large supercells (e.g., 2662
atoms per cell) by treating only small matrices (36)&36) whose sizes do not depend on the
dimensions of the supercell. In this representation the poles of the Green's function are
real and can be efficiently located using a new and fast algorithm introduced here. This
paper describes these four ideas in physical terms. Full mathematical details are given in
a series of Appendices that can be used by the reader to independently reproduce the
method. The method is applied to study the electronic structure of the unrelaxed silicon
vacancy as well as to the far more difficult problem of a substitutional transition-metal
impurity in silicon. The electronic structure of Cu in an extended crystal is described for
the first time.
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I. INTRODUCTION

Substantial progress has been made over the past
few years in advancing the one-electron theory of
localized defects in solids to a similar level of so-
phistication with which contemporary electronic
band-structure models describe the periodic states
of the host crystals. This has been accomplished

by applying the classical Koster-Slater resolvent
method' in a Bloch representation, using local
pseudopotentials. '"

These methods were very successful in treating
the electronic structure of defects whose potential
perturbation b, V(r) has a characteristic size of ei-

ther many or few lattice constants (shallow
effective-mass defects or s-p electron impurities,
respectively). It would be of interest to inquire
whether the same approaches could be used for de-
fects whose characteristic length scale approaches
that of an isolated atomic core, (e.g., the technolog-
ically important transition-atom impurities in
semiconductors). We find that at this limit, not
treated before by such methods, the conventional
Green's-function approaches pose at least four ma-

jor difficulties. The problem becomes highly in-
tractable and would involve exceedingly complex
and time consuming computational procedures, ac-
cessible only through large high-speed computers.
We analyze the sources of these difficulties and
find that they mostly result from the fact that the
conventional Green's-function approaches have
extended to the study of localized perturbations
many of the concepts used in the past to treat the
extended states of ideal crystals [e.g., expansion of
perturbed wave functions in terms of eigenstates of
the ideal host crystal, a multicentered linear com-
bination of atomic orbitals (LCAO) description of
wave functions and potentials, etc.]. In this paper
we present an approach which overcomes these dif-
ficulties in a simple and effective manner. This
approach can be used both for intermediate-radius
s-p defects (e.g., vacancies, or main-row impurities),
as well as for hyperlocalized defects (e.g., trans-
ition-atom impurities and core excitons). We will

describe a new ab initio self-consistent approach to
localized defects, based on the density-functional
formalism. Our objective is to provide a method
that will consistently reflect the predictions of the
density-functional formalism (rather than those of
the computational approximations to it), to a pre-
cision of about 0.1 eV in energies and about 2% in
charge densities. The method includes four ideas
that simplify the problem considerably, yet it pro-
duces extremely precise self-consistent solutions.

These are: (1) A Green's-function generalization of
the classical crystal-field and ligand-field methods.
This reduces the defect problem treated by contem-
porary Green's-function methods ' as a complex
multicen ter scattering problem (requiring —10
multicenter integrals) into a computationally
simpler and physically far more transparent one-
center atomiclike problem, described by simple
one-dimensional integrals. This is made possible
by rigorously separating the multicenter problem
into (i) an analytical (nonspherical) angular part
describing the directional anisotropy and (ii) a
one-dimensional radial part treated numerically.
This permits a very precise, and at the same time,
computationally simple handling of self-consis-
tency, pseudopotential nonlocality, and basis set
variational flexibility. (2) Rather than expanding
the localized defect wave functions in terms of the
extended host-crystal eigenfunctions (requiring
10 —10 host bands for hyperlocalized defects), we
describe the former in terms of "quasiband wave
functions" that incorporate from one outset not
only the characteristics of the host but also the lo-
calized chemical aspects of the impurity. This re-
sults in a rapidly convergent (requiring 1 —10
quasibands) and physically transparent representa-
tion of the defect states. (3) The complicated k-
space summations (200—300 k points) involved in
Green's-function models in the spectral representa-
tion are transformed into rapidly convergent
(10—30 k points) summations using a supercell
representation. Large supercells (e.g., 2662 atoms)
are then easily treated by handling only very small
matrices. (4) The slowly convergent self-
consistency procedure used for calculating the
system's screening potential (20—40 iterations us-

ing mixing of input and output potentials and an
atomic initial guess) is accelerated substantially
(-3—7 iterations) by using a new and simple
Newton-Raphson Jacobian update technique, intro-
duced by Bendt and Zunger. No human interven-
tion is required to achieve self-consistency.

The main body of this paper emphasizes the new

physical ideas, rather than detailed mathematical
formulation, leading to our simple solution to the
problem. It analyzes the fundamental difficulties
encountered in a frontal attack on the problem us-

ing Green's-function methods and points at the
same time to the physical simplicity of the classi-
cal Bethe —Van Vleck crystal-field approach to the
problem, largely overlooked by modern computa-
tional methods. It then offers a synthesis of the
two approaches that leads to a simple and accurate
method. Mathematical details are presented in
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II. STATEMENT OF THE PROBLEM

Our description of the problem addressed in this
paper consists of (1) a formulation of the host- (H)
crystal problem, (2) the definition of the potential
perturbation associated with the defected (D) crys-
tal, and (3) the statement of the defect problem. In
this section we define the basic quantities appear-
ing in the forthcoming discussions and in the pre-
sentation of our method.

The electronic structure of the ideal host is ex-
pressed in terms of a single-particle equation that
provides the host wave functions PJ~(k, r) and band

penergies eJ(k) for a translationally invariant host-
crystal potential VH(ptr(r)):

[ , V +VH—(p—H(r))]P,(k, r) =ej(k)PJ~(k, r) .

Here the host bands form both an orthogonal

fpj ( k, r )pj ( k ', r )d r =5~~'6 „, k, (2)

and a complete set

g f (g(k, r)Pj~(k, r ')dk=o (r r'), (3)—
1

where its occupied (occ) portion in the first Bril-
louin zone (BZ) forms the basis for constructing
the ground-state host charge density pH(r ) using
the band occupation numbers NJ(k):

occ BZ

pa(r)=g+NJ(k)
I
NJ'(k r) I'

j k

The crystal potential has two contributions: a
static external field VH"'(r ) that, with the number
of electrons N, , defines the physical system, and a
screening potential VH'"( r ) that describes the
response of the N, electrons to this external field.
The external potential VH"'( r) is specified in terms
of the lattice vectors [Rz j of the P unit cells at
Rz, the site vectors [ rttj of the Q atoms P per
primitive cell, and their chemical identity in terms

(4)

their entirety in a series of Appendices that corn-
pletely characterize the method; given this infor-
mation, we believe that the results of the quasiband
crystal-field (QBCF) method can be fully repro-
duced by others. The method is illustrated by ap-
plications to the unrelaxed silicon vacancy (charac-
teristic of intermediate-radius s-p defects), as well
as to the Cu impurity in silicon (characteristic to
small-radius hyperlocalized defects). Application
to all 3d impurities in silicon will be presented in a
future publication.

and

+ g Wp, '~'(r —R~ Pp)Pr-
L

QfpH(r)dr=PQZp .
P

The terms in the large parentheses define the L
component of the "nonlocal" core pseudopotential
of atom P as

v~, '~'(r) —= —Ztr Ir+ W~, '~'(r)Pr,

and PL is an angular-momentum projection opera-
tor. [In an all-electron representation, W'„, '~' =0
and the number of valence electrons Z~ is replaced
by the atomic number Ztt. ] The screening poten-
tial contains, in general, an interelectronic (ee)
Coulomb term VH(pH(r )), and an exchange-
correlation (xc) term VH'(pH(r )). It may be for-
mulated by a wide range of approaches (e.g. , sim-
ple dielectric screening, random-phase approxima-
tion, Hartree-Fock, and Thomas-Fermi). Here we
choose to represent it by the density-functional for-
malism in which

VH"(r)= VH'(pH(r))+ VH'(pH(r)), (Sa)

where the individual components are [for
pH(r)=p(r)]

V"( (r))= f dr'
I
r —r'I

V"'(p(r)) = (pe„,[p]) .
Bp

(Sb)

of the atomic numbers [Ztt j. The screening poten-
tial VH'(r) is defined in terms of the electron den-
sity pH( r ) containing N, electrons in the neutral
ground state. The translationally invariant total
host potential is hence given by

VH(r)= VH"'(r; [Rp, rtaj;[Zpj)

+ VH"(pH(r)) .

A pseudopotential representation is used here to
describe the external potential. In this form the
external potential is the sum of a core attraction
term Ztr/r —due only to the valence (v) charge Zp
and to an angular-momentum (L) dependent pseu-
dizing (ps) term W~, '~'(r) ("repulsive pseudopoten-
tials"). Here the charge density contains only
valence electrons. Thus,

ZpV'"'(-. ) =g g
I
r —Rp —rtr I
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The term e„,[p] is the exchange (with an exchange
coefficient a„) and correlation energy per particle
of the homogeneous electron gas.

Equations (1)—(8) define the electronic structure
of the host crystal; given VH'(r) and N, alone,
one can solve for the self-consistent response
VH'(r), the charge density pH(r), and the single-
particle spectrum (ej(k) J in Eq. (1). The external
potential VH"'( r ) contains the space group and the
core pseudopotentials ( v~, '~'(r) J. The latter quan-
tities can be derived in a first-principles approach
in the density-functional formalism for any atom.

In the defect-containing system, the external po-
tential VH'(r) is replaced by Vo"'(r); the electrons
respond to the changed potential, producing a
screening VD"( r ) replacing VH'( r ). The potential
perturbation due to a defect is defined here to in-
clude both contributions:

[VD '( r ) —VH '( r )]+[ VD"( r ) —VH "(r ) ]

and the associated density fluctuation is

(9a)

Vo(r) = Vo"'(r; [Rt J; [Zt ] )+.Vo"(po(r)), (10)

where VD"'(r) and Vo"{po(r)) have the same func-
tional forms as in Eqs. (6) and (7) and Eq. (8),
respectively. The charge density of the defected
system is given in terms of its wave functions

( P;(r ) ] and occupation numbers N~ (containing

N, electrons) as

and the defect screening potential Vo"(pD(r )) is
self-consistently described via the forms in Eq. (8),
by using p(r)=pD(r).

~p(r)= po(r) ptt—(r) . —

The change b, V'"'(r ) in the external potential may
include changes in the chemical identity of a host
atom from Z~ to Zt (i.e., substitutional impurity),
replacement of a host Zp by zero (vacancy), addi-
tion of a Zt to the set [Z~J (interstitial impurity),
a change in the vectors [R~, rid[ around a defect
site to new site vectors [R& J (defect-induced lattice
relaxation), a change in ( Rz J in a line or a plane
(line and plane dislocations), or even replacement
of Ztt electronically by Ztt —1 in an atomic sub-

shell (e.g., a core hole). The defect potential is
hence represented by

In what follows we discuss defect systems in
which [Vg'(r) —VH"'(r)] decays asymptotically
away from its center, leading to what we define as
localized defect states. These are characterized by
an asymptotically decaying response perturbation

[VD"( r ) —VH'( r )] whose characteristic size scale
depends on b, V'"'(r).

Using the definitions of the host electronic
structure [Eqs. (1)—(8)] and the defect perturbation
[Eqs. (9)—(11)]we address in this paper the prob-
lem of finding solutions to the defect single-
particle equation,

[—2
~'+ VH(pH(r»

+b V{pH(r),pD(r))]P;(r)=e;P;(r) . (12)

The inputs to the problem are: (i) the pseudopo-
tentials v&,

' (r) and vz,
' (r), (ii) the number of

electrons N, and N, , and (iii) the atomic structure
coordinates [Rz, Fp, Rt]. The output we are most
interested in includes the single-particle energies

j e; ] and orbitals [ g;( r ) ], as well as the density

bp(r) and screening b, V'"(r) fluctuations. Our
objective is to design a method of solution that will

reflect the predictions of the physical input and the
underlying density-functional description of in-

terelectronic screening, rather than the artifacts of
a computational scheme.

III. DIFFERENT VIEWS ON DEFECT
WAVE FUNCTIONS

In this section we will describe the two ap-
proaches taken in the past to describe the defect
wave functions of Eq. (12): expansion in terms of
the extended host-crystal Bloch eigenfunctions

[PJ ( k, r ) ] and expansion in terms of local orbitals.
The first approach has been used in various pertur-
bationlike models ' whereas the second approach
has been used in crystal field, '"' ligand field, '

and in various cluster methods. It has been

recently shown that the Green's-function ap-
proach to defects is derivable by requiring that
both descriptions of the defect wave functions be
simultaneously and independently satisfied (the
"dual representation"). We will summarize these
results below for completeness and for establishing
both the notation to be used later and the basis of
our new approach to the problem. In Sec. IV we
will use these results to show that the dual repre-
sentation in Green's-function approaches is respon-
sible for a fundamental difficulty in describing de-

fects whose characteristic length scale approaches
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that of atomic dimensions. This analysis will lead
to a new formulation of the problem in terms of
quasibands (rather than pure host bands), which

resolves these difficulties in a simple manner. It
will be described and illustrated in Sec. V.

The first approach to defect wave functions in-

volves its spectral decomposition into the eigen-

states [PJ.( k, r ) [ of the host crystal classified by
bands j and wave vectors k:

(13)
M BZ

P;(r)= QQA~i(k)PJ~(k, r) .
j k

The operator eigenvalue problem in Eq. (12) is
hence transformed into a matrix secular problem

(15a)

M BZ

[e~ (k') —e;]A;i (k')+ g ~;~(k}(P~'(k', r)
~

b, V(r)
~
PJ(k, r)) =0,

j k

from which the coefficients IA,&(k) I are found. The appeal of this direct diagonalization method stems
from the fact that it permits the analysis of the evolution of defect wave functions from host wave functions
as the perturbation 5V( r ) is turned on. It implies, however, that the physical characteristics of a defect
wave function P;(r ) could be described by a (hopefully) manageable number M of host wave functions

[PJ(k, r) I, which may, in general, be chemically and physically unrelated to the impurity. To take some ex-
treme examples, in using Eq. (13) one needs to hope that the wave functions of a heavy impurity atom (e.g.,
uranium) in a hydrogen lattice, could be effectively spanned by a few hydrogen bands, or that d-like impuri-
ties could be described by a few s-p-like host wave functions, etc. The conventional Green s-function ap-
proach' tacitly assumes this condition. The degree of convergence of the results on the number M be-
comes then a crucial issue. This difficulty has been recognized quite early, but has not been discussed in
contemporary calculations.

An alternative approach to describing g;(r) has been offered by the crystal field, ligand field, and cluster
approaches. Inspired by a localized molecular view, the defect wave functions are expanded in a set of local
functions Ig, ( r ) I, usually related to the impurity and ligand atoms:

N

P;(r)= gC;,g, (r) .

This transforms Eq. (12) to a secular equation,

QC&b[(g, (r)
~

——,V + VH(r)+XV(r) ~gz(r)) e;(g, (r) —~gs(r))]=0 . (15b)

In contrast to the previous approach [cf. Eq. (14)]
the full defect Hamiltonian, rather than the pertur-
bation b V(r) alone, appears in the secular prob-
lem. The appeal of this approach (e.g., the re-
markable results by Hemstreet ) stems from the
ability to implement one's intuition on the system
by selecting chemically reasonable orbitals g, (r ) in
this expansion (e.g., symmetry-adapted atomic
wave functions of the impurity and first coordina-
tion shell ligand atoms). Its weakness is rooted in
the fact that N in Eq. (15) is often limited in prac-
tice to small values due to the need to treat the full
defect Hamiltonian, and that expansion in terms of
local orbitals often describes poorly the extended
host states with which the defect interacts.

In the standard Green"s-function approach to lo-
calized defect problems, one is tacitly requiring
that the two views expressed in Eqs. (13) and (15a)
be simultaneously fulfilled: Not only must enough
bands M be included to make the expansion in Eq.
(13) complete, but also the expansion in Eq. (15a)

in terms of N localized basis functions [g,(r) I
must be valid in the subspace of the perturbation.
That is, if 8(r —R, ) denotes a step function that
equals unity in that part of space (r &R, ) where
the defect potential b, V(r) is nonzero and is zero
(or decays to zero) otherwise, both Eq. (13) and

(16)

must be valid.
This has been proved in Ref. 26 which also

demonstrated that the basic Green's-function Ina-
trix equations ' for calculating one-particle ener-
gies and wave functions are derived from Eq. (14)
under the assumption that Eqs. (13}and (16) are

simultaneously satisfied. It was further demon-
strated that if Eq. (13) was assumed3'" both condi-
tions are, in fact, necessary.

According to Ref. 26, the one-particle energies e;
and wave-function expansion coefficients C;, for
state i are determined by the set of simultaneous
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equations:

g [5,,—QG (e;),,-&g, -
l

b, Vl g, &]C~, ——0,

where the nonorthogonal representation of the
Green's-function matrix is

6 (e)„=[S '6 (e)S ']„,

(17a)

(17b)

IV A and IV B, respectively, the underlying diffi-
culties associated with these two approaches. We
then use this analysis in Sec. V to suggest a new

method that complements the previous methods in
that it works effectively even in situations where
the previous methods are inapplimble.

IV. WHY IS THE PROBLEM DIFFICULT&

and the elements of the basis-set overlap matrix are
denoted by S,b ——&g, l gb &. Here the host-crystal
Green s-function matrix is given in its standard
form as

"&g. l4,'(k r)&&0,'(k r)
I gb&

G (e),b =
j=& k e—ej(k)

(17c)

The overlap matrix S has been introduced for a
general nonorthogonal basis. Furthermore, the re-

quirements in Eqs. (13) and (16) lead to the well-

known Lippman-Schwinger equation relating the
defect wave function at r to its value at r ':

f;(r)=fG'(r, r ', ~;)&V(r ')p;(r ')dr', (lg)

with

br» Pj(k, r)Pj (k, r ')
6 (r, r', e)=

e—ej(k)
(19)

so that the wave function g;(r) is determined in all

space once it has been calculated in the subspace of
the perturbation.

The standard Green's-function representation in

Eqs. (17)—(19) forms the basis for a number of re-

cent calculations on defect problem. "' * In
these calculations, various numerical computational
schemes have been devised to solve the underlying

Eqs. (17)—(19) for simple defects (i.e., vacancies
and non-transition-atom impurities containing s
and p, but not the truly localized d orbitals). With
such defects, where the perturbation extends over a
few bond distances, the consequences of the under-

lying dual representation of the defect wave func-
tions cannot be fully appreciated. We discuss the
implications of this representation in the next sec-
tion and show that it leads to fundamental difficul-
ties when truly deep defects are considered (i.e.,
when the perturbation approaches atomic dimen-

sions). The deep impurity center problem was

treated in the past both by methods that rely on
the expansion in Eq. (15a) and by Green's-function
methods. We discuss in the next two sections,

A. Obvious reasons

Many of the obvious reasons for the difficulties
associated with solving the localized defect prob-
lem via Eqs. (15) can be appreciated by considering
the one-electron energy scales involved. While the
relevant matrix elements of VH(r) and VD(r) span
a range of a few Rydbergs, many physimlly in-

teresting point defects produce energy levels locat-
ed in a far narrower energy range: the fundamen-
tal band gap (e.g., 1 —2 eV in semiconductors).
Yet, it is the small variations (often -0.1 eV) in
the energy levels of chemically different
defects "'"' that have immense technological
consequences for solar cells, ' diodes, light detec-
tors, etc. Clearly, many of the simplifying ap-
proximations often used successfully to describe
semiconductor band structures may be entirely
inadequate for treating localized defects. In partic-
ular, even if the potential of the host crystal is a
smooth function in coordinate space (i.e., in the
pseudopotential representation) and hence can be
conveniently described in a basis of plane waves,
the perturbation potential EV( r ) associated with a
defect is not. Furthermore, the quantum interfer-
ence with the extended host wave functions leads

to some wave functions having components that
far exceed the range of b, V(r) and consequently
complimte considerably the integration of the one-

particle equations. The substantial amounts of
electronic charge and spin polarization experimen-
tally observed to reside outside the central cell
[e.g., Ref. 30(a)] even for deep levels make ques-
tionable the validity of the approaches that rely on
expanding P;(r ) exclusively in terms of a few local
basis functions surrounding the defect site [e.g.,
Eq. (16) but not Eq. (13)]. At the same time this
effect causes the models using small ( & 50 atoms)
repeated cells to introduce a large and spuri-
ous dispersion in the defect energy e;. Although
the interference of the impurity atom orbitals with
the host-crystal wave functions is often large
enough to invalidate a purely atomiclike approach
to the problem (e.g., crystal field'"' ), the short-
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range part of the perturbing potential is frequently
too strong to permit low-order perturbation ap-
proaches based on the host wave functions as
zero-order states. ' '

Most of these difficulties associated with solving
the deep defect problem are overcome by the
Green's-function approach. ' The knowledge of
P;( r ) only in the range where the perturbing po-
tential b, V(r) is nonzero is sufficient [c f E. q. . (18)]
to generate P;(r) everywhere. Consequently, the
energies and wave functions of both localized and
extended states can be found by using the localized
representation in Eq. (16) if the set tg, (r) I is suf-
ficiently complete only in the subspace of the per-
turbation. This is in sharp contrast to methods
that rely only on the expansion in Eq. (15a) where,
as can be seen from Eq. (15b), one needs to span
the entire space of VH(r)+b, V(r).

B. Less obvious reasons

There are at least four reasons that considerably
complicate the use of the standard Green's-
function approach to localized defect states. These
are reviewed below in Secs. IVB1 to IVB4. Our
resolution of these issues will be presented in Secs.
V A —V D, respectively.

l. The dual description by localized functions
and host band wave functions

The advantages offered by the Green's-function
approach to defects in combining the two different
views [expressed in Eqs. (13) and (16)] on the de-
fect wave functions (e.g. , the existence of a
Lippman-Schwinger relationship) are also the
sources of its weakness: The two rather opposing
views on the defect wave functions need to be
equally and simultaneously fulfilled. It can be
demonstrated that even if one had a formally exact
description of ttit(r } in terms of some local orbitals

Ig, (r) J (e.g. , if one knew the exact wave function
or the Wannier orbitals of the defect system) but
an additional expansion of the form of Eq. (13) is
used, ' one needs to make the latter expansion
independently complete in order to recover the
correct energies. This can be illustrated by using a
simple, analytically solvable model. Consider a
free-electron model for a silicon crystal with a po-
tential VH(r) =0 and Bloch eigenfunctions

~0(k -~) ~—1/2 i( k+ G ) re

and

2)l/2 Er /21 I—+ I/2

X(Er )Yt (8,$) . (20b)

Here, N„t is the normalization factor, I.~(Er ) is
the Laguerre polynomial, and 1'i (8,$) is a spheri-
cal harmonic. Assume further that the defect
wave functions are already known exactly in terms
of a local orbital expansion of Eq. (15a), i.e., use
for g, (r) the solutions g„t (r) of Eq. (20b). We
now use the formalism of Eqs. (13), (16), and (17)
to solve for the defect energies, inquiring how
many pure host bands M are required to recover
the exact energies in Eq. (20a).

The upper part of Table I compares the exact
energy eigenvalues [Eq. (20a)] for the lowest defect
levels of symmetry a &, t2, and e2 (angular momen-
tum of l =0, 1, and 2, respectively), with those ob-
tained by the conventional defect Green's-function
(DGF} approach, using the first M = 10, 20, 32,
and 41 host bands for each k value. These host
bands span a very large energy range of 1.7, 3.0,
3.7, and 4.5 Ry, respectively. Yet, the errors in-
volved in the defect energy levels e; are seen to be
enormously large on any relevant scale. Clearly,
the conventional Green's-function approach with
its underlying dual description of the impurity
wave functions fails in reproducing effectively the
defect structure even if g;(r) is inputed exactly in
terms of the local orbitals [Eq. (16)]. We may, in
general, expect the defect wave functions to con-
verge very slowly with respect to the number of
host bands used whenever the defect is chemically
and physically sufficiently different from the host.
This includes cases such as impurities that have an
angular momentum or principal valence quantum
numbers that are absent from the host (e.g., d
electron impurities in an s,p electron host; a 5s im-

purity in a 4s host), or systems where the defect-
induced lattice relaxation is substantial. For exam-

ple, it can be shown that a description of the d-
like defect states associated with a transition atom
such as Cr in a silicon free-electron host requires

in Eq. (1), where 0 is the unit-cell volume and G
are reciprocal-lattice vectors. Assume we are seek-

ing the energy eigenvalues associated with a para-
bolic defect potential VD(r) =K (r —ro) centered
on the lattice site R= ro in this crystal.

The exact solutions (denoting i as nlm) that we
will attempt to recover using the Green's-function
method are

e„t =E(n + —, )
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TABLE I. The calculated defect energy levels of a parabolic perturbation potential
EV(r )=K(r —ro) in a silicon free-electron host, comparing the results of the conventional
defect Green's-function (DGF) method and the present quasiband Green's-function method.
The average number of host band wave functions included for each k point is M; six quasi-
bands are used corresponding to the total dimensionality of the three lowest defect levels
a i+t2+ez. The potential perturbation is characterized by X =1 Ry/a. u. ' and

~

r —ra
~

&4
a.u.; energies are given with respect to the zero of the potential well (1 Ry =13.605 eV).
Notice the extremely slow convergence of the values obtained with the conventional DGF
method, relative to the immediate convergence obtained with the present quasiband method.

Number of
bands

a~

(eV)
t2

(eV)
e2

(eV)

Conventional
DGF method
M =10
M =20
M =32
M =41

69.413
52.175
46.257
43.835

130.553
96.759
83.507
77.440

186.946
146.240
127.139
115.180

Exact results 40.815 68.025 95.235

Quasiband DGF
method
M=1
M =10
M =20
M =32

40.815
40.815
40.815
40.815

68.025
68.025
68.025
68.025

95.235
95.235
95.235
95.235

the inclusion of no less than 70000 host bands in
the expansion of Eq. (13) to obtain a precision of
0.2 eV in the defect energy level (i.e., -20% of the
silicon band gap).

We notice here that in the tight-binding
Green's-function (TBGF) approach to defects
one is using a fixed and small number M =-8—10
of host bands in the expansion of Eq. (13) for all

the pertutbation potentials EV(r) considered. Our
discussion here indicates that such an approach
cannot legitimately recover the known chemical
trends in the impurity energies e;(b, V) with the
chemical identity of the defect (given by b V). This
is so because M =8—10 host wave functions are
insufficient to describe equally defect states associ-
ated with both extended perturbations b, V(r ) (i.e.,
impurities with small ZI —ZH values) and with lo-
calized perturbations b, V( r ) (i.e., impurities with

large Zt"—ZH values). This failure of the TBGF
concept has been demonstrated quantitatively by
Singh et al.

This basic difficulty with the standard Green's-
function approach to hyperlocalized impurities
may be resolved by brute force by increasing the
number of host bands M to either the convergence

limit or the computer s capability limit. The phys-
ical transparency of the model is, however, lost. In
Sec. V A we describe a simple and elegant method
to overcome the difficulty; only a few quasiband
wave functions are required to achieve a result that
is exact, in principle, and very precise, in practice
(cf. lower part of Table I).

2. The multicenter nature of the problem
insights from the crystal field approach

The conventional Green's-function approach to
localized defects [Eqs. (13), (16), and (17)] tacitly
assumes a dual discretization of space into the host
crystal-lattice sites IR& J and the sites tRI] in the
perturbation subspace. The first set is used to de-
fine j PJ ( k, r ) ] in Eq. (13) while the second is used
to define [g, (r)] in Eq. (16). This discretization is
rooted in LCAO-type approaches in molecular
chemistry where the central quantity, the molecu-
lar or crystal potential V(p(r)), is indeed extended
over many atoms. This approach transforms the
defect problem into a multicenter representation: a
large number of integrals such as
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(g (r R )
~

~V(» Rt) ~gb(r Rb)&

[cf. Eq. (17a)] involving three-dimensional, nons-

pherical multicentered functions need to be
evaluated. The task of obtaining self-consistency
in 6V"'(hp(r )) also involves the calculation of a
multicentered potential and charge density. The
number of such integrals required in Eq. (17)
(which equals the number of host bands times the
number of k points times the number of local orbi-
tals g, (r ) times the number of lattice sites) extends
into the millions. Although large numbers of mul-

ticentered integrals can be handled numerically on

big high-speed computers, it leaves something to be
desired in terms of simplicity and physical trans-

parency. In addition, it often requires limiting

{g,(r) J to simple forms (e.g., Gaussians) that indi-

vidually do not have the physical properties of the
quantum system at hand. (For example,
Huzinaga "and Ten Hoor '"' needed no less
than ten Gaussian functions and a simultaneous
optimization of its ten nonlinear coefficients to-
gether with ten linear coefficients to reproduce the
energy of the hydrogen 1s orbital. This optimiza-
tion involves a search in a space with multiple
minima and saddle points. Also, 3d orbitals of
transition elements require more Gaussians. )

As early as 1929, Bethe' and subsequently Van
Vleck' realized, however, that while

[Vti ( r ), VH ( r )], and [pu ( r ),pH ( r )] are individually
multicentered in character and highly anisotropic,
the corresponding differences b, V(r) and hp(r)
[Eqs. (9a) and (9b)] resemble a one-center object
(much like a nonspherical open-shell atom or an
atom in an electrical field) with a far reduced spa-
tial anisotropy. This Ied to the formulation of the
crystal-field theory' ' in which both the defect
potential and the impurity-anchored orbital basis
functions {g,(r) J are expanded in Kubic harmon-
ics around the impurity site In the sim. ple crystal-
field approach, the potential of the defected system
is expressed as

Vu(r) = {Vtt(r) —v, (r —RH)) +vt(r —Rt)

(21)

(denoting atomic potentials by u and crystalline po-
tentials by V}. Here u, (r —RH) is the potential
of a single host atom removed from site Rtt, and
ut(r —Rt) is the potential of the impurity atom in-
troduced into site Rt (in the absence of lattice dis-
tortions, RH ——Rt). The first term b,u(r) is hence
the crystal field experienced at the point r due to
all atoms except the one at R~. Bethe and Van

Vleck have realized that the deep defect problem
can, nevertheless, be treated as a single-site, atom-
iclike problem, provided that the crystal field is ex-

panded around the defect site alone in a few partial
waves:

bu(r)= XDt( I
r

I
)Kt (r

l

(22a)

with a similar expansion for the impurity orbitals
in terms of radial atomic orbitals R„t with atomic
principal quantum number n:

g„t' (r) =R„t(
~

r
~

)Kt ' (r), (22b)

where cz and A, are the representation and partner
indices, respectively, and a ~ denotes the totally
symmetric representation. [If the crystal field
bu(r) is modeled approximately by the electrostat-
ic field due to point charges q; on lattice sites, D~

is independent of r.] The orbital energies of an im-

purity atom interacting with the crystal field are
then obtained from the secular problem derived
from Eqs. (21) and (22); the separation of variables
underlying Eqs. (22) transforms this secular equa-
tion into a simple atomiclike problem. The experi-
mentally observed splitting between defect energy
levels may be characterized empirically by qD~.
This approach has not only made possible systemi-
zation of a vast number of optically observed de-
fect levels in many molecular complexes and
solids, ' but it has also established a quantitative
basis for understanding the stability of complex
ions, the vibronic coupling of impurities to hosts,
the multiplet structure of impurities, the hyperfine
splitting of magnetic impurities, the paramagne-
tism of the complexes of the first transition series,
and the anisotropy and temperature variation of
the magnetic susceptibility. '

The success of this simple model of Eqs. (21)
and (22) is at first surprising —if the orbitals g„t(r )
of the impurity atom extend outside the range of
its atomic potential ut(r) into the space where the
host-crystal field hu (r) is strong, they will attempt
to variationally mimic hostlike states ("variational
collapse" ). The orbital energies derived from Eqs.
(22) would then contain large errors. A scrutiny of
the details of the formalism reveals, however, the
source of its success: Whenever orbital energies e„~
are calculated for matrix elements such as

&&nt(r)
I

—
2
~'+ Vu(r)

I
~.t(r) &

an implicit cut-off distance R, is invoked; outside
R„where variational collapse may occur, VD(r) is
set to zero (hence, by construction, hybridization
with host states is excluded).
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The first to realize that this is, in effect, a gen-
eralized pseudopotential problem was Phillips
who showed that if one orthogonalizes g;(r) to the
ligand orbitals, the crystal-field problem can still
be solved in terms of the one-center impurity-atom
orbitals g„i(r) provided that one adds to VD(r) in
Eq. (21) a new term Vz [r,e„i]—the crystal-field
pseudopotential. A more general formulation of
this basic idea is given in Appendix A. The impli-
cit cutoff radius R, used in the Bethe —Van Vleck
crystal-field model is then a simplified realization
of the radius outside which Vz [r,e„i] has a strong
repulsive character.

This then shows two ways by which one could
circumvent the multicenter nature of the defect
problem and reduce it to a one-center atomiclike
problem. It is sufficient to use a single-site,
defect-centered basis set as in crystal-field ap-
proaches, provided one adds to the potential VD(r )

the crystal-field effective pseudopotential derived
in Appendix A. Alternatively, in a Green's-
function approach where the central quantity is the
potential perturbation b, V( r) rather than the full
potential VH(r)+EV(r), it is sufficient to use a
variationally complete but one-center description of
the wave function 6(r —R, )g;(r) inside the range

R, of the perturbation b, V(r) and utilize the
Lippman-Schwinger Eq. (18) to translate f;(r) out-
side R, . Although the wave function g;(r ) may
change outside R, as more basis functions are ad-

ded, this change does not alter the defect energies
if the description inside R, is sufficiently complete.
We will choose this approach. This approach
offers not only a high numerical precision, but also
shares with the (far less complete) crystal-field
methods its physical simplicity. This will be
described in Sec. V B.

3. The k summation problem

In the conventional application of the Green's-
function method to solid-state problems involving
a continuous energy spectrum, ' the matrix repre-
sentation of G (e) requires a k-space integration of
a nontrivial complex function. If this spectral rep-
resentation is used, one usually (e.g., Ref. 3) first
separates this complex function into its real and
imaginary parts; the imaginary part is then ob-
tained through BZ sampling techniques (using
about 200—300 k points) with a microcube (e.g. ,
Gilat-Raubenheimer4i) or the tetrahedron (e.g.,
Lehman and Taut ) partitioning of the BZ, fol-

lowed by a Kramers-Kronig tranformation to ob-
tain the real part. The requirement for inclusion
of a large number of bands (cf. Sec. IV 8 1) and lo-
cal basis functions together with a fine resolution
in the energy parameter e needed to describe a
large set of defect wave functions, makes these two
operations extensive and costly. In addition, these
often require fitting the host bands PJ(k, r) in
terms of an auxiliary basis set and the imaginary
part of the Green's functions in terms of yet
another basis set to perform the spectral sampling
and the Kramers-Kronig transformation interpola-
tively. While the need to maintain these two ad-
ditional basis sets add complexity, the fitting pro-
cedure may introduce errors. In fact, both are not
needed if the continuous spectral representation is
replaced by a discrete representation.

This problem of extensive BZ summations has
been previously avoided in supercell
schemes ' in which one places an impurity
at a center of a large unit cell containing Nn host
atoms and solves for the associated electronic
structure in the corresponding, small Brillouin
zone (SBZ) by using band-structure techniques.
Only the k points folded from the primitive BZ
into the SBZ are used; the defect energies then
converge rather rapidly with the number of k
points. '" The interdefect interaction introduced

by the artificial periodic boundary conditions is
then reduced by increasing X~. The problem be-
comes, however, rapidly intractable as the size of
the Hamiltonian matrices increases as a high
power of N~. For example, although a defect in
each of the two-dimensional, 50-atom unit cells of
planar graphite "produces only a weak (0.1 eV)
unphysical defect-defect interaction, in the more
usual case of three dimensiona-l solids (e g , vacan. cy.

in silicon or zinc in silicon ), a 54-atom unit cell
produces an intolerable interdefect interaction of 1

eV.
We avoid the slow convergence of the k sums in

the spectral Green's-function approaches as well as
the cumbersome dependence of matrix size on Nn
in the supercell approach by using a discrete repre-
sentation for the Green's-function k summation.
This technique is formally equivalent to a supercell
model but the size of the Hamiltonian matrix does
not depend on the dimension of the supercell; large
supercells (e.g. , 2662 atoms "'"')may be easily
treated. This special k summation has been previ-
ously used by Zunger "and Zunger and
Englman '"' in the context of the small periodic
cluster method and by Evarestov and Lovchikov,
and Lindefelt in the context of the large unit-cell
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method. It was first used in the context of
Green's-function calculations by Lindefelt.

This k-space summation method simplifies the
calculations enormously: Only a small number of
k points are needed, and the poles of the Green's
function are real. At the same time, it provides a
direct link to the repeated cell models for point de-

fects: It shows how many atoms per supetcell are
needed to reach the limit of noninteracting defects.
A simple analytical model introduced below can
then be used to obtain the energies of the gap lev-

els at the limit of an infinite supercell, by using the
results of small supercells. This method provides a
direct way of performing calculations on the elec-
tronic structure of defects as a function of the con-
centration of the defects. The method is described
in Sec. VC.

4. The self-consistency problem

The solution of the single-particle defect prob-
lem, Eq. (12), clearly involves the construction of
an operator 5V(ptt, pD ) that requires the know-

ledge of the solution pD
——g,.X;

~

tb;(r)
~

itself

[Eqs. (11) and (12)]. Whereas ad hoc prescriptions
that fix b, V(pH, pv ) by using the properties of the
isolated atoms [e.g., b, V=vt(r) v, (r) in Eq—. (21)]
are possible, ' they often require an ingenious
guess to correctly reAect the shape and chemical
trends in the screened perturbations. The nontrivi-
ality of this guess is illustrated in Fig. 1 for an un-

relaxed silicon vacancy. Here the inverse
coordinate-space screening function

1 b, V'"'( r ) +6V'"( r )

e(r) b, V'"'(r)
(23)

is plotted for: (a) a free Si atom, in which V""(r)
is obtained self-consistently from V'"'(r) within the
density-functional formalism, (b) a dielectrically
screened Si atom, where

yextg
Vscr( ) J

(q) i q rd~~
~(q)

and e(q) is the silicon host dielectric function,
and (c) a self-consistent Si vacancy, calculated
within the formalism of the present paper (Sec.
VI). All three functions e '(r) are obtained by us-

ing for V'"'(r) the same silicon semiempirical local
pseudopotential. As seen in Fig. 1, the self-
consistent vacancy screening function cannot be
approximated in any simple way by the self-
consistent atom or by linear dielectric response
forms: The small-r behavior, the position of the

1.0

0.5—

/.
/s0.0

0 5 f

—1.0 Q

Inverse Real Space
Dielectric Function

~ 0 ~ ~ ~ ~ ~

~ s ~ ~ ~ ~ ~ ~ ~0yy ~

SCF Atom

~its- Dielectric
SCF Vacancy

node, and the attenuation of e '(r) near the
Wigner-Seitz sphere radius are not related in any
simple way to the properties of the atomic or
dielectric screening function. The problem is far
more acute for highly localized impurities (e.g. ,
transition atoms) where small errors in pD translate
into substantial errors in hV as well as e;. In
general, a self-consistent solution to Eq. (12) is
therefore needed.

Two basic difficulties are associated with attain-
ing self-consistency: (i) obtaining b, V(p&,pD) from
a given set of solutions I lb;(r) I, (ii) iterating over
b, V(pH, p~) for different pD. We have already in-

dicated that problem (i) becomes nearly trivial if
the solutions I lb;( r ) I and the potential 5V( r ) are
represented in a single-center generalized crystal-
field form. The quantities expressed in Eq. (8b)
are then obtained through a one-dimensional radial
integration and a simple linear fit (Sec. VB). The
remaining question —how many single-site func-
tions are required for an accurate representation-
is satisfactorily resolved through actual tests (Sec.
VI). Problem (ii), however, as treated by existing
approaches, turns out to be the single most impor-
tant source of computational expense: at least
20—40 iterations are needed to obtain a stable
self-consistent solution for substitutional Cu in sil-
icon if the initial guess for EV(r ) is constructed

—2.0

I I I I I

0.0 1.0 2.0 3.0 4.0 5.0
DISTANCE (a.u. )

FIG. 1. Inverse screening function e '(r) in coordi-
nate space obtained from: (a) a self-consistent density-
functional calculation for the free-space Si atom
( ———), (b) the dielectrically screened Si atom using
Nara's (Ref. 47) dielectric function e(q) ( ~ ), and (c) a
self-consistent calculation for a Si vacancy, c.f. Sec. VI
and Fig. 6 ( ). All calculations use the same pseu-
dopotential V'"'(r) of Ref. 35.
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from atomic potentials and if linear mixing ' '

between input and output b, V( r ) is used.
We have overcome this difficulty by using a new

and efficient method developed by Bendt and
Zunger for general self-consistency problems.
This method uses a Newton-Raphson technique
with Jacobian updates. It is far more effective
than potential mixing, ' ' the Pratt scheme,
Kerker's scheme, or Ferriera's accelerator. ' It
enables the efficient self-consistent solution of the
defect problem even with modest computational fa-
cilities. The method is described in Sec.V D.

V. THE PRESENT RESOLUTION OF THE
DIFFICULTIES

We describe in this section our QBCF approach
to resolving the difficulties described in the preced-
ing section. The discussion parallels the structure
of Secs. IVB1—IVB4.

A. The quasiband structure representation
of the Green's-function problem

In the standard derivation of the Green's-
function approach to the localized defect problem
(e.g., Refs. 1 —4,13,52), one tacitly assumes that
the orthogonal [Eq. (2)] crystal wave functions

P~(k, r } are eigenstates to the host crystal Hamil
tonian operator Hp ——,V + VH

——[Eq. (1)]. Ex-
panding then the defect wave functions in this set

[Pz(k, r ) j [Eq. (13)],one gets the basic Eq. (14).
As discussed in Sec. IV B 1, the requirement in
Eqs. (1) and (13) will often result in a computa-
tionally intractable and physically undesirable large
number M of host eigenfunctions required to
represent a localized defect state g;(r). The cen-
tral point of our argument is that although the

0condition that PJ ( k, r ) be an eigenstate to Hp is
sufficient, it is not a necessary condition for deriv-

ing the underlying formalism [i.e., Eq. (14)]. The

far weaker condition that an arbitrarily chosen
orthogonal set of Bloch functions [tI}jo (k, r) j diago
nalize the host crystal Hamiltonian matrix is a suf
ficient condition. One is then free to choose the set

[PJO (k, r) j [quasiband (QB) functions] with
its eigenvalues e~O (k) (quasiband structure) so that
the impurity wave function P;( r ) can be expanded
exactly, in principle, and very accurately, in prac-
tice, by a small number M of such quasibands:

(24)

The conventional choice PJ9 ( k, r ) =P ( k, r ) [j.e,
Eq. (13)] used in previous models3 is only a par-
ticular case. However, far better choices that in-
corporate in QJO (k, r) the physical characteristics
of the defect's wave functions from the outset are
possible. Our approach will hence be to renormal-
ize a large number of conduction-band wave func-
tions that would have been needed to spectrally
describe g;( r ) through Eq. (13), into a far smaller
number of local quasiband wave functions, which
contain from the outset the relevant chemical in-
formation needed to describe g;(r ).

We have previously proved that in fact the set
[pJO ( k, r }j used in the spectral representation of
the Green's function need only diagonalize the ma-
trix of the host Hamiltonian operator, but need not
form eigenstates to it. This means that even if the
high-energy conduction-band wave functions are
not accurate eigenstates to Hp (as is often the case
in practical band-structure calculations using a
limited basis set), this fact is of no consequence as
long as these wave functions were obtained by di-
agonalizing the (finite) Hamiltonian matrix.

This proof has an important implication for de-
fect calculations, in that it offers a new way to cir-
cumvent the difficulty associated with expanding
g;(r) in host Bloch states. Instead of increasing
continuously the number of pure host bands need-
ed in an accurate expansion of Eq. (13), one can
augment a set of few band-structure (BS}wave
functions [P& (k, r ) j by a few local wave func-
tions Igj(k, r ) j containing the relevant chemical
information on the impuriqtr, provided that a uni-

tary transformation [p~O (k, r) j of the combined
set [PJ (k, r),X(k, r) j diagonalizes the host Ham-
iltonian matrix.

The quasiband wave functions are then given as

Pq~ (k, r)= gbiq (k)PJ (k, r)

M

+ hajj (k)X, (k, r),
J

where [bjj'(k),ajj (k) j are given from the diago-
nalization of the matrix of Hp, with eigenvalues
e&O (k). The local quasiband orbitals XJ.(k, r) may
be generated from a LCAO representation,

X (k, r)=X '~ ge ~f.(r —R ),
R

(25)

(26)

where [fj(r) j are some local orbitals. In band-
structure calculations where a mixed-basis repre-
sentation such as Eq. (25) is used, ' one is choosing
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{fj(r) } to have characteristics of the host atoms,
so that {PJ(k,r) j becomes a better approximation
to the true eigenfunctions of Ho than {P~ (k, r) }
alone. We have shown, however, that if the defect
problem is solved via a Green's-function formal-
ism, full convergence of the band wave-functions
set {PJ. (k, r)} to the true eigenstates {PJ(k,r)} is
not required formally. Instead of seeking, there-
fore, approximate completeness of
pjq (k, r)—+QJ(k, r) as in band-structure calcula-
tions, we will take the opposite view: We will use
a manifestly incomplete (i.e., underconverged) fin-
ite set {PJ~ (k, r) j of the form in Eq. (25) but we
will choose {fj(r)j of Eq. (26) to share the charac
teristics of the perturbation b V(r) rather than those

of the host potential V&(r). By the variational
principle, augementing the band-structure basis set

{PJ. (k, r ) j by another set {XJ(k,r) } (even if it is
physically unrelated) can do no harm. At the same
time, a judicious choice of {fj(r)j can make the
expansion of the defect wave function g;(r) in

terms of the qusibands {pjq (k, r) } [Eq. (24)] con-
verge much faster than the corresponding expan-
sion in terms of host wave functions alone [Eq.
(13)].

Note that if fJ(r ) were to be the actual defect
wave function P;(r ), (e.g., the crystal-field limit),
the set {pjo (k, r) j of quasiband wave functions
will give us the exact solution and therefore the ex-
act energy eigenvalue. This is demonstrated below
for a simple case that can be solved analytically.
If, however, the trial orbital fi( r) is only an ap-
proximation for the true solution g;(r), sufficient
components of host wave functions {PJ. (k, r) j
will be introduced in Eq. (25) to make the expan-
sion in Eq. (24) complete. However, these have to
reproduce merely the difference between P;( r) and
the trial orbitials fj(r). This is far easier to ac-
complish than expanding g;(r) directly in extended
states 1 —4,9—13

The power of the quasiband approach can be il-
lustrated for a case that has closed-form analytic
solutions: an harmonic oscillator impurity in a
diamond-lattice, free-electron host discussed in Sec.
IV 8 1. Using M, =6 local quasibands, where

fj(r ) are the harmonic oscillator orbitals, we solve
the Green's-function problem in Eq. (17), replacing
{P.(k, r)} by {PJ9 (k, r)} and {ej(k)}by
{ej~ (k) }. We now ask how many host bands Mb
are required to obtain the exact defect energy level

given by Eq. (20a).
The upper part of Table I, discussed in Sec.

IVB 1, shows the poor convergence of the defect
energy levels obtained in the standard Green's-

function approach to the problem. The lower half
of Table I shows the results obtained in the quasi-
band approach. Even a single band-structure wave
function (Mb ——1) required merely to establish the
energy origin is sufficient to recover the exact re-
sults for these defect levels. Further discussion of
this example and illustrative applications to a Cr
impurity in a silicon empty lattice are given else-
where (for the latter case, only Mb ——14 host wave
functions and M, =2 local functions were used to
obtain very precise defect energies; in the conven-
tional Green's-function approach, more than 70000
host bands are needed for a precision of 0.2 eV).
These examples demonstrate the extreme efficiency
of the quasiband approach.

We close the discussion on the quasiband ap-
proach by a technical remark. The diagonalization
of the host Hamiltonian matrix within a set of M
quasibands

{PJO (k, r) j = {PJ~ (k, r);Xi(k, r)}

of Eq. (25) requires the computation of matrix ele-

ments of the form

(pj' (k, r) ~HO ~XJ(k, r)),
(XJ'(k, r)Ho

~

XJ(k,r)),
and the corresponding overlap elements. The ex-
pressions for these elements where fj(r) are arbi-
trary radial functions are given in Appendix B.
The basic Green's function, Eq. (17), requires
the evaluation of the overlap integrals

(g, (r)
~

Pz~ (k, r) ). An efficient method for
evaluating this is described in Appendix C.

B. The one-center crystal-field representation
of potentials and wave functions

1. The representation

From our foregoing discussion (cf. Sec. IVB2)
we see that the localized set {g,(r) } needs to be
completely only in the subrace of the perturbation
b, V(r) [i.e., to span 6(r —R, )g;(r), where R, is
the range of b, V(r ) and 6(r) is some cut-off func-
tions]. Following Bethe's idea, ' we choose

{g,(r) j to have a single-center form (with origin at
the defects center) with a separation of angular and
radial variables. The single index a used so far to
characterize {g,(r ) } is consequently decomposed
into four indices (@lan, ), where p is the radial
"principal" quantum number, l is the angular
momentum in the system's point-group representa-
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tion, a is the irreducible representation of the
defect's point-symmetry group, and A, is the
partner index in the ath irreducible representation:

and

g&i(r)=F„i(
I
r

I
)KP' (r)

L (1)
max N

8(r —R, )g;' (r)= g QC„i;gpss(r),
I p

(27)

(28)

where Ki ' (r) are lattice harmonics. We use the
notation

I
r

I
to emphasize that Fzi(

I

r
I

) does not
depend on the direction, but merely on a scalar ra-
dial quantity.

Single-center, central-field-type basis functions
are not new in molecular chemistry. They have
been used in 1929 by Bethe' for crystal-field stud-
ies of molecular complexes and suggested in 1933
by Mulliken and in 1941 by Buckingham et al.
for molecular calculations. Since then they have
been extensively applied in molecular studies, most
notably by Cohen and Coulson, Joy and Parr,
and recently by Desclaux and Pyykko ' for rela-
tivisitic calculation. An extensive review on this
subject was given by Bishop "and recently by
Kranz and Steinborn ' '. In solid-state applica-
tions, single-center-basis functions have been re-
cently used by Song and Malwal and Slater " for
cellular-type band-structure calculations, and by
Jaros and Brand, and Linde felt, ' and Lin-
defelt and Pantelides "to calculate deep defect
gap state levels.

The choice of g(r) in the form (27) parallels the
standard central-field representation in atomic
physics: The single atomic radial orbital R„i( I

r
I

)

[cf. Eq. (22b)], which is an eigenstate to an isolated
impurity atom Hamiltonian ——,V +Ul(r}, is no

longer an eigenstate in the presence of the crystal
field b,u(r ) [cf. Eq. (22a)] which can mix different
orbitals. This is hence replaced in Eq. (28) by
sums of g„i (r) where F„i( I

r
I

) is a general radial
function (i.e., not necessarily R„i). Similarly the
spherical harmonics I'i~(r) used in atomic systems
with spherical symmetry is replaced in Eq. (27) by
the symmetry-adapted lattice harmonics KP ' (r )

transforming like the A,th partner of the ath ir-
reducible representation of the point-symmetry
group underlying the crystal field. In analogy to
atomic physics, the separation of variables in Eq.
(27) will reduce the defect problem into analytic
angular integrals over Ki ' (r } and to simple one-
dimensional, one-center radial integrals over

F&i( I
r

I
). The choice of specific radial functions

F&i( I
r

I ) is immaterial for the development of the

where

GT(
I
r

I

}=QCiiFi i( I
r

I
}

is a radial function of
I
r

I
. The coefficients

t C&i; } will be determined from the Green's-
function problem defined by Eqs. (17a)—(17c).
The complementary quasiband representation of
the defect wave function in Eq. (24) is

M BZ

hatt
(r)= ++A,J (k)p (k, r),

j k

(30)

where we have dropped for clarity the obvious no-
tation QB from the expansion coefficients A,J .
One needs to determine only the set IC&i; } in Eq.
(28) since the set IA,J. (k) } is related to it by the
Lippman-Schwinger Eq. (18). This is shown in

Appendix D, which also discusses the relevant nor-
malization conditions. Equations (29) and (30)
form the basis of our QBCF representation: They
provide a dual description of defect states in terms
of a simple central-field series and an expansion in
terms of noninteracting impurity and host quasi-
bands.

Notice that the basis tg&i ( r ) } is formally not
restricted to be orthogonal. In fact, our general
formulation of the Green's-function problem in Eq.
(17) includes the basis overlap matrix S which does
not have to be the unit matrix. In practice, howev-

er, a nonorthogonal basis may include approxi-
mately linearly dependent components that do not
add variational degrees of freedom and merely
create the illusion of a large basis. The fact that
certain calculated quantities (e.g., orbital energies)
do not vary by adding more such basis functions is
then not an indication for convergence to the
correct limit but merely a statement of the varia-
tional irrelevance of such additional basis func-

formalism; its discussion will be postponed to Secs.
VI and VII. It will suffice to say here that we use
a large and flexible enough set IF„i( I

r
I

) } that
couples to the spherical as well as nonspherical
components of the potential and that convergence
of various physical quantities with respect to the
size and type of the set is examined and achieved.

The central advantage of our choice in Eqs. (27)
and (28) is that the defect wave functions are given
in a simple form, separable in radial and angular
coordinates:

I (1)

8( —R, )1( ( )= y 6;,(I I)K, ' ("),
I =0

(29)
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tions. The common critique of basis set orthogo-
nalization states that the long-range oscillations
introduced by this procedure can penetrate the
domain of b, V(r) without adding extra variational
flexibility. In the generalized crystal-field repre-
sentation, however, the existence of a physical dis-
tance scale in the problem —the perturbation radius

R,—allows one to overcome this difficulty easily.
The basis Ig&t (r) I is Schmidt orthogonalized
within a sphere of radius R, such that the orthogo-
nalized function vanishes outside R, . All members
of the set that are linearly dependent to within a
prescribed tolerance (i.e., the wave-function ampli-
tude inside R, after orthogonalization but before
normalization is smaller than a prescribed value)
are then discarded. The degree of completeness of
the basis is monitored by assuring that
g.k I

(jk I g, (r)) I
is close to unity for all a

values. This guarantees that no false convergence
with basis-set size will occur.

2. Potentials and charge densities in the
crystal field repre-sentation

L(2)
max

pD(r') = g p)D( I
r

I
)Kt '{r ),

l=O
(31)

with a similar expression for spin-down (l). Here
(a, A, )=a( is the totally symmetric representation
of the defect's point group. The expression for the
radial coefficients pti)( I

r
I

) in terms of the radial
basis IE&(I, the variational coefficient I C„t;I, and
the Gaunt coefficient ID( [1',1"] J is given in Ap-
pendix E. Similarly, the host charge density pH(r)
[Eq. (4), assumed here to be nonmagnetic] is given
in the same basis by

L (2)
max

PH(r) g PIH( I
r

I
)&l

I =0
(32)

where p(H( I
r

I
) is expressed in closed form in

terms of the radial basis IE„(I, the host quasiband
wave functions If' ( k, r ) I, and the Gaunt coeffi-
cients ID) [l', l"]J in Appendix E. The charge-
density perturbation therefore has the simple form,

L(2)
max

bp(r)= y Apt( I
r

I
)Et '(r),

I=O
(33)

The introduction of the single-center, generalized
crystal-field basis in Eqs. (27) —(29) simplifies
enormously the calculation of the ingredients of
the Green's-function problem in Eq. (17). The
charge density [Eq. (11)] of the defected system
has the simple central-field form,

L(1)
max

L=0
(I,H)(

I

~I )]P (34)

where D and H denote impurity and host atoms,
respectively, u„', '~'(

I
r

I
) is the nonlocal core pseu-

dopotential of Eq. (7), and lattice relaxation has
been omitted for simplicity of notation. The per-
turbation in the screening potentials [Eqs. (8) and

(9)] is partitioned into the interelectronic Coulomb
part b V"(r ) and the exchange-correlation part
hV"'(r). The crystal-field form of the density per-
turbation in Eq. (33) yields immediately a similar
form for lI), V"(r) obtained by solving Poisson's
equation for bp(r):

L(2)

b V"(r)= g 4u("(
I
r

I
)&i'(r),

I=O
(35)

where hu( (
I
r

I
) is given as a sum of two atomic-

like one-dimensional radial integrals discussed in
Appendix E. The exchange-correlation perturba-
tion cannot be obtained directly from the differ-
ence Ap(r) owing to its nonlinear nature. It is
nevertheless expressible in the same form

(36)

where the radial functions hut"'(
I
r

I
) are obtained

by a simple one-dimensional fitting procedure
described in Appendix E.

3. Variational flexibility in the generalized
crystal field representa-tion

Conceptually, our choice of a generalized
crystal-field expansion of the wave functions and
potential perturbations in partial waves is not
merely a specialization of the familiar multicenter
expansion technique to a single center. In prin-

where the large cancellation between the defect and
host densities is affected algebraically in

~pt(„)=Pl&(") P(H(") .

The various components of the perturbation po-
tential in Eq. (9a) take a similar crystal-field form.
The external potential perturbation [Eq. (9a)] is
given as
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ciple, we are constructing a transformation on the
multicentered wave-function expansion

g R f„I( r —R„), characterized by an atomic an-

gular momentum L (not a good quantum number}
into a new basis g&F&t( I

r
I

)KP (r ), characterized

by the systems angular momentum l (a good basis-
set quantum number). Our central observation
here is that only a few partial maoe components are
needed to characterize the potential and density per
turbations b, V(r ) and hp( r ) as well as the per
turbed wave functions in the central cell re-gion, but
that each of these components requires for its
description a large number of different radial basis
functions This. is illustrated in Sec. VI for the Si
vacancy and in Sec. VII for the Cu impurity in sil-
icon.

In the conventional, multicentered expansion
technique, one places a few atomic orbitals f&L(r }
on the sites surrounding the defect; the number of
different radial functions associated with these is
usually very small (e.g., N = 1 for L =1,2 and
N =3 for L =0 in Ref. 3). The basic variational
coordinates manipulated in this approach are

[f&t (r }I. The shell orbitals produce a large num-

ber of high l components in the system's point-

group representation, even though L is restricted
to small values (e.g., the L =0 s orbitals on
the nearest neighbors can contribute
L =0,3,4,6,7,8, . . ., to a

&
representation in Td)

However, an overwhelming proportion of these I
waves is variationally irrelevant since EV(r ) and
b p( r ) physically contain contributions only from
the lowest few I values and since the amplitude of
the high-/ components in the wave functions are
significantly attenuated relative to the spherical
component in the central-cell region. The remain-

ing, variationally relevant, low-index partial waves

then have only a very limited radial flexibility to
describe the shape of b, V(

I

r
I

) and I 11;(r ) I.
In the present generalized crystal-field expan-

sion, we identify the radial l components
~Vt(

I
r

I
) [Eqs (3» and (36)l ~pi(

I

r
I

) [Eq
(33)], and G;~t(

I

r
I

) [Eq. (29}]in b, V( r), b,p( r ),
and 1(t;(r), respectively, as the fundamental in-

dependent variational coordinates of the problem.
We therefore treat each l component independently,
in the system's angular-momentum representaion l,

irrespective of the (physically irrelevant) parent-
hood of each such partial wave in an atomic L
state. Each such variational coordinate is then
described independently by many radial-basis func-
tions F„t( I

r
I

) (e.g., N ( 14 for each l). We sug-

gest that the present crystal-field representation for

localized defects is physically far more plausible
and computationally much more efficient than the
conventional multicentered representation since the
former approach places the variational flexibility
of the basis directly and explicitly where it is need-
ed (i.e., in effect, projects the relevant pieces of the
LCAO wave functions onto a single-site expansion)

and, at the same time, avoids all multicenter in-

tegrals.

Previous experience with one-center expansion
techniques in molecular chemistry and solid-
state applications ' has often indicated a slow
convergence with respect to the number and type
of basis orbitals. Examination of the results indi-
cates, however, that such difficulties are related
predominantly to the failure of a small one-center
basis to reproduce core orbitals on neighboring sites
and the placement of the expansion center on a
bond, not an atomic site. In fact, the populari-
ty of single-center expansion techniques for cal-
culation of the electronic structure of hydride mol-
ecules AH„can be traced to the efficiency of the
method to span nearest-neighbor orbitals of core-
less atoms (hydrogen). In the QBCF method, how-
ever, we replace all core orbitals by pseudopoten-
tials. We find that one-center expansions converge
very rapidly as the off-center components of the
pseudowave functions are, by construction, spatial-

ly very smooth. We suspect that a similar com-
bination of a one-center expansion technique with
pseudopotentials may prove very effective in
molecular calculations.

4. Matrix elements in the crystal field representa-tion

The structure of our basis set F&t( I
r

I
)Kt '"(r)

and all potential and charge-density perturbations

in Eqs. (33)—(36) makes the calculations of all ma-

trix elements nearly trivial —much like in atomic
physics. For example, the matrix element of the
external nonlocal pseudopotential perturbation is
simply:

=5«%+au (F„t I

Lvt'"'
I Fq i), (37)

i.e., a one-dimensional radial integral, diagonal in
all but the principal quantum number indices.
Hence, the pseudopotential nonlocality that is
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essential for describing transition elements and, at
the same time, results in an involved multiple-
scattering form when an overlapping multicenter
representation is used, becomes diagonal in all but

the simple radial index p. The matrix elements of
the screening perturbation hV" (r ) [AB =ee, or xc
in Eq. 8(b)] is also given by a sum of one-
dimensional radial integrals (nondiagonal in 1),

(38)

where d~ is the dimensionality of the ath irreduci-
ble representation, and Di [1,1'] are the Gaunt
coefficients. Notice that the sum over 1" is deter-
mined by the triangular conditions l +I'+I" which
equals an even integer, and

I
1 —1'

I

(1"& 1+1'.
Further, the number of 1" is limited by the site
symmetry of the defect. For a Td site symmetry,
for example, one has in the ai representation for
the potential and density expansions of Eqs.
(31)—(36) only the terms 1 =0, 3, 4, 6, 7, and 8 if
I.",'„=4. Similarly, t& orbitals contain only
I =1,2, 3,4. . ., e orbitals contain only l =2,4, . . .,
and t& orbitals include l =3,4, . . .. The coeffi-
cients DP [1,1'] are given in Table II for this group
and a=aI. e, t&, and t2, 0&I', l&4, and
l"=0,3,4, 6,7,8.

Our one-center, generalized crystal-field repre-
sentation permits (i) easy inclusion of pseudopoten-

I

tial nonlocality, (ii) reduction of the self-

consistency problem to one-dimensional integration

[Eq. (35)] and fitting [Eq. (36)], (iii) the possibility
to include simply and efficiently any set of radial
functions I I'&i(

I
r

I
) J. In particular, the physical-

ly appealing "exact" (numerical) impurity atomic
orbitals or the quantum defect orbitals are as
easy to handle as the variationally less effective an-

alytic orbitals (e.g. , Gaussians), and (iv) direct ef-
fective cancellation of the difference between per-
turbed and unperturbed densities and potentials.
The formalism lends itself to simple comparison
with the empirical crystal-field model in which the
expansion coefficients of the perturbation

[b, VI'."'(
I
r

I
)+oui"(

I
r

I
)+b,ui"'(

I
r

I )]

are replaced by constants qDI, which are adjusted

TABLE II. The Gaunt coefficients DP [1',1] for representations a|, e, t~, and t, of the point-group Td, defined in
terms of the Kubic harmonics

d

+&i' (r)Ki (r)=AVDP [1' l]&p (r) [Eq.(ES)]

Dp' [1',1] D(-' [1',1] Dp' [1',1]

0,0
33
4,4

0,3
3,4

0,4
33
44

33
44

3,4
4,4

0.282095
0.282095
0.282095

0.282095
—0.235 040

0.282095
—0.235 040

0.162 720

0.201 176
0.201 176

0.162 971
0.192 393

22
4,4

22
2,4
4,4

2,4
4,4

4,4

0.564 190
0.564 190

0.369 349
0.387 716
0.046491

0.263 35
—0.321 881

0.269 350

33
4,4

3,4

33
4,4

33

3,4
4,4

0.846284
0.846284

0.455 153

—0.117520
0.244080

—0.452 646
—0.030 176

0.378 710
—0.461 744

1,1

2,2
33
4,4
1,2
1,4
23
3,4
1,3
2.2
2,4
33
4,4
2,4
33
4,4
3,4
4,4

0.846284
0.846284
0.846284
0.846284
0.554023

—0.639 731
—0.564 190

0.133255
0.564 190

—0.369 349
0.290787
0.352 560

—0.453 292
—0.522 670

0.251 470
0.150882

—OA31 181
0.0



26 QUASIBAND CRYSTAL-FIELD METHOD FOR CALCULATING. . . 863

from the spectroscopically observed splitting of the
various defect levels.

C. The simplification of the k-space
summation problem

The calculation of the Green's function in Eq.
(17) involving extensive BZ sampling (cf. Sec.
IV B3} is dramatically simplified by replacing the
continuous representation of k with a discrete rep-
resentation k„, v=1 . . - X~ which corresponds to
the center of the BZ of a supercell. "' ' This is
illustrated below.

k -~=2m.I, (39)

where k, belongs to the IBZ and I is an integer.
We use these points to perform the k-space sum-

mation in the Green's-function matrix elements:

I.et Rz denote the primitive translations vectors
of the host, and let f be an integer. The new
translation vectors Tz fR——

~ generate a superlattice
where each supercell 0 contains Nn f——N„atoms.
Here X denotes the number of atoms in the prim-
itive unit cell. We then construct the reciprocal-
lattice vectors k„of the superlattice, i.e., we choose
those k-points in the irreducible section of the
Brillouin zone (IBZ) that satisfy

(g (r)
~
yj~ (k, r))(yj~ (k, r) ~gs(r))

J k„ e—
ajar (k„)

(40)

Here the weight factors w, are given by
w„=(N„/Nn)m„and m~ is the number of
members in the star of k„. (The factor N /Nn
comes from our assumption that the Bloch func-
tions

~ jk„}are normalized to unity over the prim-
itive unit cell co.) Furthermore, since we are deal-

ing with a truly discrete set of energies I ej. (k„)I,
we can assume that the energy spectrum of 8 does
not coincide with any of the elements in the set

I ez~ (k„)I. We have therefore omitted the "small"
imaginary number in the denominator of the usual
Green's-function spectral representation.

In Table III we show the relation between the
number of k„points and the number Nn of atoms
in the supercell for the fcc structure. It is clear
from this table that a relatively small number of
k„points correspond to large supercells. In this
method, the size of the Hamiltonian matrices in-
volved does not depend on the size of the supercell;
large supercells can be treated by using a reason-
ably small number of k, points. Notice also that
in the present representation all the poles of the
Green's function are real. This is an important ad-

vantage over the Koster-Slater technique. '

The problem of obtaining the energies e;(d = ao )

of gap levels for defects or surfaces at the limit of
an isolated perturbing species has often been han-
dled in supercell calculations by increasing the size
of the supercell to the computer's capability lim-
it. "' A simpler method that involves the calcula-
tion of e;(d) only for some small supercells is,
however, possible. The dependence of such energy
levels on the interdefect separation d results from
the overlap of the exponentially decaying, gap-state

D. The self-consistency problem

The angular-momentum components of the per-
turbation

TABLE III. Relations between the number of k
points used in the IBZ to the size of the supercell and
interdefect separation in a silicon lattice (lattice constant
a = 10.2646 a.u.).

Number of
k points

d
Interdefect

separation (a.u. )

&n
Number of atoms

in supercell

3
4

10
20
35
56
84

14.5
21.8
36.3
50.8
65.3
79.8
94.4

16
54

250
686

1458
2662
4394

wave function with the potential from the nearest
defects. " Hence, one can estimate e;( ao ) from
e;(d) =e;(ao )+ae by using data on e;(d) from
three calculations with finite d values and solving
for a value e;( Oo } that makes the plot
In[@;(d)—e;(oo)] vs d linear. This method gives
an excellent approximation to e;( ce ), as demon-
strated in Secs. VI 0 and VII C. It is a convenient
tool for estimating the residual error in the super-
cell model.
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in the screening potential [Eqs. (35) and (36)] can
be constructed from any given densities pD(r) and

pH(r), as described in Sec. V B2. A self-consistent
solution to the defect Green's function Eqs. (17)
and (18) then requires that the density perturbation
hp( )[b, V(hp( ")],obtained at the mth iteration
from the previous (m —1)th step, equals
gp( +"[b,V(bp( ))]. If the values of b VI"'(

~

r
~

)

at E different radial points are used to construct a
vector

F((uo, . . ., (ML, )=0; L=L','„. (41)

This can be written in a compact form also as
F(p ) =0, where (M denotes a column vector made
of all r; points and l components. Previous ap-
proaches ""' have attempted to solve this equation
by constructing a guess p' +" from a linear mix-
ing of two previous steps, i.e.,

~(m+() Pwm —1)+(1 P) wm)

where P(1 is a mixing parameter. This procedure
is not only not guaranteed to converge, but it also
requires a large number of iterations when it does
converge.

To solve Eq. (41), we use a Newton-Raphson ap-
proach introduced by Bendt and Zunger. In this
approach, Eq. (41) is written (for the mth iteration)
as

IJ' 1 [ ~ VI ("1) ~Vl (rE }I

the self-consistency problem reduces to finding the
zeros of a vector function measuring the departure
from potential self-consistency for all of the
system's I components:

lem at hand for several reasons. First, this method
does not require any new information; it uses only
the quantities needed for the Green's-function cal-
culation. Second, the method "remembers" infor-
mation from all past iterations and is able to use
this information effectively in constructing the best
guess for j(M)(m}]. This property results in better
guesses (i.e., more rapid convergence), than any
method using only the most recent iterations, rnak-

ing it superior to potential mixing ' ' or the ac-
celerations of Ferriera. ' A third advantage is that
this method automatically discounts information
from the distant past and hence it is not confused
by nonlinearity as is the subspace inversion method
advocated by Puley.

E. The mechamcs of the solution

t to the problem conststs of U~
' '(r),

u~,
' '(r), the crystal structures I R~ r~RI ], and the

number of valence electrons in the host and impur-
ity atoms. The functions that need to be chosen
are (i} the host local quasiorbitals fj(r ) in Eq. (26),
and (ii) the radial local orbitals F&I(

~

r
~

) in Eq.
(27).

With this input the QBCF method provides: (i)
the quasiband structure [pjo (k, r);ejq (k)] in Eq.
(25) (details in Appendix B), (ii) the elements

of the Green's-function matrix in Eq. (17a) (details
in Appendix C), and (iii) the potential perturba-
tions AV", b, V"' [Eqs. (35) and (36), details in Ap-
pendix E], and b, V'"' [Eq. (34)] as well as the po-
tential matrix elements

(42)

where J( )=(}F(p ')/(}p™is the Jacobian ma-
trix. The right-hand side of Eq. (42) is then made
zero by setting

and

(gq)(r)
~

b, V"+bV"') g„I (r))
~(m) [J(m)]—)F( ~(m))

At each iteration, p™ and its corresponding
F(p' ') are generated; after a couple of iterations,
an approximation Jo can be constructed for J.
This is done by Jacobian update method, well
known in optimization theory. Thus, the true
Jacobian J is not needed. Notice that approximat-
ing Jo by a constant is equivalent to simple poten-
tial mixing. ' More details on this general self-
consistency method can be found in Ref. 5.

This method is particularly suited for the prob-

in Eqs. (37) and (38), respectively. This step re-
quires the knowledge of an initial guess to
4V"+6V"'. This does not determine the final re-
sult, but only the computational speed with which
it is achieved. The wave functions and energies of
the defected system are obtained from Eq. (17)
through an efficient root-finding algorithm (Ap-
pendix F). ' The wave functions are then nor-
malized (details in Appendix D) and the charge
density pD(r) obtained through Eq. (31). Given
the host charge density of the form in Eq. (32) the
new screening potential is obtained through Eqs.
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(33), (35), and (36). The process is iterated until
the screening perturbations b.V'"(r ) obtained in

successive iterations do not differ by more than a
prescribed tolerance. For convenience, we give in
Appendix G the explicit expressions for the t =4
Kubic harmonics used in this work. The Kubic
harmonics for l =0, 1, 2, and 3 were taken from
Ref. 70.

The convergence parameters of this model are:
(i) the number Mb of hostlike bands Ip,; (k, r)I in
Eq. (25), (ii) the number M, of local Bloch func-
tions {XJ(k,r) I in Eq. (25), (iii) the total number
N of local orbitals {g„~(r)]in Eq. (28) with a max-
imum angular momentum of L",'„, (iv} the highest
angular momentum L',', =2L",'„kept in the den-

sity and potential expansion [Eqs. (31)—(33) and
(35) and (36)], (v) the number f of k„points used
to sample the Green's function [Eq. (40), related to
the size of the supercell, cf. Table III], and (vi) the
admissible self-consistency error

N
0=N ' g ~

V&';"(output) —VI';"(input)
~

.

We will show in the next section that it is possible
to find in the parameter space
{M„Mb,N, L~,'„,L','„,f,aI values that produce a
high precision in the results for deep defect levels
and yet require only a modest computational ef-
fort. With this precision we can assume that the
results reflect, to within a good approximation, the
physical input to the problem and the underlying
density-functional formalism used to describe the
interelectronic interactions.

structure and experiment, e.g., the indirect band

gap is 0.6 eV instead of the experimental value of
1.15 eV, and the I 25,~I », transition is at 2.8
eV, instead of the experimental value of 4.18 eV.
This discrepancy is partially fixed in the calcula-
tion of Ref. 4 by using an imperfect fit of the band
structure to a localized basis: The fitting devia-
tions then raise the band gap to a value of 0.97 eV.
In fact, the semiempirical pseudopotential of Refs.
3 and 35 was designed to reproduce the experimen-
tal results for Si only if an exchange parameter of
n„=1 is used. ' Since the defect energy levels of
primary interest lie in the narrow band gap, it is
felt that a physically accurate description of the
host band gap is essential. Using a =1 in a self-
consistent band-structure calculation with an ener-

gy cut-off value of 12.1 Ry (181 plane waves at I ),
we get an indirect band gap of 1.2 eV and an
overall band structure that is in very good agree-
ment with optical and photoemission data. The
perturbing external potential b, V'"'( r ) [Eq. (9a)] in
the case of an unrelaxed vacancy equals u~, '(—r)
Using this input alone, we calculate the wave func-
tions and energy levels of the vacancy self-con-
sistently. We examine below the convergence
properties of the QBCF method with respect to the
parameters described in Sec. V E. In the simple
case of a silicon vacancy no quasibands are needed
to attain convergence with respect to bands, hence
M, =O in Eq. (25).

A. Convergence with respect to host band
wave functions

VI. THE UNRELAXED SILICON VACANCY

We first illustrate our method for calculating the
electronic properties of deep defects on a simple
case previously treated in the literature ' ' —the
unrelaxed silicon vacancy. We will not focus on
the discussion of the physical properties of the sil-

icon vacancy, since this has been previously done
extensively. '"' Instead, we intend to establish the
convergence properties of the new QBCF method
on a known system, before applying it to new

problems (Sec. VII). We therefore use for the
host-crystal pseudopotential VH"'(r) [Eq. (6}]the
same local pseudopotential used in Refs. 3 and 35.
The screening function used is given by the
density-functional approach [Eq. (8b)]. In Refs. 3,
4, and 35, however, the exchange coefficient used
for e„[p] was set to a„=0.8. This produces a
rather poor agreement between the calculated band

Table IV shows the convergence of the energy of
the t2 gap level with respect to the number Mb of
host-crystal band wave functions {PJ (k, r) I used
in the expansion of Eq. (25). The results are illus-
trated for different sizes of the basic supercell,
ranging from Xo ——54 to X~——2662 atoms per su-

percell. Also shown is the orbital-density localiza-
tion,

R

q; =gq;7= gN~ f ~
Gg(r)

~
r dr,

I I

(44)

measuring the amount of charge enclosed within a
sphere of radius (nearest neighbor) R, =4.44 a.u. in
the level

~
ia). This quantity includes a sum over

all the I components that contribute to this level.
We refer to q; as the orbital-density localization

al
parameter. Notice that q; can not exceed 2.0,
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TABLE IV. Convergence of the energy e, (in eV) and orbital-density localization q; of

Eq. (44) {in electrons) of the silicon vacancy gap level with respect to the number Mb of
host-crystal bands and the number X~ of atoms in a supercell. Also shown is the smallest
distance d between adjacent vacancies in neighboring supercells. In Eq. (44), R, =4.44 a.u.
(the nearest-neighbor distance). The zero of energy is the valence-band maximum. The
basis set consists of 14 radial Coulombic functions with Z =10 for each of the I com-
ponents used (1=1,2, 3,4). The maximum value q can attain equals the occupation of the t2
level, i.e., 2.0.

Interdefect
distance

d (a.u. ) Atoms/cell

Mb ——10 bands
t2

Mb ——21 bands
t2

q;

Mb ——30 bands
t2

q;

21.8
36.3
50.8
65.3
79.8

54
250
686

1458
2662

1.227
0.906
0.817
0.802
0.798

0.48
0.66
0.66
0.66
0.66

1.061
0.715
0.632
0.610
0.604

0.66
0.70
0.70
0.70
0.70

1.025
0.682
0.602
0.581
0.575

0.70
0.70
0.72
0.72
0.72

whereas q and q can not exceed 4.0 and 6.0,
respectively, for fully occupied levels and 2.0 for
the t2 gap level.

For the largest supercell considered, the gap
state is converged to within only 0.22 eV (or 20%
of the band gap) if 10 host bands are used (four
valance bands and six conduction bands). The con-
vergence error reduces to 2.5% when 21 host bands
are used. For 25 bands the error is 1% with
respect to a further increase in the number of
bands. The orbital-density localization parameter

q; converges much faster than the energy. The
upper a

&
resonance at —1.09 eV (Table V) con-

verges to within 0.1 eV of its correct value when

10 Host bands are included; about 20 bands are
needed to reduce the convergence error to below
0.005 eV.

The rather slow convergence with respect to the
number of host bands is clearly reflected in the
spectral decomposition of the t2 gap-state wave
function in terms of host-crystal wave functions.
Shown in Fig. 2 are the expansion coefficients

A;~'(k) of Eq. (13) of g (r) in terms of the Bloch
states P& (k, r ). The normalization condition is
such that

IBZ

J 71

TABLE V. Convergence of the self-consistent energy

e, (in eV) and orbital-density localization parameter q;1

of Eq. (44) (in electrons) of the silicon vacancy upper a ~

resonance with respect to the number Mb of host-crystal
bands. The zero of energy is the valence-band max-
imum. The basis set consists of 14 radial Coulombic
functions with Z*=10 for each of the l components
(l=0,3,4). A supercell of 250 atoms is used. A, =4.44
a.u. {the nearest-neighbor distance) is used in Eq. (44).
The maximum value that q can attain equals the occu-
pation number, i.e., 2.0.

where d is the number of vectors in the star of
k . The spectral decomposition is given at the I
point, as well as for three other points in the
(0,0,1), (0,1,1), and (1,1,1) directions. Clearly, an
acceptor state such as the vacancy t2 level is com-
posed not only from valence-band states, but con-
tains sizable contributions also from the conduc-
tion bands. In fact, even high-energy conduction-
band states at -25 eV above the valence-band
maximum have sufficient t2 character to couple
into the t2 gap state. More specifically, summing
the contributions over the Brillouin zone

Mb ——10 bands Mb ——21 bands Mb ——30 bands P '= gd, [A (k,)~.
71„

1

—0,985

a&
qf &a

l
—1.086

a& a&
qc &a

0.82 —1.090 0.82

we find that this generalized Mulliken charge is
0.004, 0.0425, 0.266, and 0.490 for the four valence
bands, respectively (i.e., 80% of the t2 wave func-
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k,, ='0.66(0,0,1)
d, ,=6

I t

k, , =0.3$(1,1,1)
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CV:
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o

l
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IK, , =(0,0,0)
d, =1

k, , =066{0,1,1)
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w
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.I.
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L .. l
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BAND INDEX j

l I

10 15 20

FIG. 2. Spectral decomposition of the t2 gap-state wave function f; (r) of the silicon vacancy in terms of host-
t2

crystal Bloch wave functions PJ {k,r). The coefficients are given by P; (r)= g.g„A;J (k„)PJ (k„,r) and are nor-k IJ

malized such that g.g@„d„~A ~. {k„)
~

=1. Here d„ is the degeneracy factor of the star of k„k„is given in unitsj k

of 2m. /a.

tions are derived from the valence band), whereas
the conduction bands contribute a Mulliken charge
of 20%. This contribution, however, couples effec-
tively about 20 conduction bands.

B. Convergence with respect to local orbitals Xe Kr~/2L1+(1/2)(g&2—)k (45)

We next examine the convergence of the defect
energies and wave functions wtih respect to the
number (N) and type of the local orbitals Ig&l (r) j
used in the expansion of Eq. (28). We demonstrate
the results for two types of local orbitals. The har-
monic oscillator (HO) basis has a radial part given
by

where k= —,(p —I) are integers, and Lf(x) are the
associated Laguerre polynomials. The nonlinear
parameter is given by E, and I (p) denotes the
gamma function. The Coulomb orbitals have a ra-

dial part given by the orthogonal basis [cf. A func-
tion, Ref. 62(b)]:
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1/2

F t(l r ~)= a ' (ar)
2p(@+1)!

ar 121—&I + & (ar ) (46)

where a=2Z* jp and Z* is the effective nuclear
charge.

The two types of basis sets have very different
spatial properties (e.g. , casp behavior and localiza-
tion), yet Fig. 3 shows that the energy levels of the
t2 and a~ vacancy levels obtained with these basis
functions agree to within 0.01 eV. Notice that we
use the same number N of radial orbitals for each
of the angular-momentum components of the wave
function (I=1,2, 3,4 for tz and 1=0,3, 4 for a&).
This basis has therefore an enormous radial varia-
tional flexibility: In multicenter expansions used
previously, ' more typically only one to three dif-
ferent radial functions are allowed for each atomic
angular orbital. Figure 3 shows that for %=6—8

a convergence of better than 0.1 eV is obtained.
Optimization of K or Z* in Eqs. (45) and (46),
respectively, allows us to reduce this number to
4—5. Similary, even a small number of chemically
and physically suitable orbitals [e.g., G;t(r) in Eq.
(29) or quantum-defect orbitals ] can be chosen.

However, in the present work we will not describe
the details of such optimizations since the compu-
tational efficiency of the present method allows
one to use larger E values with only moderate ex-
tra cost.

Since the defect wave functions are obtained in
the present method analytically, we are able to pro-
vide the final self-consistent wave function com-
pactly. Table VI gives the expansion coefficients

I C„t;l in Eq. (28) for the a = t2 and a =a
&

vacan-

cy states, in terms of the HO basis orbitals. These
analytic orbitals may be used to calculate photoion-
ization cross sections, position annihilation pro-
files, etc.

C. Convergence with respect to angular momenta

Figures 4 and 5 depict the decomposition of the
wave functions of the t2 gap state and the upper a ~

resonance in terms of the radial I components

6;I(
l
r

l
) of Eq. (29). While the lowest two al-

lowed 1 components (1= 1,2 for t2 and 1=0,3 for
a ~) are significant, an overall attenuation of the
amplitude of higher 1 components is apparent.
This is illustrated in Figs. 6 and 7 that show the
wave functions of these two states, plotted in the
+ (111)crystal directions and calculated with

1.5

CBM
)I
LU
O
LU~ 1.0—

U
LU
LL
LLI

C3

LL
O 0.5-
G
CC
LU

LU

t, Gap State~

I

(a)

Orbitals:
e ~ HOP = 0.25

& Coulomb Z' =10.0
Coulomb Z"" =12.5

~ -0.5—
LU
O
LLI

I—
U
LLI
LL —1.0—
LU
O
LL
O
0-
(3
K
Z —1.5—LU

LU

(b)
a, Resonance

Orbitals:
~ ~ HOP = 0.25

~ Coulomb Z'' = 10.0

I I I I

1 5 10 15
N: NUMBER OF LOCAL ORBITALS

I I

5 10 15
N: NUMBER OF LOCAL ORBITALS

FIG. 3. Convergence of the energies of the Si vacancy t2 gap state (a) and the upper a
&

resonance (b) with respect to
the number N and type of local orbitals used in the wave-function expansion [Eqs. (27) and (28)]. The zero of energy is
at the valence-band maximum; 21 host bands are used in the expansion of Eq. (13). N local orbitals are used for each
of the l components (l =1,2, 3,4 for the t2 state and l =0,3,4 for the a] state). The total number of orbitals is therefore

Q, N~{21 +1) (i.e., for N = 10 this inc1udes 170 orbitals for a& and 240 orbitals for t2). A supercell of 686 and 250
atoms, respectively, is used for (a) and {b). The harmonic oscillator (HO) orbitals [Eq. (45)] have an exponent E =0.25,
while the two sets of Coulomb orbitals [Eq. (46)] have exponents of Z"=10 and Z*=12.5
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TABLE VI. Expansion coefficients [Eq. (28)] for the self-consistent wave functions of the upper a
&

resonance and

the t2 gap state for the silicon vacancy in terms of harmonic oscillator basis functions [Eq. (45)] with K =0.25. This
expansion is valid in the domain of EV(r) only, i.e., r (5 a.u. The numbers in parentheses are the exponents for the
corresponding expansion coefficient [e.g., —0.4544 ( —2) means —0.4544 X 10 ]. The expansion coefficients are nor-
malized to unity, i.e., Q„QI ~

C;„I
~

=1, and the "normal" factors at the bottom of the table are the factors with

which the expansion coefficients have to be multiplied to give the normalization over all space.

1=4l =0

Expansion coefficients for the
upper a] resonance

l=3

Expansion coefficients for the
t2 gap state

l=2 l=4

0 0.7278 —0.4544 (—2)
1 —0.1335 0.3587
2 —0.4181 —0.7631 (—1)
3 0.2336 —0.6184 (—1)
4 —0.6776 (—2) 0.3479 (—1)
5 —0.1109 0.2234 (—1)
6 —0.2865 (—2) —0.1056 (—1)
7 0.3080 {—1) —0.1370 (—1)
8 —0.4130 (—2) —0.4074 (—2)
9 —0.1890 {—1) 0.4191 (—3)

10 —0.5135 (—2) —0.3820 (—3)
11 0.6898 (—2) —0.1275 (—2)

0.1262
—0.2241

0.2676 (—1)
0.3723 (—1)

—0.1813 (—1)
—0.1778 (—1)

0.6760 (—3)
0.5491 {—2)
0.2031 (—2)
0.4076 (—3)
0.1413 ) —2)
0.1935 (—2)

0.6435
0.7900 (—1)

—0.3980
0.1563
0.6815 (—1)

—0.7623 ( —1)
—0.3011 ( —1)

0.2221 (—1)
0.1155 (—1)

—0.1013 (—1)
—0.1012 (—1)

0.8833 {—3)

0.3699
0.2124

—0.2720
0.7553 {—1)
0.5951 (—1)

—0.3934 (—1)
—0.2573 (—1)

0.1029 {—1)
0.1045 (—1)

—0.3278 (—2)
—0.6293 (—2)
—0.1647 (—3)

—0.1220 (—1)
—0.2124

0.9028 ( —1)
0.2270 (—1)

—0.3434 (—1)
—0.7878 (—2)

0.1307 ( —1)
0.7947 (—2)

—0.5746 (—3)
—0.1511 (—2)

0.8733 (—3)
0.1527 (—2)

0.9778 ( —1)
—0.2246

0.3823 ( —2)
0.3629 {—1)

—0.7637 {—2)
—0.1587 ( —1)
—0.2729 ( —2)

0.5136 {—2)

Normal factor 0.7883 Normal factor 0.7326

various truncation of the angular-momentum sum
in Eq. (29). Clearly, retaining only the lowest I
component introduces significant errors. In partic-
ular, the wave function of the a& resonance is sym-
metric with respect to reflection at the origin
(Fig. 6) if only the l =0 component is retained,
whereas the accurate wave function (including
l =0,3,4, . . .) has a higher amplitude in the bond-

ing (111) region than in the antibonding —(111)

region. However, in the central-cell region the con-
tributions of the higher l components decreases
rapidly as l increases.

Notice that both these dangling-bond wave func-
tions are nodeless in the central-cell region (i.e.,
within a radius of the nearest-neighbor distance)
and have their maximum amplitude at 6S% and
S7% of the distance to the nearest neighbor for the
t2 and a& states, respectively. Yet, only 36%%uo and
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) [Eq. (29)] of
the Si vacancy upper a] resonance wave function.
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FIG. 6. Wave function of the t2 gap state of a silicon
vacancy, shown in the (111)and —(111)directions.
The origin is at the vacancy site (open circle). The
nearest-neighbor silicon atom is indicated as a full circle.
Shown are the calculated wave functions using different
sizes of truncated l series in Eq. (28).
l=1,2, 3,4. ———:l=1,2,3. ——:l =1,2.
l =1. 21 host bands, 14 harmonic oscillator orbitals
with X=0.25, and a supercell of 686 atoms are used.

41% of the orbital densities of these wave func-
tions are enclosed in the central cell (c.f. Tables IV
and V), whereas the remaining 64% of the tz wave
function and 59% of the a

& charge is extended
beyond the first-nearest-neighbor shell. As indicat-
ed previously, ' this behavior highlights the diffi-
culty to obtain reliable solutions to the deep defect
problem using small clusters, small supercells, a
simple, ligand-field model, ' ' or a defect mole-
cule model.

The relative contributions of the nonspherical
components are further reduced in taking the sum
of squares of these wave functions (i.e., in obtain-

ing pD}. For example, the contribution of the
a&

G3 (r) term in the wave function to the l =0 com-

ponent of pD(r) is (1/4')[G3'(r)]; not only is the
0)

square of a small G3 (r) even smaller, but also the
projection of it onto the 1 =0 density (resulting in
the factor 1/V 4m. ) reduces it further (e.g., in the
example of Fig. 5, the total reduction factor is 60).
Hence the contribution of high-l components in the
wave functions to the low-I components of the den-

sity is small. Furthermore, in calculating the
change in the charge density bp(r)=pz(r)
—p~(r), the contributions of the high-1 com-
ponents of the wave functions to the high-I com-
ponents of bp(r) is canceled effectively since the

—0.04—
~direction —&111& &111&direction~

-o.o6 I I ' I I
—6.0 -4.0 —2.0 0.0 2.0 4.0 6.0 8.0

DISTANCE (a.u. }
FIG. 7. Wave function of the a~ resonance at —1.1

eV of a silicon vacancy, plotted in the (111)and
—(111)directions. Origin at the vacancy site (open
circle). The nearest-neighbor silicon atom is indicated

by the full circle. Shown are the calculated wave func-
tions using different sizes of truncated l series in Eq.
(28). : 1=0,3,4. ———:l=0, 3. ——:1=0.
21 host bands, 14 harmonic oscillator orbitals with

E=0.25, and a supercell of 250 atoms are used. Notice
that in the l =0 approximation the wave function is

symmetric around the origin whereas the accurate wave

function (1=0,3,4. . . ) is not.

host crystal and the defected crystal have similar
high-I components in the central-cell region. Fig-
ure 8 shows the l components Apt(r) of the self-
consistent density perturbation. As expected from
our preceding discussion, its nonspherical com-
ponents are small. We also present in this figure
two different calculations of hpt o(r): one using
an harmonic oscillator basis set [Eq. (45)] for the
wave-function expansion (full line in Fig. 8) and
one using Coulombic basis orbitals (dashed line in

Fig. 8) [Eq. (46)]. The very close agreement in

bpo(r) obtained from these very different basis sets
confirms the excellent convergence properties of
the model. Figure 9 shows the two lowest l com-
ponents b, Vt(r) of the total potential perturbation.
Although the 1 =3 component cannot be neglected,
higher components are negligible.

The fact that the perturbations b.V(r) and hp(r)
are nearly spherical does not imply that a spherical
atomiclike model for the defect problem is ade-

quate, since the defect wave functions correspond
to the Hamiltonian ——,V' + V~(r)+EV(r), not to
——,V' +EV(r). This is illustrated in Fig. 10 that
shows the l components of the host screening
VH'(r), the host pseudopotential VH"'(r) (both are
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eludes the lowest nonspherical components even
though b, V(r) and bp(r) are nearly spherically
symmetric. The fact that only the first few I com-
ponents of the wave function need to be retained in
a Green's-function approach is illustrated in Table
VII. It illustrates the convergence of the energies
and orbital-density localization parameters of the
t2 and a ~ vacancy levels with respect to the num-
ber of angular-momentum components L ",'„ in-
cluded in the wave-function expansion of Eq. (28).
If one restricts the wave-function representation to
the single lowest l component (i.e., s orbitals for
the a

&
states and p orbitals for the t2 state), the re-

sulting errors in the corresponding energy levels
are as high as 10% and 20% of the band gap,
respectively. Including, however, the next highest I
component (f orbitals for a& and d orbitals for tz)
reduces these errors to 2%.

The results presented in this section highlight
the physical basis of our generalized crystal-field
model: %hile the potentials of the host crystal and
the defect system may include high nonspherical
components due to the multicentered nature of
these systems, the potential perturbation EV(r) is
nearly spherically symmetric. ' Furthermore, the
one-electron energy spectrum is determined only by
the first few l components of the wave functions in
the central-cell region. These conclusions, estab-
lished through modern and precise calculations,
highlight the ingenuity of Bethe s crystal-field
model, which dates to 1929.

D. Convergence with respect to supercell size

The convergence of our results with respect to
the number of k points used to construct the
Green's function in Eq. (17c) is illustrated in Table
IV. Since in the present method the number of k
points is uniquely related to the number of atoms

X~ in a supercell, we show only the latter in Table
IV (4, 10, 20, 35, and 56 k points yield Nn values
of 54, 250, 686, 1458, and 2662 atoms per super-
cell, respectively). Clearly, even a modestly small
number of k points already corresponds to very
large supercells. Using a supercell of 54 atoms
only, one obtains a t2 defect energy level that is
0.45 eV too high (i.e., 40% of the band gap). The
error drops to 10% for a supercell containing 250
atoms and to 2% and 0.5%, respectively, for a cell
containing 686 and 1458 atoms.

As suggested in Sec. V 0, it is possible to esti-
mate how well the gap level is converged with
respect to X~ by using only data from few calcula-
tions on small supercells. For example, taking
from Table IV the values e~ ——1.025 eV, e2 ——0.682
eV, and e3 ——0.602 eV, corresponding to interdefect
separations of d~ ——21.8 a.u. , d2 ——36.3 a.u. , and

d3 ——50.8 a.u., repsectively, one can solve for the
constant e( ac ) that makes 1n[e(d) —e( ac )] vs d
linear. This immediately yields (in eV) for the gap
level

e(d)=0 575+3 7e

TABLE VII. Errors in the a& and t2 orbital energies (in eV) and orbital-density localiza-
tion parameters (electrons) resulting from using a truncated angular-momentum series in the
wave-function expansion [Eq. (28)]. 250 and 686 atoms per supercell are used for the a

&
aud

t2 states, respectively. 14 Coulomb local orbitals with Z*=10 are used for each l com-
ponent. 30 host-crystal bands are used in the expansion of Eq. (13).

Angular momenta
retained

Error in
orbital energy

(eV)

Error in
localization
parameter

(e)

Using l=0
Using l =0,3
Using l =0,3,4

0.103
0.027

& 0.01

a& resonance
0.04
0.00
0.00

Using
Using
Using
Using

l=1
l =1,2
l=1,2, 3
l=1,2, 3,4

0.200
—0.020

0.005
& 0.000

t2 gap state
0.304
0.020
0.006
0.000
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This describes the three energy levels within a re-
markable accuracy of 0.3% and correctly predicts
the large supercell limit of a=0.575 eV (c.f. Table
IV). An accuracy of 0.1 eV (-10% of the band

gap) in the energy level hence requires a calcula-
tion with a supercell with d =37 a.u. (-250
atoms}, whereas an accuracy of 0.01 eV requires
d =61 a.u. (-1200 atoms). This highlights the ad-
vantage of the present supercell method relative to
direct diagonalization supercell approaches
which are presently limited to -50 atoms.

In practice, we first achieve self-consistency in
the potential perturbation 6V( r ) for a small super-
cell and then use the results for a few additional
self-consistency iterations with a larger cell size.
This saves considerable computation time. Table
IV also illustrates the variation in the defect energy
level with the concentration of the (periodic) va-

cancies in the solid. At a very high concentration
of 1.8% vacancies the tz level at the zone center
appears just 0.2 eV below the conduction-band
minimum (CBM}, while as the concentration de-

creases to 0.4%, 0.14%%uo, and 0.04%, the level

drops to 0.53, 0.61 and finally to 0.635 eV, respec-
tively, from the CBM.

E. Convergence in the self-consistency iterations

The measure used for the quality of self-consis-
tency is

K
',-'= —g [

aV,'--"(;)—aV,'-'(., }[,
EC,.

(47}

ab initio self-consistent results. The calculation of
the unrelaxed silicon vacancy reported here was
done with the same pseudopotential used in Ref. 3
(which differs somewhat from that used in Ref. 4).
As discussed in Sec. VI, we use, however, an ex-

change coefficient of u =1 to obtain a physically
correct host-crystal band structure, whereas in
Refs. 3 and 4 an exchange coefficient of a„=0.8
has been used. This effect can be estimated. We
show in Fig. 11 the I =0 component of our final
self-consistent perturbation potential, together with
that obtained in Ref. 3, using a completely in-

dependent computational technique, but employing
the same'physical inputs (pseudopotential and lat-
tice constant). We have scaled the exchange con-
tribution calculated in Ref. 3 by 1/0. 8 to take into
account in an approximate manner the different
exchange parameters used (this, however, makes
little difference). The agreement between the two
calculations is excellent, not only in the bond re-

gion (+0.3% deviation} but also near the origin
(1.5% difference). The agreement is far better
than that obtained by Jaros, Rodriguez, and
Brand in which the self-consistency procedure
was approximated by a first-order perturbation
correction using spherical potentials and a two-

atom supercell.
The calculations of Refs. 3 and 4 do not report

convergence tests with respect to the number of
host bands and type and number of local orbitals.
It is difficult to assess this aspect of their pre-
cision. Taken at face value, the defect energy lev-

els of Ref. 3 (0.70 and —1.1 eV for the upper t2

where I and m —1 refer to iteration numbers. If
one uses the conventional mixing of input and out-

put ' ' and a starting screened atomic potential,
about 15 iterations are required to bring O.

o
' to 10

mRy. However, using the present Newton-

Raphson method with Jacobian updates it takes
two to three iterations for the Jacobian to "learn"
the sensitivity of the output potential to given
changes in the input; each of the subsequent two
iterations lowers O.

I
'

by an order of magnitude.
Our final o.o

' after five iterations is 0.9 mRy.
The largest deviation b, V~' o(r) —5V~ 0 "(r) is
1.4 mRy at r =0.36 a.u. This is a better conver-
gence than that attained in previous studies.

F. Comparison of results with previous studies

In this section we briefly compare our results for
the unrelaxed silicon vacancy with previous

20-

0

I——i0-
LLI

0 —20-
CL

—30

l
+ +
I

+
l +~
I

Present
+ + Ref. 3

-40—
I I I I I

0.0 0.1 0.2 0,3 0.4 0.5
DISTANCE (a)

FIG. 11. Comparison of the l =0 component of the
present self-consistent perturbation potential ( )

with the calculation of Ref. 3 (+ + +).
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and a
&

levels) agree closely with the present results
(0.575 and —1.09 eV, respectively). The deep a~
level obtained in Ref. 3 at —8.4 eV appears in the
present calculation as a fairly broad a ~ resonance
at —8.0+0.3 eV. No line plots of the defect wave
functions are given in Refs. 3 and 4; it is difficult
to use their contour plots for a quantitative com-
parison with better than 10% precision. We find
that the maximum amplitude in their t2 and upper
a~ wave function occur at 53% and 68% of the
distance to the nearest-neighbor atom in the (111)
direction, while our results yield 57% and 65%,
respectively. We conclude that the two sets of re-
sults are in very good agreement.

tabulated numerical form, convenient analytical
fits to these atomic pseudopotentials are given in
Ref. 73. Note that due to the absence of I. =2
electrons of the core of Cu, our I. =2 pseudopoten-
tial and wave function equal the all-electron quan-
tities, respectively. We use the exchange parameter
a„=1 as we used in Sec. VI. Our present calcula-
tion is performed consistently on the level of the
Kohn-Sham density-functional formalism. Exten-
tion to the level of the self-interaction-corrected
density-functional formalism will be discussed in
a future publication. The energies and orbital lo-
calization parameters [c.f. Eq. (44)] of the major
defect levels introduced by a substitutional Cu im-

purity are summarized in Table VIII.

VII. SUBSTITUTIONAL COPPER IN SILICON

In this section we present the first calculation of
a transition-atom impurity (i.e., retaining its s-p as
well as d orbitals) in an extended (periodic) semi-
conductor. In Secs. VII A —VII 0 we illustrate
how the basic four ideas underlying the QBCF
method work. This discussion parallels the
description of the four basic problems encountered
in the description of deep defects in solids (Secs.
IV B 1 —IV 84), as weH as the discussion in Secs.
V A —V D of our present resolution of these diffi-
culties. Finally, in Sec. VIIE we discuss the physi-
cal properties of the substitutional Cu impurity

In the present application to Si:Cu we use the
same silicon host band structure and pseudopoten-
tial V~'(r) as we used for the calculation of the
vacancy. For the Cu atom, we use the first-
principles density-functional nonlocal pseudopoten-
tial v~, '(r) derived in Ref. 8. Although used in a

A. Quasibands for Si:Cu

Since Cu is likely to produce defect levels associ-
ated with its very localized 3d orbital, a quasiband
representation must be used to produce a con-
verged description of the defect wave functions
with respect to bands [Eq. (24)]. We include

M, =5guasiband wave functions for each wave
vector k (corresponding to the dimensionalities of
the e+tq representations). The local orbital f~(r)
in Eq. (26) is chosen as the (numerical) 3d orbital
of the Cu atom, obtained in a self-consistent local-
density calculation for the ground state of the Cu
atom with o;„=1. The calculated quasiband struc-
ture eo (k) of Si:Cu is shown in Fig. 12. The
bands below 2 Ry are those of pure Si (to within
10 Ry), as obtained in self-consistent local pseu-
dopotential calculations. Their wave functions

[P~ (k, r ) J are grossly insufficient to produce a

TABLE VIII. Energy levels (with respect to the valence-band maximum) and orbital-density localization parameters

q;I of Eq. (44) for the major defect states associated with a substitutional Cu impurity in silicon. Only states with local-
ization parameters greater than -0.10e are shown. Resonances do not have, in general, a sharply defined energy and
localization parameter. For the broad t2 resonance we quote, therefore, the total localization parameter, summed over
the resonance. Results are given for a 250 atom supercell, using an exchange parameter n„=1 and 8,=4.44 a.u.
(nearest-neighbor sphere radius) in Eq. (44). The maximum values that q; can attain equals the occupation number,
i.e., 3.0, 2.0, 4.0, and 6.0 for the t2 gap state and a~, e, and t2 resonances, respectively.

Symmetry and

type
Energy

(eV)
Orbital localization parameters (e)

l=1 l=2 l=3 q; (e)

t2 gap state
al(1) resonance
al(2) resonance
a~(3) resonance
e resonance
t2 resonance

0.580
—1.7
—3.8
—8.2
—5.15

4.6 to 5.7

0.0
0.66
0.214
0.110
0.0

0.88
0.0
0.0
0.0
0.0

0.240
0.0
0.0
0.0
3.752

0.016
0.002
0.0092
0.02
0.0

0.0075
0.0002
0.0012
0.0024
0.0008

1.143
0.662
0.224
0.132
3.755
5.26
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FIG. 12. Quasiband structure for substitutional Cu in
silicon. All the band-structure bands below 2 Ry are in-

cluded. Five local quasibands, constructed from the nu-

merical ground-state Cu 3d atomic orbitals are used.

iaA, iak,=aBS +a JQB (48)

For the e resonance we find aLQB
——0.72 and

aBs ——0.28, even when as many as 32 BS bands are
used. Hence, on average, each band-structure band
contributes less than 1% to the normalization,
whereas each local quasiband contributes about
15%. It is estimated that without the local quasi-

bands, several thousand silicon band wave func-
tions will be needed to adequately represent this lo-
calized level. This is so because the energy denom-
inator in the Green's function causes each of the
high-energy conduction bands to have a small ef-
fect. The t2 gap state, on the other hand, can be
adequately represented by 25 —30 band-structure
bands, similar to the situation for the silicon va-

cancy. This illustrates the extent of the added dif-
ficulty in treating a d-like versus a simpler sp-like
defect.

B. The one-center crystal-field
representation for Si:Cu

cients given in Eq. (30): One can partition the nor-
malization of the defect wave function into a con-
tribution from the band-structure (BS) wave func-
tions, and a contribution from the local quasibands
(LQB):

I ~

pa~, il( ~)
~

2d ~

Mb IBZ

iAPj (k, )
i d,

j=& k,
Ma IBZ

iA; (k, )
i

d„
j=& k,

converged description of the localized defect wave
functions via Eq. (13). The five upper bands in
Fig. 12 ("localized quasibands") correspond to hy-
bridized solutions between I gi~ (k, r ) I and

IXJ( k, r ) ) in Eq. (25). They are the major con-
tributors to the description of the defect wave
functions in terms of bands. This is demonstrated
in Fig. 13 which shows the expansion coefficients

A;J (k) of Eq. (30) for
~

ai ) =e resonance at four
k points. Shown are the contributions of the first
Ms ——8 hostlike bands (open circles), as well as the
contributions of the M, =5 local quasibands (solid
circles). It is clear that the inclusion of the first
four valence and four conduction bands of silicon
is far from sufficient to describe the e resonance of
Cu in silicon. A simple quantitative measure to
that is provided by the proportion of the coeffi-

Figure 14(a) shows the spherical component of
the self-consistent perturbation potential b, V( r ) for
the pseudopotential components I.=0, 1, and 2
[c.f. (9a)]. Compared with the same quantity for
the silicon vacancy (Fig. 9, where an I.=0 local
pseudopotential is used), it can be seen that Cu
constitutes a smaller repulsive perturbation relative
to the vacancy. Furthermore, at smaller distances,
the I. =2 component of b, VD (r) becomes strongly
attractive (approaching the origin as 2Z/r) since-
no pseudopotential cancellation takes place for 3d
orbitals. Figure 14(b) shows the r-multiplied
angular-momentum components of the self-
consistent screening perturbation b, V~'"(r). The
large-r limit of the l =0 component equals

2(Zc„—Zs; ) =2(11—4)= 14 .



876 ULF LINDEFELT AND ALEX ZUNGER 26

0.04

0.03—

I I I I ( I I I I I I I

kv ——0.66 (0,0,1)
dv=6

I I I I I I I I I I I I I

kv ——0.$3 (1,1,1)
dv ——8

0.02—

0.01

., I I I I I

0.04

I I I I I I I I I

kv = (0)0)0)
dv=1

I I I I I I I I I I I I

kv = 0.66 (0,1,1)
Clv 12

0.03—

0.02

0.01

pp () A 6 A A h A Aqi I ~ ) I I

1 2 3 4 5 6 7 8 1 2 3 4 5 1 2 3 4 5 6 7 8 1 2 3 4 5
Mb Ma BAND INDEX j Mb Ma

FIG. 13. Spectral decomposition of the wave function of the e resonance in Si:Cu in terms of contributions of the
eight lowest hostlike bands (open circles) and the five local quasibands (full symbols). d„denotes the degeneracy factor
of the star of k . k„ is given in units of 2~/a.

The striking result of this figure is that the non-

spherical (l =3,4) components are attenuated by
more than a factor 100 relative to the spherical
(1 =0) component. This substantiates dramatically
the basic physical picture underlying the one-center
crystal-field approach (cf. Sec. VB 3)—that the ex-
pansion of the perturbation in terms of the systems
angular momenta l (not the atomic angular states
L) converges very rapidly. A similar result is ap-
parent for the charge-density perturbation (Fig.
15): The spherical component [Fig. 15(a)j of
bpI(r) is 300—400 larger than the nonspherical
components [Fig. 15(b); note change in scale] over
the entire central-cell region. As discussed in Sec.
VI C, however, this fact does not imply that a
spherical model can be used successfully to de-
scribe the electronic structure of such systems.
The individua/ wave functions may include non-
negligible, nonspherical contributions from the
lowest few I values. This is illustrated in Figs. 16
and 17 that show the radial l components G;~(

~

r
~

)

[Eq. (29)] for the a& and e resonances as well as
the t2 gap state. Clearly, the a& resonances can
not be characterized as "s states, " but rather as sf-
hybrids, and the t2 gap state is likewise not a

"p state" but a p-d hybrid. The e resonance, on the
other hand, is essentially a pure d state; its l =2
component is very similar to the Cu 3d orbital. It
is this fact that makes its description in terms of
extended hostlike wave functions (Sec. VII A) vir-
tually impossible. Notice that while both the de-
fect and the host wave functions have non-
negligible, nonspherical components, they interfere
destructively in a way that produces an essentially
spherical screening perturbation [Fig. 14(b)j. Fur-
ther, as was the case in the vacancy calculation,
the rapid attenuation of the contributions of the
high-l components to the wave-function amplitude
in the central-cell region causes the one-electron
energy spectra to be determined almost exclusively
by l =0, 1, and 3. It is this recognition that made
the Bethe —Van Vleck crystal-field idea so fruitful.

The structure of the present crystal-field repre-
sentation of the defect wave functions [Eqs. (27)
and (29)] provides a simple means for constructing
variationally efficient basis functions. One can use
the radial components Gg(

~

r
~

) (Figs. 16 and 17)
obtained in an early self-consistency iteration as
the basis orbital f~(r ) [Eq. (26)] for future itera-
tions. Such an iterative update of the basis is not
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possible in multicentered expansions that do not
employ an l representation.

C. Supercells for Si:Cu

The size Nn of the supercell has been varied to
examine its effects on the calculated electronic
structure. For the t2 gap state, we find that super-
cells of size Nn ——54, 250, 686, and 1458 atoms

produce energy levels of 0.990, 0.577, 0.490, and

0.466 eV, respectively, with wave-function localiza-
tion parameters of 1.23, 1.14, 1.14, and 1.14 elec-

trons, respectively. Fitting the first three energy
values to e(d) =e( co )+ae yields e( oo ) =0.465
eV, a =5.14 eV, and u=0. 105 a.u. ', with a pre-
cision of a fraction of a percentage. The calcula-
tion with Nn 1458 atoms co—n—firms the prediction
for the energy value e( co }=0.465+0.001 eV at the
limit of an isolated defect. Hence, a precision of
0.1 eV in the determination of the energy of this

gap state requires a supercell with an interdefect
separation of d =37.5 a.u. , while a precision of
0.01 eV requires d=60 a.u. At present, a calcula-
tion corresponding to a precision of 0.1 eV (i.e.,
few hundreds of atoms per supercell} cannot be
performed with the conventional direct-
diagonalization supercell techniques using
state-of-the-art methods of electronic structure.
The present method can handle 200—2000 atoms

per unit cell quite easily.
Since resonance states do not correspond, in gen-

eral, to a sharp energy value, it is more difficult to
assess accurately their variations with the supercell
size. We find for the sharp e resonance that a cal-
culation with 250 and 686 atoms per supercell pro-
duces energy values of —5. 150 and —5. 148 eV,
respectively, indicating excellent convergence. For
the broader t2 resonance, we find three main peaks
in the local density of states. The center and

width of this resonance are —5.2+0.5, —5.15
+0.55, and —5.29+0.3 eV for supercells with 54,
250, and 686 atoms, respectively. Our final values

for the tz gap level, e and tq resonances are 0.465,
—5. 15, and —5.3+0.3 eV, respectively. We find

that the wave functions of these three levels vary

by less than 1% over the range r & 7.5 a.u. if the
supercell size is increased from 250 to 686 atoms.

D. Self-consistency for Si:Cu

In the absence of any previous calculation for a
Cu impurity in an extended host crystal, one must
guess the initial perturbation potential b, V( r) to be
used in the self-consistency iterations. The sim-

plest approximation for b, V(r } in Eq. (9a) can be
taken from atomic physics, i.e,

g VA( ) (
(L,Cu) (Si) }+(

scr scr
}PS PS Cu SI (49}

where vp', ' ' are atomic pseudopotentials and v&' is
the self-consistent screening of the free atom P. In
Fig. 18 we show the difference between the output
potential perturbation b, V'"'(r) and the input atom-
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ic guess b, V"(r) producing it. Also shown in this
figure is the corresponding difference between
b, V'"'(r} and b, V"(r) for the final self-consistency
iteration. It is seen that the simple atomistic guess
produces not only very large errors (-+200 mRy),
but also a nontrivial structure in hV'"'(r) b, V"(r)—
that could not have been guessed a priori. Even
much larger errors are obtained with lighter 3d im-
purities. This structure indicates an attenuation of
the screening in both the 3d and the bond center
region and a screening enhancement near the ori-
gin. We note that by using in Eq. (49}a bulk
screening instead of u~' produces even larger er-
rors. The self-consistent result (dotted line in Fig.
18) shows, however, small (-5 mRy), uniform er-
rors.

This is achieved in the present calculation in
seven iterations, using the Newton-Raphson Jacobi-
an update method. We find that it takes two to
three initial iterations for the Jacobian to "learn"
the iteration path. Using the standard mixing ' '

of b, Vm with b, V'"', we need at least 30—40 itera-
tions. The difficulty in achieving self-consistency
in the screening for a transition-atom impurity can
be appreciated from Fig. 15: A small error in the
input potential can produce a small adjustment in
the charge-density redistribution; even if this
change occurs in the region where hp(r ) is as
small as 1% from its average value (r & 1.5 a.u.), it
results in very large changes in the output poten-
tiaI.

E. A simple chemical picture for Si:Cu

In this section we describe the salient features of
the electronic structure of a substitutional Cu im-

-3pp l l l I l l l

0 1 2 3 4 5 6 7
DISTANCE (a.u. )

FIG. 18. Difference between the spherical component
of the output and input perturbation potentials in Si:Cu
using an atomic guess for the input [Eq. (49), full line]
and a self-consistent perturbation potential (dotted line).

purity in silicon, obtained in the present calcula-
tion. A comparison with experiment and the dis-
cussion of the chemical trends are postponed to a
future publication that will discuss the results for
all 3d transition-atom impurities in silicon.

In discussing the bonding mechanisms in the
system, it is useful to consider an electron popula-
tion analysis of the wave functions. The one-
center expansion technique suggests a simple and
physically appealing population analysis. The
charge contained within the central-cell region in
the I component of all occupied representations of
type o. is

Qt
——gN~ J i

6;t(r)
i

r dr, (50)

where the occupation number X; includes the rep-
resentation degeneracy factor. The total charge
below the Fermi energy for each I component is

QI = g Ql orbital occupation, (51)

whereas the total charge for a given representation
1s

Q'"= g Qt = g Q total charge .
l a

(53)

Each of these charges contains, for the defected
systems, both the contributions of the four ligands
and the central impurity atom. The corresponding
charges for the vacancy contain only contributions
from the ligands. It is hence useful to consider the
appropriate differences between the various charges
for the impurity and the vacancy. These differ-
ences correspond to the effective occupation num-
bers for an impurity atom embedded in a (healed)
vacant site in the semiconductor matrix. Table IX
gives the various occupation numbers for Si:Cu
and the Si vacancy. It shows that the vacancy has
a total central-cell charge of six electrons, corre-
sponding to 1.5 electrons for each of the four
ligands, while the Si:Cu system has a total charge
of 17 electrons in the central cell, corresponding to
the eleven Cu valence electrons and the six
dangling-bond electrons.

Taking the appropriate differences, one finds
that the Cu atom in silicon has an effective orbital
occupation of s '

p d ' (with additional 0.04
electrons in the fg shells and the rest outside the

Q = g QP representation occupation . (52)
l

Finally, the total electronic charge in the central
cell is
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TABLE IX. Population analysis (in electrons) of the occupied states for the Si:Cu and the
silicon vacancy. The definitions are given in Eqs. (50)—(53). QI denotes the 1th component
of the density of all occupied a representations. Q is the representation occupation, Q~ is
the orbital occupation, and Q"' is the total electronic charge. The sphere radius used in Eqs.
(50)—(53) is R, =4.44 a.u. which corresponds to the nearest-neighbor distance.

Q(' Qe QI' Qi '(VB) t2
Q

'
(gap)

0
1

2
3
4

Qa

1.7086
0.0
0.0
0.1406
0.0163
1.8655

0.0
0.0
4.293
0.0
0.086
4.379

0.0
0.0
0.0
0.4536
0.0698
0.5234

Si:Cu
0.0
2.098
6.670
0.1397
0.1811
9.089

0.0
0.880
0.239
0.0162
0.0075
1.143

1.7086
2.978
11.202
0.750
0.361

Q'"= 17.00

Silicon vacancy

0
1

2
3
4

Qa

1.516
0.0
0.0
0.167
0.024
1.707

0.0
0.0
0.3074
0.0
0.1155
0.423

0.0
0.0
0.0
0.309
0.0825
0.391

0.0
1.663
0.7734
0.1310
0.2206
2.788

0.0
0.473
0.205
0.0156
0.0069
0.7005

1.516
2.136
1.286
0.623
0.449

Q"'=6.01

central-cell region), compared with the ground-
state atomic configuration of s'p d' and the ef-
fective configuration (sp)' d in the metallic
state. One observes that the effect of the host is
to keep Cu almost neutral within the central cell
and merely shift some of the s electrons into the p
shell without breaking the d shell. This is in
marked contradiction with the Ludwig-
Woodbury "model which suggested that a sub-
stitutional transition atom will have two of its d
electrons promoted into the sp shells to form sp
hybrids (i.e., s'p d for Cu). The basic picture
that emerges from our population analysis is that,
although the discrete atomic levels of Cu, when

brought into the crystal, broaden and hybridize
into various resonances with a nontrivial distribu-
tion of energy levels and orbital charge densities,
its "effective" electronic configuration remains re-
markably very much like an excited free atom.

One can further deduce from the population
analysis the distribution of the charge of the
effective Cu atom into various representations.
This gives a &' e t~' t2' showing that the
atomic configuration a I(e, tz)' has lost 0.84 of its
a

&
electrons into the other representations and how

the total non-s charge is redistributed into these
crystal-field states.

Although a population analysis can indicate the
overall redistribution of charge into quantum

0.12—

O 008
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0.0

& -0.04
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I

4 5

FIG. 19. Wave function of the t2 gap state for Si:Cu,
plotted in the + (111)directions.

states, it provides no information on the actual
bonding (i.e., spatial extent of the populated quan-
tum states). This can be assessed from inspecting
the wave functions. Figure 19 shows the wave
function of the t2 gap state, and Fig. 20 shows the
orbital density of the e and t2 resonances. Com-
paring the t2 gap-state wave function of Si:Cu with
the corresponding wave function for the vacancy
(Fig. 6), one notices that the former has a node in
the central cell (resulting from its orthogonality to
the lower t2 resonance). In fact, this node is the
"fingerprint" of the transition-atom impurity and
is introduced by the l =2 component of the wave
function (cf. Fig. 17). This component has the op-
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I I ) i I I I

0« —e Resonance (a)

0.06—

essentially passive, a simple, atomic view of this
impurity is likely to be wrong since extensive
charge redistribution and hybridization occurs in
the s-p manifold.

0.04— VIII. COMPUTER TIME
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FIG. 20. Radial densities of the Si:Cu e resonance in
the + (110) directions (a), and the sum of radial densi-

ties for the three components of the t2 resonance, shown
in the + (111)directions (b).

posite sign of the I =1 component in Si:Cu, but the
same sign in the case of silicon vacancy (cf. Fig.
4). The gap state wave function in Si:Cu is hence
distinctly different from the dangling-bond t2 wave
function of the silicon vacancy.

The t2 and e resonances (Fig. 20) retain very
much the overall characteristics of the atomic 3d
orbital. Since the lobes of the e orbital point away
from the nearest-neighbor ligands, this state is al-
most a pure unhybridized d state (cf. Table VIII),
while the t2 resonance hybridizes somewhat with
the ligands and produces a broad resonance.
Nevertheless, the sum of the orbital densities over
this broad resonance [Fig. 20(b)] produces a local-
ized atomiclike state.

The basic picture that emerges from this
description is that the bonding in the system is
produced by the sp states, while the d states are
merely renormalized into a set of weakly hybrid-
ized resonances that combine to produce a simple
atomic 3d density. Although the d orbitals are

We quote here the computer time needed for a
fully self-consistent calculation of a substitutional
transition-atoID impurity in a semiconductor, using
the method described in this paper. A CDC 7600
computer system is used with a NOS 1.4 level
531.00 operating system. We note that, at present,
no effort was done to optimize the computer pro-
gram with respect to execution efficiency; such op-
timization is expected to reduce the computer time
substantially. The specific example is a Cu substi-
tutional impurity characterized by a nonlocal pseu-
dopotential with angular-momentum classes of
L =0,1 and L =2, in a 54-atom silicon host super-
cell. The number of host bands is Mb ——30 per k
point plus M, =5 local quasibands per k point.
The local basis set is composed of eleven radial s
orbitals, ten radial p orbitals, ten radial d orbitals,
eight radial f orbitals, and eight radial g orbitals,
all in the form of Coulomb functions, Schmidt-
orthogonalized in a sphere of radius R, =7.5 a.u.
In addition, a single numerical radial Cu orbital is
used in the local basis Ig, (r) I. All local functions
are mutually orthogonal. If we count both radial
and angular components, the basis has 11, 30, 50,
56, and 72 orbitals of angular momentum l =0, 1,
2, 3, and 4, respectively, or a total of N =219, with
L",'„=4. The highest angular momentum kept in
the density and potential expansions is L','„=8.
The one-electron energy range searched in the
Green's-function calculation is 15 eV; the energy
resolution is he=0.00015 eV (i.e., levels separated
by b,e can be solved). In searching for solutions
we attempt seven sucessive iterations for each in-

terval. The wave-function representations that are
calculated are a~, e, t~, and t2. The partial wave
components of the potential and density XVI(

~

r;
~

)

and Apt(
~
r;

~
) are tabulated on 145 logarithmic

grid points. The maximum l component for fitting
the exchange potential is L','„=12. Nineteen an-

gular directions are used in this fit.
The computer time needed is distributed among

the various operations as follows: (1) The itera-
tion-independent operations (i.e., a one-time-
expense) are (i) calculation of the Cu pseudopoten-
tial from scratch, 15 sec, (ii) calculation of the host
band structure, starting from a self-consistent host
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potential, 200 sec, and (iii) calculation of all over-

lap integrals and quasibands entering the Green's
function, 300 sec. (2) Iteration-dependent calcula-
tions, given here per iteration, are (i) calculation of
the potential perturbation from defect wave func-
tion, 45 sec and (ii) the solution of the Green's-
function problem, 110 sec. If we start from an
atomic potential as an initial guess, the Jacobian
update method requires seven iterations to con-
verge to a few mRy accuracy. The calculations
cost is hence 8.6 min for the one-time expense,
plus 18 min for the full self-consistency. Using
somewhat less stringent parameters lowers the cost
substantially (e.g., if only 25 bands, rather than 35
are used, the iteration time drops from 18 to 13
min). A similar calculation for a silicon vacancy
(Sec. VI) does not require quasibands and is con-
verged to full self-consistency (starting from
atoms} in only five iterations. The computer time
required for this calculation is a small fraction of
that required for a Cu impurity.

substitutional and interstitial 3d impurities in sil-

icon, as well as to predict the magnitude of the a&

lattice distortion in the silicon vacancy, with high
precision. The results indicate that our concerns
about the limitations (increased computer costs) of
the method were pessimistic.
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APPENDIX. A: THE CRYSTAL-FIELD
PSEUDOPOTENTIAL

IX. LIMITATIONS OF THE METHOD

In this section we provide a critique of our pro-
posed QBCF method, based on our experience with
it to date. It has three main weaknesses. First, the
method is well suited for potential and density per-
turbations AV(r) and bp(r) that are localized
within a radius R, of an order of 4—6 a.u. Any
strong component beyond this radius requires that
the angular-momentum summations in Eqs. (33),
(35},and (36) be extended beyond l =8. This, how-

ever, is not a severe limitation for treating deep de-

fects: Even the vacancy gap state that is consider-

ably extended (since it is a dangling-bond orbital
rather than an impurity-anchored orbital) has an

R, =-4.5 a.u. Substantial lattice relaxations may,
however, extend the range of 5V(r ) making the
present method somewhat more costly to apply.
Second, the number of partial wave components in
the wave functions and potential increases rapidly
as the site symmetry of the defect is lowered. For
example, for a tetrahedral site (i.e., substitutional
or tetrahedral interstitial in zinc-blende hosts) only
the 1=0,3,4, . . . , components appear in the a

&

representation; however, a trigonally distorted lat-
tice also needs the l =2 component. Third, due to
the use of a discrete set of energy levels, it is diffi-
cult to calculate the exact width of defect reso-
nances with a precision better than -0.2 eV.

Note added in proof Recently, we have. been

able to use the QBCF method for calculation of all

['r+ VH(r)+&V(r )]P; (r) =Eg; (r) (Al)

by expanding hatt; (r } in an impurity-anchored one-
center expansion

(A2)

in the crystal-field approximation, where &„~(
~

r
~

)

is the radial impurity atomic orbital in the ath
point-group representation. Often the same radial

In this appendix we show how the standard
ligand field or cluster approach to the defect prob-
lem can be transformed into a one-center problem

by adding to the defect potential a crystal-field
pseudopotential derived here. Our derivation fol-
lows the idea suggested by Phillips.

Consider a defect-containing system described by
an unperturbed host potential Vtt(r ) and a defect-
associated perturbation EV(r), which has a local-
ized (e.g., gap state) defect wave function f; (r )

with energy E; and a manifold of occupied wave
functions {PJ(r')

J with energies ej below E;. The
potentials VJt(r) and Vtt(r)+6V(r) may be
described either as all electron or as screened pseu-
dopotentials. In the former case PJ(r) will include
corelike states, whereas in the latter case PJ. ( r) de-
scribes the valence pseudowave functions. In ei-
ther cases, the wave function g; (r) is orthogonal
to all PJ (r) and, therefore, might include nodal
structure outside the range of b, V(r ). In the clas-
sical crystal-field approach, ' ' one attempts to
solve
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X;(r)=B;;f;(r)+ Q BJP,(r),
j+i

(A4)

where the coefficients IB1 ] are at this stage arbi-
trary. From Eqs. (Al), (A3), and (A4), one obtains
the CFP that satisfies Eq. (A3) by construction, as:

g BPj(E( ej )P; (r )—
Va ( E )

JAi

B(~f; (r)+ QB,J/J(r)
j+i

(A5)

Notice that any choice of [B;~ I in Eq. (A4) will

provide a solution to Eq. (A3) with the corrmt en-

ergy E; However. , the resulting wave function

X; (r ) may not share the properties of the correct
solution P; (r). Note further that with the CFP of
Eq. (A5) one can solve Eq. (A3) even with a limit-
ed basis set without fearing that the solution E;
will converge to a low-lying ligandlike state ej,
which is the case in the standard crystal-field and
ligand-field approach. This permits then an expan-
sion of the crystal-field pseudowave functions

X; (r ) in a defect-anchored, one-center expansion,

(A6)

with coefficients Gg(
~

r
~

) of Eq. (34). This, how-
ever, provides solutions to our generalized crystal-
field problem in Eq. (A3), but not to the original
equation (Al) and (A2}, as assumed simplistically
in the classical crystal-field method.

The coefficients IB,J ] in Eqs. (A4) and (A5)

orbital R„~ is used for all l components. Clearly,
however, the simple choice of Eq. (A2) will fail for
distances outside the range of EV(r) where VH(r)
is strong (e.g., on the ligands}, since the limited
basis set in Eq. (A2} would attempt to reproduce
the ligandlike nodal structure of PJ (r ) rather than

f; (r ) Th. is difficulty can be circumvented in a
way that still permits a convenient one-center ex-
pansion of the localized wave function. This will

lead to a generalized crystal-field pseudopotential
(CFP) equation,

[T+VH(r)+&V(r)+ Vcpp(r, E;)]X;(r)

=E;X;(r), (A3)

where a new, representation-dependent ("nonlocal")
term Vc„p(r,E;) is added to the original Hamil-
tonian. We now derive a form for the CFP based
on a transformation of the defect wave functions
of Eq. (Al} into a crystal-field pseudowave func-
tion X; ( r ). The latter can be written as a linear
combination of the original occupied wave func-
tions,

may be chosen as

to satisfy orthogonality. There are, however, other
useful choices, e.g. , select I B;1 I so that the second
term of Eq. (A4) is minimized outside the range of
b V(r) [that is, minimize the projections of PJ.(r)
on X; (r) at this range] or determine tB,&] to mini-
mize the kinetic energy of X; (r ). These two
choices may allow one to use in the expansion of
Eq. (A6) a localized set or a smooth set, respective-
ly. Any such choice still permits one to recover
the correct wave function fait; (r ) from the occupied
states through

y;( )=X;( ) —/&X; ~y, &y, ( ). (A7)
j+i

It is instructive to compare the CFP of Eq. (A5)
to standard atomic pseudopotentials u~, '(r). In
atomic pseudopotential theory, one orthogonalizes
the valence states to the core states that are local-
ized at small r, resulting in a u'„, '(r) that is often
repulsive at small r and weak at large r. In the
CFP we orthogonalize to the ligand states Pi~(r )

that are extended to large r. For a simple two-
level model, it can be seen from Eq. (A5) that at
the distance where the localized defect wave func-
tion 1(ti( r) is vanishingly small (i.e., large r) the
CFP is repulsive (as E; ~ ej). Notice that at such
distances one can model Vcpp(r, E;) without
resource to any information on P; (r).

Clearly, much like the situation in atomic pseu-
dopotential theory the calculation of VCFp(r, E) re-
quires the knowledge of the solutions E;. Hence
Eq. (A5) is of little direct help. However, as has
been the case in applications of pseudopotentials to
the determination of crystal band structure, the
form of Eq. (A5) lends itself to modeling in terms
of effective potentials that share with Eq. (A5) its
overall properties. Such models [the simplest is a
replacement of Vcpp( iE) by a mo'del square well

that is repulsive outside a radius R„ in the spirit
of the Heine-Abarenkov atomic model potential]
may prove to be very useful.

APPENDIX B: CONSTRUCTION OF THE
MIXED BASIS MATRIX ELEMENTS FOR

THE CALCULATION OF THE QUASIBAND
STRUCTURES

The calculation of the quasiband wave functions,
Mb

pjo (k, r}=gbjj'(k)QJ' (k, r)
J

M

+hajj (k)+J. (k, r), (Bl)
jtt
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=e'"'uj(k, r), (83)

where u~(k, r) is periodic with respect to transla-
tions by R&. It can therefore be Fourier-analyzed
as

R

=QF~(k, G)e'
G

and energies [ej9 (k) I requires the diagonalization
of the host-crystal Hamiltonian Ho in the
nonorthogonal basis of band-structure wave func-
tions [P~ ( k, r ) J and local Bloch functions

[XJ( k, r ) ) [Eq. (25)]. This then requires the
evaluation of the matrix elements

(())j~ ( k, r )
~

0
~ PJ ( k, r ) ),

(X,(k, r) ~O~X, (k, r)),
and

(QJ (k, r) ~O~XJ(k, r)),
for O=Hp or unity. This appendix describes the
calculation of these elements. We will assume that
the band-structure wave functions IP~ (k, r)J are
available in a Fourier series:

yBs(k ~) ~—I/2+B (k+G) i(k+6) (r —r)
6

(82)

which can be obtained by many standard band-
structure programs. Here w is the displacement
vector between the band-structure origin (e.g., bond
center) and the impurity site. The final working
expressions derived in this appendix are Eqs. (BS)
and (812)—(814).

The calculation of the matrix elements between

PJ (k, r) is trivial since these wave functions al-

ready diagonalize Hp..

(pj (k, r) )H()
~
p~' (k, r)) =e/(k)5JJ'

and

(p~ (k, r) ~pj' (k, r))=5JJ'.

We then proceed to calculate the other matrix ele-

ments. As shown in Eq. (26), the local Bloch
function XJ(k, r) is given as an LCAO Bloch sum
of some local orbitals fj(r):

X.(k, r)=N '/ ge ~f (r R)—
R

Defining the Fourier transform of the local orbital

fj(r) as

(85)

one obtains the relation between fj(q) and

Fi(q, G) as

(86)

where Q, is the unit-cell volume. The LCAO
Bloch function Xi(k, r) can then be written as a
Fourier series:

XJ(k,p) =
' 1/2

(2m )

XQ,

Xgf (k+G)ei( k+ G )(a+P )
J

(87)

&&Ho(k+ 6', k+ G), (88a)

where Ho(k+G', k+G) is the Hamiltonian matrix
in a pure plane wave basis,

0, 'H()(k+G;k+G')= (k+G) 5o o

+ V~(G —G') . (BSb)

Here V&(G—G') is the Fourier transform of the
host potential V~ ()() ) of Eq. (5). Both I V~ ( q ) ]
and [BJ(k+G)I .are readily available as output
from many band-structure programs. The calcula-
tion of the matrix element of Eq. (BS) hence re-

quires performing a one-dimensional radial integral
to obtain fj(q) of Eq. (85) and the double recipro-
cal space sum of Eq. (88a). Note, however, that
the number of terms in the double reciprocal space
sum is related to the size of the host Hamiltonian
matrix and not to the number of terms required to
converge the Fourier transform of fj(r). The
latter may be very extended in reciprocal space.

For constructing the matrix elements

(XJ(k, r )
~
Ho

~
Xz'(k, r ) ), it is useful to assume

that the local orbitals fj(r ) are confined within a

where we have shifted the origin from the impurity
site (r =0) by a constant displacement vector r to
the bond center position (p=0), hence r =p+r
Using Eq. (82), we see that the Hamiltonian ma-

trix elements in the mixed basis become

(XJ(k, r) ~HO
~ PJ (k, r))

2~ '/' -+ -+ -+
f'(k+G')B'(k+G)e '"+

0, G, 6'
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unit cell. This poses no serious restriction since
the object of the quasiband approach is to have the
set [XJ(k, r) J reproduce the localized parts of the
defect wave functions; the extended pieces of it are
then spanned by j PJ (k, r ) J. Using this fact, one

obtains

&XJ(" r} l&0 IXJ(k r)&=&fj(r}l~o lfj'(r)&
(89)

We now represent the local orbitals fj(r ) in a
crystal-field manner as in Eq. (27), breaking the
single index j into (!!i,,a, A,, l), where p denotes the
radial "principal" quantum number, a is the ir-
reducible representation of the defect's point-
symmetry group, A, is the partner index in this rep-
resentation, and I is the angular momentum:

Here

1 (1+1)
r 2

is the radial part of the Laplacian and d is the
dimensionality of the ath representation.

The various overlap matrix elements can be ob-

tained by replacing in Eqs. (88) and (812) the
Hamiltonian operator by unity. Hence we obtain:

&X;(k,r) ~P; (k, r)&

(2m) gf'(k+G)B'(k+G)e ' "+
G

(813)

fpi(r)=F„i(
~

r
~

}J!' (r) . (810) and

Similarly, the host potential VH(r ) is decomposed
in partial waves as &X, (k, r}IX,'(k r}&=&!!Ra%;i.&+~!

l +p! & .

I H ( r ) XU1( I
r

I
)&l

1

(811)
(814)

In analogy to atomic physics, the matrix element
of Eq. (89) breaks into an angular part that results
in sums over Gaunt coefficients D! [1',I"] (defined
in Appendix E and given in Table II) and simple
one-dimensional radial integrals:

&X,(k, r) ~a, ~X,'(k, r)&

Again, in Eq. (813), the number of terms in the G
summation is limited by the size of the Hamiltoni-
an matrix, whose dimensionality equals the number
of G components in BJ(k+G). Given the matrix
elements in Eqs. (88) and (812)—(814), one gen-

eralizes the eigenvalue problem

=eS b
—a

(812}

to obtain as solutions the quasiband wave functions
[Eq. (Bl)] and energies.

APPENDIX C: CALCULATION OF GREEN'S-FUNCTION MATRIX ELEMENTS

The calculation of the Green's-function matrix elements

e—ej (k)

in the local basis representation [g,(r)] requires the calculation of the overlap integrals &g,
~

8
~
jk & where

( k, r ) =
& r

~
jk & are the quasiband wave functions. According to Eq. (25), we have sums over two types

of elementary overlap integrals:

&g ~8
~

jk&= gbzz(k)&g, (r)
~
8(r)

~ QJ (k, r)&+ g ajj-(k)&g, (r)
~
8(r) ~XJ. (k, r)& .

We denote these two types of elementary overlap integrals, as

S,=&g, (r)
~
8(r)

~
PJ.-(k, r)&

and
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S» ——(g, (r)
~

8(r) ~X,(k, r)} .

From Eqs. (27) and (B2) we obtain for the first matrix element in Eq. (C2),

Sq= QB&(k+G)e '"+o"Ki (k+G)i f Fzi(rj)i(
~

i+Ger)8(r)r dr,
N o 0 P (C3)

&( fg,*(r)8(r)fi(r RI)dr —. (C4)

Note that from this equation the advantage of in-
troducing the cut-off function 8(r }becomes ap-
parent: It reduces the number of two-center in-

tegrals that need to be calculated.
The calculation of the integrals in Eq. (C4) in-

volves the standard a-Lowdin expansion. How-
ever, this technique has not been previously gen-
eralized to include the treatment of arbitrary orbi-

where ~ is the displacement vector between the ori-
gin of the band-structure wave functions and the
impurity site. Here we have expanded the plane
waves in terms of Bessel functions ji(qr) and Ku-
bic harmonics.

For the matrix element S» in Eq. (C2), one
could use the same approach, i.e., express XJ(k, r }
in a Fourier series and sum Fourier elements as in
Eq. (C3). Since, however, Xi(k, r) is constructed
from highly localized functions (e.g., 3d atomic
orbitals), the Fourier transform of XJ(k, r) is
extremely slowly converging (often requiring more
than 70000 6 components for 3d transition-atom
orbitals26). A computationally much faster pro-
cedure is to calculate the two-center integrals
directly from the definition of Xi(k, r) in Eq. (26):

ik ~ R

R

f~~I (p)=F„i (p)KP (p) (C5)

in products of radial functions (to be given below)
and Kubic harmonics around r =0, we can easily
calculate the two-center integrals in Eq. (C4) in
terms of one-dimensional radial integrals. (In this
appendix we let P, not a, denote the irreducible
representation to avoid confusion with the a-
expansion functions. ) Thus, if we write the expan-
sion of fj(r RI) arou—nd r=0 as

f„i (r)= g g a, , &, z, (p'I'P'A, ', R& ~r)
I) ——0 p)A)

I I

XKi, ' '(r),
1

(C6)

we get for the matrix element S» in Eq. (C4),

tais fj(r —RI ) and g, (r), where the polar axes of
the two-coordinate systems do not point towards
each other. In this appendix, we give a generaliza-
tion of this technique. The final results of this
technique are given in Eqs. (C7)—(Cl 1).

The local orbital g, (r) =g&i(r) =R&i(r)KP (r),
centered at the impurity site at r =0 and the quasi-
band orbital fj(p) where p=r —RI, centered at r
=RI, are both given as products of radial func-
tions and Kubic harmonics [c.f. Eqs. (27) and

(B10), respectively]. By expanding the function

S« —— ge R&i(r)B(r)aiiii„(p'l'P'A. ',RI ~

r)r dr .1 ik R I I I I

N R
(C7)

After some lengthy algebra, one obtains for the a-expansion functions the expression
l'

aiiii„(p'1'P'A, ',R& ~

r) = g [&' ~t(a, b, c)]iii„ I (p'I', R& ~

r).&' ~(a, b, c)
m'= —l'

The quantities in this expression are defined as

(C8)

8 +r
(p I Rp I

r) =2nki~ ki ~ RFi, i (R )Pj
rRp II 2RRp

2 R2 R2 2 R2+R2
P Pm P dR

2rRp
(C9)

i.e., one-dimensional integrals, and

&' '(a, b,c)=D'"(a,b, c)U'i', (C10}
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where the unitary matrix D' ' is the transformation matrix of spherical harmonics in the Condon-Shortley
phase convention under rotation of the Euler angles (a,b,c):

l

Yr (8,$)= g D' ' (a,b, c)YI (O', P') .
m'= —l

(Cl 1)

Furthermore, U'" is the unitary matrix relating spherical and Kubic harmonics of angular-quantum number
I:

l

KP (8,$}= g U'"pgYr (8,$) .
m= —l

(C12)

The Euler angles (a,b, c) in Eqs. (C10) and (Cl 1) correspond to a rotation of the coordinate system at r =0
[the origin of the g, (r } functions] such that the polar axis (z axis) points along the vector R~. The explicit
expression for the D matrices is

;~, ;~,+ ( —1)"[(l+m)!(l —m)!(1+m')!(l —m')!]'
a!(1+m —a.)!(l—m ' —a )!(a+m' —m )!

' 2l —2z—m'+m ' 2sc+m' —m
b bcos—
2

sin—
2

(C13)

where the summation over ~ includes all values
that make the arguments of the factorials non-
negative. Furthermore, Pr (x) are the associated
Legendre polynomials and kl are the spherical
harmonic normalization constants (in the Condon-
Shortly phase convention):

Yr (8,$)=kr~PI (cos8)e', m &0

(8,$)=(—1) Yi '(8,$), m &0
'1/2 ' ' 1/2

( 1)~ 21+1 (1—m)!
4m (l+m )!

(C14)

In deriving these expressions, we have assumed
that the coordinate system at r =R& is related to
the fixed coordinate system at r =0 through a
translation by Rz (i.e., the two-coordinate systems
have the same orientation). Hence, their polar axes
are parallel, but do not generally point along the
direction of R~. The interpretation of the various
factors in Eq. (CS) is then the following: The Q'-
matrix elements to the right of the "transfer in-
tegral" I first express the function fj(p } in Eq.
(C5) at r =R~ in terms of spherical harmonics
and then express this function in a rotated coordi-
nate system whose polar axis is in the direction of
Rz. Then the transfer integral I gives the resulting
function in a rotated coordinate system at r =0,
whose polar axis is also in the direction of Rz.
This integral alone (without the & matrices) is the
only ingredient in the a-expansion technique de-
rived by Lowdin. Finally, the & matrix to the
left of the I gives the function in terms of spheri-

I

cal harmonics in a coordinate system rotated back
to its original orientation and expresses this func-
tion in terms of Kubic harmonics in that coordi-
nate system. Finally, we note that a general sym-
metrized form of the Green's-function matrix ele-

ments with the k-space summation running only
over the irreducible part of the Brillouin zone was
given in Ref. 29(a).

APPENDIX D: WAVE-FUNCTION
EXPANSION COEFFICIENTS AND
NORMALIZATION CONDITIONS

The dual representation of the defect wave func-
tions f (r) is given in our QBCF model by Eqs.
(29) and (30):

e(r —R, )g (r)

XCphPpl( I
r

I
} KI

l p

and

M BZ

(r)=g g~, (k)yp(k, r),
j k

(D2)

i.e., expansion in a crystal-field series (Dl) and in
quasibands (D2). In this appendix we show (i) only
the coefficients Ic&I;I in Eq. (Dl) need to be
solved since IA,& } in Eq. (D2) can be obtained
from them through the Lippman-Schwinger equa-
tion, (ii) the resulting wave-function normalization
conditions, and (iii) how to reduce sums over the
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full BZ [Eq. (D2)] to sums over the irreducible BZ
(IBZ). The final results of this appendix are given
in Eqs. (D3), (D5), and (D8).

Since the expansion in (Dl) is valid only in the
subspace r (R, of the perturbation, we cannot
directly use this expression to normalize the wave
functions over all space. Instead, we substitute the

expression (19) for the Green's function G (r, r ', e)
into the Lippman-Schwinger equation (18), using
for 1(;(r ) in the left-hand side of Eq. (18) the ex-
pansion (D2) and for f;(r) in the right-hand side
of Eq. (18) the expansion (Dl). This provides a re-
lationship between the two sets of expansion coeffi-
cients:

A,, (k)= QC„I;g g g(pj (k, r)
~

e(r) ~g„-I )(S I)„-„(g„I(r)
~

&V(r) ~g„I(r)) .
E; &j~—(k) I I I

-
I I aI,

(D3)

It is important to emphasize that these results do not require formally that the local orbital set {g&I ] be
complete. Instead, it is required that the finite set [see Eq. (D2)] of quasiband wave functions can be ex-

panded in terms of the set {g&I]:

e(r)PJ (k, r)=g g g(PJ (k, r)~g„I(r))*($ ')„„g„I(r).
p' pl aA,

The accuracy of this expansion is examined
through convergence tests. Reference 26 discussed
an example (a Cr impurity in a silicon free-electron
host) and illustrates numerically the high degree of
precision obtained in such an expansion with a
moderate size basis set.

Using Eq. (D3), one can now normalize the wave
function in the following fashion:

M BZ

(D5)
j k

where N~ and N are, respectively, the number of
atoms per supercell and primitive cell, and {k, )

denotes the discrete wave vectors included in the
expansion (D2). We have assumed that the quasi-
band wave functions {PJO (k, r)] are normalized to
unity over the primitive unit cell.

We now seek to modify Eq. (D5) for a summa-
tion over the IBZ rather than the full BZ. For
concreteness we illustrate this for a defect with Td

symmetry in a zinc-blende host crystal. Let m,
denote the number of vectors in the star of k with
respect to the group OI, of order 48 (OI, =I )& Tz
where I is the inversion group), and let R denote
operations in the group O~. We get from Eq.
(D5),

IBZ mv

1= g g g)AJ. (R k„)(
j k m

I

One can prove that

24

Q ~AJ (+R k„)
~

j m=1
da

J A, =1

where d is the dimensionality of the ath irreduci-
ble representation. Thus, the normalization condi-
tion Eq. (D5) becomes

IBZ m a
(D8)

for each state i belonging to irreducible representa-
tion e in the point-symmetry group T~.

APPENDIX E: CRYSTAL-FIELD KUBIC
HARMONICS REPRESENTATIONS FOR
DEFECT POTENTIALS AND CHARGE

DENSITIES

We have stated in the text [Eqs. (33)—(36)] that
the self-consistent perturbations b,(r) [b.(r) is ei-

ther the charge-density perturbation bp(r), Eq.
(33), the interelectronic Coulomb potential pertur-
bation hV"(r), Eq. (35), or the perturbation in the
exchange-correlation potential 6V"'( r ), Eq. (36)]
can be written in a one-center crystal-field form as

IBZ m 24

V

b,(r ) =y5I(
~

r
~

)EI '(r"), (El)

+
~

A J ( —R k„)
~

2
j . (D6) where 5I(

~

r
~

) is a one-dimensional radial func-
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tion. In this appendix we derive explicit closed-
form expressions for 5i(

I
r

I
) for Td defects in a

zinc-blende host crystal. The final results of this
appendix are given in Eqs. (E16)—(E20), and
(E26).

1. Charge density of the defected system

Using our expression (29) for the defect wave
functions f (r) in terms of local orbitals, we ob-

tain

8(r —R, )P (r)=QG; (
I
r

I
)E ' (r) . (E2)

l

The charge density within the region defined by R,
for spin o(o = T or g) is

occ da
pD(r)= X X X I

e(r —R, V', (r
i, (o) a A, =l

needs to be valid only in the domain
I
r

I
&

I
R, I,

much like in Eq. (E3). Since the host wave func-
tions are often available as a Fourier series [c.f. Eq.
(82)], one might construct from it a similar series
for the host charge density and proceed to I
decompose each of the plane waves in that series to
achieve the form (El). This procedure does not,
however, follow the previous conditions (i) and (ii)
above. Instead, we expand the quasiband wave
functions in our local crystal-field basis {g,(r ) j in
the domain

I
r

I
&

I
R, I,

8(r)P~~ (k, r)=QCJ, (k)g, (r), (E6)

[much like the expansion of the defect wave func-
tions in Eq. (16)] and calculate the charge density
from the sum of squares of Eq. (E6):

occ BZ

PH(r) =2+ g I 8(r)P~ (k, r)
I

j k

where

=QPID( I
r

I
)&i '«»

l
(E3) occ BZ

=2+g,'(r) g pe', (k)C~b(k) gb(r)
a, b j

PID( I
r

I )=g g QDp[l', l"]
i(0) a l'l"

XGg(lr l)Gi-( lr I)
and the Gaunt coefficients (Table II) are defined

by

(E4)

d

gE( (r)Ei (r)=AVDP [l', l]K(-'(r) . (E5)

The calculation of pD(r) in Eq. (E3) requires,
therefore, the knowledge of the variational coeffi-
cients {C&b j and radial basis functions

{+„r(I
r

I
) j that together specify {Gg( I

r
I

) j [Eq.
(29)], as well as the (tabulated) Gaunt coefficients
{DP[l',l"]j.

(E7)
followed by partitioning g, (r ) to a product of a ra-
dial and angular parts [Eq. (32)] that breaks pH(r )

in Eq. (E7) into the desired crystal-field form of
Eq. (El). We now derive explicit equations for the
terms in Eq. (E7) in terms of known quantities.
The final results are given by Eqs. (E15) and (E16).

The expansion coefficients {CJ, (k) j of Eq. (E6)
can be found by taking the inner product in Eq.
(E6), i.e.,

(g, (r)
I
8(r)

I
jk &=yCb(k)S,b,

S.b=(g. (i) lgb(r)& .

The expansion coefficients in Eq. (E6) are then

simply obtained as

2. Charge density of the host crystal CJ.(k)=X(S ').b&gb(r)
I
8(r)

I
jk & .

b

(E9)

We need to calculate the host-crystal charge den-

sity pH(r) in a crystal-field representation [Eq.
(32)] so that: (i) The expression will follow closely
the expansion (E2) for the defected system (i.e., in
calculating the charge-density perturbation pz-pH,
systematic errors will tend to cancel algebraically
rather than numerically), and (ii) the expansion

pH(r ) =2+g, (r )(S 'B S '),bgb (r ),
a, b

(E10)

where the elements of the matrix 8 are given by
[c.f. Ref. 29(a)]:

With these expansion coefficients, the host charge
density of Eq. (E7) becomes

occ BZ

Bob g X(g.(r) I
8(r)

I
j"&&j"

I
8(r) Igb(r)&

j k

IBZ occ dA,

=5 5i, i. g g g Re{(g„i le I jk.&&jk.l8 Igni& j=B/'i"«) .
Ng „d

V

(El 1)
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(E12)

We can make contact with the standard continuum Green s-function formalism by taking 8(r) = 1, S= l.
One then recognizes that the matrix elements B,b of Eq. (El 1) correspond to

EF
B.b = I—m J G'b(e)de,

where Eb is the Fermi energy and that PH(r) of Eq. (E10) corresponds to

PH(r )=2+g, (r )B,b gb (r ),
a, b

as in standard derivations (e.g., Refs. 3 and 4).
To bring p~(r ) in Eq. (E10) to a crystal-field form, we use our standard separation of variables for

Ig, (r)] [Eq. (27)], where, as in Eq. (11), the single index a is broken into (plaA, ) (c f S.e.c. V B 1):

g, ( r )=F~i(
I
r

I )K( ' (r ) .

Using this form in Eq. (E10), one obtains the final result

(E13)

(E14)

PH( r ) =+Pi-a( I
r

I
+I" (") (E15)

where

(E16)pi"H( I
r

I
)=22 Q QDP [I,I' ]F,i( I

r
I
)BPi" (vi)Fp i'(

I

r
I

)
a pl p'l'

Here DP [1,1'] are the Gaunt coefficients [Eq. (E5)], and the matrix B is (S 'BS ') of Eq. (E10). Notice
that the matrix 8 is diagonal in the indices u and A, and that the matrix S is diagonal in u, A, , and I. The
calculation of PH(r ) in Eq. (E15) requires the computation of the overlap integrals (g, (r ) I

8(r )
I
jk ).

These were described in Appendix C.

3. The change in the charge density

Using expression (E3) for pD(r) and expression (E15) for p~(r) one obtains the final crystal-field form for
the (spin-unpolarized) density perturbation [Eq. (33)]:

~p( r )=2 ~pi( I

r
I
)+i '«»

l

with the coefficients:

OCC I II

hpi( I
r

I
) =2 2 2 XDi [I',l"]Fz i (

I
r

I
) Fij, i (

I
r

I )(Cir i; C&-i-; —2Bi"i"- ) .
i a l'l" p'p"

(E17)

(E18)

Only the product C& l;C&-l-; changes in self-consistency iterations; the other terms are specified through the
fixed radial basis functions, the Gaunt coefficients, and the quasiband wave functions. In the classical
crystal-field approach, '"'

Api is approximated by a set of point charges. Expression (E1S) gives the gen-
eralization of this for realistic perturbation potentials.

4. The change in the Coulomb interelectronic repulsion

Given the density perturbation hp(r) in the crystal-field form of Eq. (E17), the change in the interelec-
tronic Coulomb repulsion can be calculated directly from the definition of V [p] as

where

(1 ) gkvl (
I
r

I
)&i '(&»

l
(E19)

r l CO

bvi"(
I
r

I
)=

i
ri+ Api(ri)dri+r ri ~pi(r, )dri

2l +1 ~l+1 r
(E20)
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This involves performing two simple one-dimensional radial integrals, exactly like in atomic calculations.
This procedure was tested successfully on a number of analytically solvable problems.

5. The change in the exchange-correlation potential

The exchange-correlation potential b V"'[pi),pH] is nonlinear with respect to pL) —pH [cf. Eq. (Sb)] and
therefore cannot be evaluated from hp. Instead, we use a simple procedure to bring it into the central-field
form of Eq. (36). For concreteness we illustrate the method for a Tq site-symmetry. The expansion in Eq.
(36) is then

hV"'(r) =duo'(r)KO'(8, $)+oui'(r)Ki'(8, $)+bv4'(r)K4'(8, $)+hu6'(r)K6'(8, i')+ '

where

(E21)

&V"'(r)= V"'(pD(r)) —V"'(pH(r)) .

The familiar spin-polarized (for spin o.) form of V"'(p, g) is given as

(E22)

V"'(p, g) = V,".(p)+f (()[V~.(p) V.".(p)]—+ [~'..[p]—~.".[p]][sgn(i7) —g] d
(E23)

where the spin-polarization g(r ) is

p+(r) —p (r)(r)=
p+(r )+p (r )

and

(1+/) '+(1—g)' ' —2f4= 24/3 —2
(E24)

and V„"„V„,e„"„and e„,are, respectively, the un-

polarized and polarized potentials and the unpolar-
ized and polarized exchange-correlation energies
per particle. Given pD(r) and pz(r), one can cal-
culate the left-hand side of Eq. (E21) through the
expression (E22)—(E24). Having n terms in the
right-hand side of Eq. (E21), we choose n different
directions (8;,P;), i =1, . . . , n (which are ine-
quivalent under the point-group operations) for
each radial point

~
rj ~

. Defining

Ci'=Ki '(8;,P;) (E25)

(E26)

(independent on the radial coordinate), we obtain
for each radial point a set of n inhomogeneous
with n unknowns bvo'(rl), bv3'(rj), bv4'(r&),
b,u6'(rl ), etc., of the form:

gVxc(&f)) g„xc( )C(i)

+b,ui'(i J. )C3'+

Arranging the Cj"s [Eq. (E25)] in a matrix C
[with indices (i, l)], the unknown coefficients
oui"'(rl ) in a vector P (with index I), and the
known values hV"'(rz') in a vector Q (with indices
i), one obtains for each radial value rj the linear

I

matrix equation,

(E27)

which can be inverted directly since det
~

C
~ Q 0

for n inequivalent directions. This yields the un-
known coefficients oui"'(

~

r
~

) in Eq. (E21). In
practice, we choose in the expansion (E21) more
angular directions than l components so that Eq.
(E27) becomes an overdetermined system of equa-
tions constructed from l,„=12in the expansion
in Eq. (E21) (corresponding to 11 terms) and 19
uniformly spaced directions in the irreducible —,4 th
of the unit cell. The method was tested successful-

ly on a number of analytically solvable problems.

APPENDIX F SOLVING THE
GREEN'S-FUNCTION DETERMINENTAL

EQUATIONS

To find the solutions to Eq. (17a) one needs to
solve the determinental problem

D (e)—:detQ i (E)=0

and

Qi(e)=1 —G (e)V, (Fl)

where V denotes the matrix of the perturbation
b, V(r) in a local basis. This appendix discusses a
very efficient method for solving these equations
based on an extension of the idea suggested by Van
der Avoird et al.

A straightforward solution of Eq. (Fl) is very
inefficient since it requires calculation of D (e) on
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the full energy scale with an energy mesh that can
resolve any two roots. There exists however a very
elegant algorithm, first used by Van der Avoird
et al. ,

6 for finding the roots of D (e) efficiently.
These authors considered the matrix

applied.
&roof. I.et aj(e) denote the eigenvectors of

Q3(e):

Q3(e)a, (e)=p, (e)a, (e), (F6)

Q2(e) = V Go(e) V—V= —
VQ i (e) (F2)

where V is a nonsingular matrix, and showed that
the eigenvalues of Q2(e) always pass through zero
with a negative slope, unless e equals one of the
host-crystal energies ej(k). In this case, a number
of eigenvalues [equal to the degeneracy of ei(k)]
pass from —oo to + 00.

From these properties of the eigenvalues of
Q2(e), it is clear that the number of roots n (ei, e2)
of Eq. (Fl) in an energy interval [e&,ez] not con-
taining a pole in the Green's function is given by

with the normalization requirement

aji(e)ai (e)= 1 . (F7)

Using the Hellmann-Feynman theorem, one gets
that for all energies

PJ ~t( )
dG (e)

aJ e
d aJ e (FS)

Since the matrix dG (e)/de is symmetric, there ex-
ists some unitary matrix U(e) such that U(e)
)& [dG (e)/de] Ut(e) is diagonal. We get from Eq.
(FS) using the notation:

n (e&,e2)= n (e, )—n (e2), (F3) bj(e) = U(e)aj(e), (F9)

where n (e) denotes the number of positive eigen-
values of Q2(e). Thus, the energy roots of Eq.
(Fl) can be determined by repeated bisection of the
intervals until a desired accuracy is obtained.

To find the number of positive eigenvalues n (e)
of Q2 at some energy e, one can, of course, diago-
nalize Q2 directly, using standard techniques. A
much faster method, however, is to bring Qz into
upper triangular form Qq by the Gauss elimination
process and use the fact that the number of posi-
tive eigenvalues of any real symmetric matrix 3
equals the number of positive diagonal elements in
AT.

In our applications, we have chosen to work
with the matrix

Q3(e)=GO(e) —V '—= —Q|(e)V

rather than with Q2(e). The reason for this is that
the construction of the matrix Q2(e) from the
basic quantities Go(e) and V requires a double ma-
trix multiplication VGO(e) V for each trial energy
e=-e;. The computer time for performing these
operations is much longer than inverting V once.
Since Q3(e) is a symmetric matrix with only real
eigenvalues, the equation detQ3(e) =0 has the same
roots as D (e)=0 since det V+ 0.

We now prove that the eigenvalues p, ;(e) of
Q3(e) obey the condition

dp;(e)
&0

that

d/l j (e)

(F10)

We shall now show that the eigenvalues of
dG (e)/de (i.e., the diagonal elements in the ma-
trix U(e)[dG (e)/de]Ut(e)) are all nonpositive
(the off-diagonal elements are, of course, zero).
Consider a typical matrix element in the matrix
dG (e)/de:

dG (e) p (aljk&(jk lp&
de i „[e—ej(k)]

After diagonalization we have

dG (e)-- o
hatt

U( )dG (

dE

yy (+
l

J'k
& (jk

l && (F12)
[e—ej(k)]

( a
l

= U(e) ( a
l

lP&= lP&U"(e) .

Thus, the eigenvalues of dG (e)/de are of the
form

for all energies different from the unperturbed
one-electron energies, so that the method described
above for finding the roots of D(e) =0 can still be

dG (e)~

[e eJ~(k)]—
(F14)
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which are all nonpositive [h (e))0], and when
substituted into Eq. (F10},they give

dpj(e) = —gh (e)
~
bj'

~

2 & 0, (F15)

where bj are the components in the vector bj.

Next we address the problem of solving the
homogeneous system of linear equations

Qi(E;)C;=0, (F16)

l(;(r)=QC;,g, (r) . (F17)

If we multiply Eq. (F16) from the left with the
transpose of the real matrix Q, (e;), we get

Q)(&;)Q)(&;)C;=0 (F18)

The matrix Q~(e)Q~(e) is a real symmetric non-

negative definite matrix; hence, all its real eigen-
values are larger than or equal to zero.

where the components of the column vector C; are
the expansion coefficients of the wave function
1(;(r) in terms of the local basis set Ig, (r)):

Qi(e') Qi(e') C;(e')=A, '"(e') C;(e'), (F19)

where A,~,'~ is the smallest eigenvalue to the matrix
Q', (e')Q, (e'). It is obvious that this vector C;(e')
minimizes the norm of the inhomogeneous term
A,

'"C;(e'}. This procedure requires some caution,
however. If the calculated root e' is too far from
the true root e;, it need not necessarily be true that
the smallest eigenvalue is the one that becomes
zero at e=e;. If this happens, the solution vector
C;(e') may be almost orthogonal to C;(e;). In
practice we generally iterate the energy to a pre-
cision better than 0.00015 eV, so that the smallest
eigenvalue is typically less than 10 ', and the ra-
tio between the smallest and next smallest eigen-
value is typically less than 10

In practice, one rarely finds an energy e=e;
such that the determinant of Q&(e) is exactly zero.
Therefore, Eqs. (F16) and (F18) have only the trivi-
al solution C; =0. If, however, e is sufficiently
close to e;, the eigenvector that belongs to the
smallest eigenvalue will be an excellent approxima-
tion to C;. That is, for a certain root e=e' we
solve for the eigenvector C;(e') that satisfies

APPENDIX 6: KUBIC HARMONICS

Kubic harmonics of order I =4 belonging to the irreducible representations a1, e, t1 and t2 in the point-
symmetry group T~, are given in terms of Cartesian coordinates (x,y,z) with r =x +y +z . Also given
are the a1 Kubic harmonics for l =6, 7, and 8. The corresponding Kubic harmonics for I =0, 1, 2, and 3
have been previously published in the literature and can be found in Ref. 70. Notice that the phase conven-
tion we are using (leading, for example to the different signs of the radial wave-function components in
Figs. 4 and 5, and the Gaunt coefficients in Table II) is that of Ref. 70 and those given next. The lowest
Kubic harmonic belonging to the irreducible representation a2 in the group Td is of order I =6,
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g21
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f2 3
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