Chapter 14
Atomistic Pseudopotential Theory of Droplet
Epitaxial GaAs/AlGaAs Quantum Dots

Jun-Wei Luo, Gabriel Bester, and Alex Zunger

Abstract In this chapter, following the introduction to the basic electronic
properties of semiconductor quantum dots (QDs), we first briefly introduce our
atomistic methodology for multi-million atom nanostructures, which is based
on the empirical pseudopotential method for the solution of the single-particle
problem combined with the configuration interaction (CI) scheme for the many-
body problem which were developed in the solid-state theory group at the National
Renewable Energy Laboratory over the past two decades. This methodology,
described in Sect. 14.2, can be used to provide quantitative predictions of the
electronic and optical properties of colloidal nanostructures containing thousands
of atoms as well as epitaxial nanostructures containing several millions of atoms.
In Sect. 14.3, we show how the multi-exciton spectra of a droplet epitaxy QD
encodes nontrivial structural information that can be uncovered by atomistic many-
body pseudopotential calculations. In Sect. 14.4, we investigate the vertical electric
field tuning of the fine-structure splitting (FSS) in several InGaAs and GaAs QDs
using our atomistic methodology. We reveal the influence of the atomic-scale
structure on the exciton FSS in QDs. Finally, a comprehensive and quantitative
analysis of the different mechanisms leading to HH-LH mixing in QDs is presented
in Sect. 14.5. The novel quantum transmissibility of HH-LH mixing mediated by
intermediate states is discovered. The design rules for optimization of the HH-LH
mixing in QDs are given in this section.
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14.1 Introduction

Until recently, epitaxial quantum dots (QDs) were mostly made by a growth
protocol (“Stranski—Krastanov”, or SK) [1-3] requiring that the QD material has a
significantly different lattice constant (generally larger) than the substrate on which
it is grown, e.g., InAs-on-GaAs [1] or InP-on-GaP [3]. Lattice-matched material
pairs such as GaAs on AlGaAs or InAs on GaSb were excluded until recently.
The advent of the “droplet epitaxy” growth mode [4-6] (involving the growth of
cation-element droplets on a substrate and subsequently their crystallization into
QDs by incorporation of the anion element) has enabled the epitaxial growth of
lattice-matched pairs, thus opening a window to the understanding of the physics of
confinement in unstrained semiconductor material such as GaAs. GaAs QDs have
recently also been grown using an alternative approach [7—11] where nanoholes are
etched on the surface of an AlGaAs layer. The holes are etched by arsenic debt
epitaxy (also referred to as local droplet etching) and filled with GaAs. Migration
of the GaAs toward the bottom of the holes leads to GaAs QD formation. The
QDs are subsequently capped with AlGaAs. The lattice-mismatch-induced strain in
In(Ga)As/GaAs QDs represents a main difference from unstrained GaAs/AlGaAs
QDs and it markedly modifies the bulk band structure. Figure 14.3 shows that
the built-in biaxial strain present in InAs QDs embedded in GaAs [12, 13] lifts
the degeneracy of the bulk heavy-hole (HH) and light-hole (LH) bands by as
much as 0.18 eV, without considering the quantum confinement effect. The built-
in shear strain also couples the HH and LH bands and it appears in the Pikus—Bir
Hamiltonian as off-diagonal term [12, 13]. Furthermore, in the droplet case, GaAs
represents the QD material, whereas in InAs/GaAs the barrier is GaAs and the QD is
InAs. Therefore, the conduction and valence band offsets (confinement potentials)
in these two types of QDs are different as shown in Fig. 14.3. Moreover, InAs
and GaAs differ in bandgap, electron, and hole effective masses and the relative
positions of the conduction band states at I', X, and L. It is thus by no means obvious
that there will be a similarity in the electronic structure results of GaAs/AlGaAs
with InAs/GaAs. Indeed, we find a very different electronic structure in one critical
aspect: the order of hole states. In GaAs/AlGaAs the LH-derived S-like state lies
between two HH-derived P-like hole states, whereas in InAs/GaAs the LH state is
well below the HH-derived P-like hole states.

The symmetry reduction of low-dimensional nanostructures can lead to mixing
between electronic states not only from the same bulk band [14] but also from
different valleys of the Brillouin zone and different bulk bands [15-18], which
are forbidden in their parent bulk semiconductors. Among various possibilities of
electronic state mixing, the HH-LH mixing in semiconductor QDs has attracted
much attention over the last few years for its profound effects on electronic and
optical properties. Specifically, HH-LH mixing is essential to tune the exciton fine-
structure splitting (FSS) of an epitaxial grown QD using a vertical electric field
[19-21], since it can manipulate FSS only via acting on the bulk |Z) component
of the Bloch functions. The QD ground hole state has dominantly bulk HH
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character [21], whereas the bulk HH band, |3/2,43/2) = F(|X) £i|Y))| 1,4)/V2,
contains exclusively |X), |Y) components, and the bulk LH band |3/2,+1/2) =
(1/V3)[(1X) £iY))| {,1) ++/2|2)| 1,4)] contains |Z) component. Thus, mixing
LH with HH leads to the control of the FSS via vertical electric field F,. HH-
LH mixing also leads to fast spin decoherence of HH-dominated QD holes [22]
by introducing additional efficient spin relaxation channels belong to LH band.
In addition, both experimentally and theoretically observed optical polarization
anisotropy of neutral excitons (e.g., X° and XX°) and charged trion (e.g., X! and
X1 radiative recombination is known to arise from HH-LH mixing [23-27].

In the remainder of this chapter, we first briefly introduce our atomistic method-
ology for multi-million atom nanostructures, which is based on the empirical
pseudopotential method [28], combined with the configuration interaction (CI)
scheme for the many-body problem developed by solid-state theory group at NREL
over the past two decades. This methodology, described in Sect. 14.2, can be
used to provide quantitative predictions of the electronic and optical properties
of colloidal nanostructures [15,29—34] containing thousands of atoms as well as
epitaxial nanostructures [17, 18,21,35—41] containing several millions of atoms. In
Sect. 14.3, we then show how the multi-exciton spectra of an unstrained GaAs QD
encodes nontrivial structural information that can be uncovered by atomistic many-
body pseudopotential calculations. In Sect. 14.4, we investigate the vertical electric
field tuning of the FSS in several InGaAs and GaAs QDs and reveal the influence
of the atomic-scale structure on the exciton FSS in QDs. Finally, in Sect. 14.5 a
comprehensive and quantitative analysis of the different mechanisms leading to
HH-LH mixing in QDs is presented. We specifically highlight the discovery of
the quantum transmissibility of the HH-LH mixing mediated by QD intermediate
states. The design rules for optimization of the HH-LH mixing in QDs are given in
this section.

14.2 Atomistic Many-Body Pseudopotential Method
for Multi-million Atom Nanostructures

The basis of our methodology, which was reviewed recently by one of us in [42],
is divided into four parts, atomic position relaxation, Schrodinger equation for
single-particle electronic states, many-body Hamiltonian accounting for Coulomb
interaction and correlation effect, and post-processors for optical properties, all
feeding into each other. The calculation of the single-particle electronic states
requires the input of the geometry and relaxation of the atomic positions to minimize
strain. The development of empirical pseudopotentials for each atom type is the
the Schrodinger equation. The ensuing eigenfunctions are fed into a configuration

H Hinteractiomn (CI ) treatmen
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wavefunctions, observables can be obtained through the use of post-processor tools.
These different components will be briefly discussed below and we refer to [28,42—
47] for more detail.

Calculation of Atomistic Strain and Atom Position Relaxation. The first step
is to construct a simulation cell (supercell) containing a QD with an assumed
shape, size, and composition (gradient) and place the atoms on ideal zinc-blende
crystal sites. The atoms within the supercell are then allowed to relax in order
to minimize the strain energy using Keating’s valence force field (VFF) method
[45, 46, 48], including bond stretching, bond bending, and bond bending—bond
stretching interactions:

nij 3

Ever = 22 { a2+ off ad]

1y b [(Rj—Ri)- (R — Ry) — cos 605 |
dOdO 1 k Jik™i

i k<j®%ij%ik
nnﬂ (R —R:) - (Rp —R: 14.1
+y Ad;; | (Rj —Ry) - (Rk—Ry)—cos 00,dd | , (14.1)
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where Ad;j = {(R —-R;)?—(d! ) } /dl/, R; is the coordinate of atom i, dQ. is the
ideal (unrelaxed) bond length between atoms i and j, and 6 ik is the ideal (unrelaxed)
angle of bonds j —i— k. ¥ denotes summation over the nearest neighbors
of atom i (nn; = 4 for diamond, zinc-blende, and wurtzite crystal structures).
The bond stretching, bond-angle bending, and bond-length—bond-angle interaction
coefficients a< >(

bulk materlals [46]

o), B ik, and o are directly related to the elastic constants in

Ci1+2C = \/4d0(3a+ﬁ 60)

3 aff—o?
Caa = \/;a+ﬁ+20' (142
The second-order bond-stretching term is included to correct the pressure depen-
dence of Young’s modulus dB/dP, where B = (C11 +2C12)/3. After the atomic
positions are relaxed by minimizing Evgr, the local strain tensor € at a cation site is
calculated by considering a tetrahedron formed by four nearest neighboring anions
[45]. The distorted (relaxed) tetrahedron edges (Ryz, Ra3, R34) are related to the

ideal (unrelaxed) tetrahedron edges (Ru, R(2)3, Rg4) via the local strain tensor € as
illustrated in Fig. 14.1:



14 Atomistic Pseudopotential Theory of Droplet Epitaxial GaAs/AlGaAs. . . 333

Fig. 14.1 Schematic to illustrate how the local strain is calculated in zinc blende semiconductors.
For a cation Ga (or In), three vectors (Ry2, Rz3, R34) forming a distorted tetrahedron after atomic
relaxation are related to the equivalent vectors (R[I'Z, R(Z’S, Rg4) of an ideal tetrahedron via the strain
tensor €

(Riz,Ra3,Raq) = (1+¢) - (R}, R, RYy). (14.3)

Solving the Schrodinger Equation for the Nanostructure. The single-particle
QD electronic states are obtained from solving the empirical pseudopotential
Schrédinger equation [35,46,47],

2
(—;V2+V(r) + |e|F-r) vi(r,0) = gy(r,0), (14.4)

within a basis of linear combination of strained Bloch bands (SLCBB) [43]. Here
{&,y;(r,0)} are the eigenvalues and eigenstates of state i with spin o. The bare
electron mass is given by m and 7 is Planck’s constant. An external electric field F
is optionally applied in the supercell [49] for investigating the influence of electric
field on QD electronic structure and excitons. The crystal (dot+ matrix) potential
V(r) is a superposition of overlapping screened atomic (pseudo) potentials centered
at the atomic positions:

V(r) =3 ba(r—R,—dqg), (14.5)

where V¥, (r — R, —dg) pertains to atom-type o at site dy in the nth primary
cell R, [46,47]. Thus, it forces upon eigenstates the correct atomically resolved
symmetry. The atomic potentials ¥, were empirically fit to experimental transition
energies, spin—orbit splittings, effective masses, deformation potentials of the bulk
materials, as well as the band offsets between two materials in a heterostructure
[46, 47]. Readers wishing to review the fitting of the GaAs/AlAs and InAs/GaAs
pseudopotentials in detail are referred to [47] and [46], respectively. Figure 14.2
shows the calculated square of the single-particle wave functions of the four lowest
electron states and the four highest hole states for both strain-free GaAs/AlGaAs and
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Fig. 14.2 The squared wave functions (3D isosurface and 2D in-plane mapping) of the first
four electron and first four hole states for an unstrained GaAs/Aly3Gap7As QD and a strained
InAs/GaAs QD, with the same lens shape and the same size (25.2 nm base and 3 nm height). For
analysis purposes, we project the wave functions of the QDs on bulk heavy-hole (HH), light-hole
(LH), split-off (SO) bands, and the lowest conduction band (CB). The wave functions are further
decomposed with respect to their axial angular momentum components (S, P, D)

strained InAs/GaAs QDs with a lens shape. The orbital characters of each state are
obtained by decomposing our atomistic electron and hole states with respect to their
axial angular momentum components (S, P, D, ...). The bulk Bloch band character
of the QD electronic states are gained by projecting them onto bulk Bloch bands at
the I'-point, including HH (|3/2,43/2)), LH (|3/2,£1/2)), spin—orbit split (SO)
(]1/2,41/2)), bands as well as conduction bands (CB).

Solution of the Many-Body Problem. Once the single particle states of the QD
are obtained, the excitonic energies and wave functions, including many-body
interactions are calculated in the framework of the CI scheme [44]. In this approach,
the excitonic wave functions W) are expanded in terms of single-substitution Slater
determinants @, ., constructed by promoting an electron from the occupied single-
particle state v to the unoccupied single-particle state c:
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vNL

= ZCW e (14.6)

v=1c=

The coefficients Célg of the CI expansion are calculated by diagonalizing the CI
Hamiltonian for a single exciton:

ch,v’c’ = <\PV,C|HCI|\PV’,C’> = (EC - SV)av,v’ Sc,c’ - Jvc,v’c’ + ch,v’c’7 (147)

where the Coulomb and exchange integrals J,.,» and K, are, respectively,
given by

/ /
ch/c’ _e2 Z // V/V r o IIIC r G)Wv,(r,a)lllc,(r’a)drdr/ (14.8)

o0 E(r,r')|[r—r/|

“(r,0) i (v, 0 )y (r,0)y, (v, 0’
Koo = 22//‘” V. ”/))";_(r,| W) g (149)

c,0’

The Coulomb potential in the two equations above are screened using a
position-dependent and size-dependent screening function €(r,r’) [44]. The
excitonic wavefunctions of Eq. (14.6) are built using 6 valence and 6 conduction
band states, including envelope functions with S, P, and D orbital character.

Post-processor Tools. The modification of the potential due to strain can be
obtained from the Pikus—Bir Hamiltonian [12] once the atoms within the supercell
are relaxed using the VFF method [45, 46, 48] and the strain tensor has been
calculated. A comprehensive study of the effect of strain on the band structure has
been performed by Bir and Pikus [13]. Here, a simplified Pikus—Bir Hamilton is
used to describe the strain-modified confinement potentials, which is, however, not
used in our atomistic pseudopotential calculation of the single-particle eigenstates,
but serves only as illustration of strain effects. Following [12], in which the model
is written in real space, the strain-modified conduction band state is given by

E.(r) = EX(r) +a.(r)Trle(r)], (14.10)

where E?(r) is the conduction band minimum (CBM) of bulk material at r and a, is
the hydrostatic deformation potential of the CBM, generally at I". For valence bands
including spin—orbit coupling, the Pikus—Bir Hamiltonian is

H,(r) = H° +a,Tr[e(r)] (14.11)

-200 100 10 0
b, || 010 |eat+|0-20]ey+[01 0 |e
001 00 1 00-2
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Fig. 14.3 Confinement potential of the lowest conduction band (CB), heavy-hole (HH), light-
hole (LH), and split-off (SO) bands for (a) a strain-free GaAs/Aly3Gagp 7As QD and (b) a strained
InAs/GaAs QD with lens shape of base size 30 and 3 nm height. The dashed lines in (b) represent
the bulk energy levels without considering strain. Ayy, is built-in strain-induced splitting of bulk
HH and LH bands
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where HSC is the spin—orbit Hamiltonian [12], a, is the hydrostatic deformation
potential of the VBM, b, is the biaxial deformation of the valence band maximum
(VBM), and d, is the deformation potential due to shear strain. The value of
deformation potentials a., a,, b,, and d, are taken from [12, 50]. The calculated
strain-modified confinement potentials of a strained InAs/GaAs and an unstrained
GaAs/AlGaAs QD using the Pikus—Bir model, as well as the natural band offsets at
their equilibrium lattice constants are shown in Fig. 14.3.

After we have calculated the many-body wavefunctions, we have access to
observables through the use of post-processor tools. For example, the excitonic
optical-absorption spectrum I(E) are calculated with the CI eigenstates of Eq. (14.6)

by using Fermi’s golden rule [51]:
E-E\’
— 14.12
(5] e

where M, Zh“e/ " (hiye ;) (wh| p|11/ej> is the transition dipole matrix between
hole state h; and electron state ej, E, is the exciton energy and the broadening of
spectral lines modeled by a chosen ©.

E) =Y |M,|*exp
v
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14.3 Geometry of Epitaxial GaAs/(Al,Ga)As QDs as Seen
by Excitonic Spectroscopy

Molecular spectroscopy has always been intimately connected with molecular
structure and symmetry through fundamental interpretative constructs such as
symmetry-mandated selection rules, level degeneracies, and polarization [52]. Yet,
the spectroscopy of epitaxial semiconductor QDs—Ilarge simple molecules made of
103-10° atoms such as Si, InAs, or GaAs—has been largely conducted and inter-
preted without basic knowledge of the underlying structure. Indeed, the extremely
rich (10-20 lines), high-resolution (~10 peV) single-dot excitonic spectra of such
simple “macromolecules” being now measured almost routinely [1, 2, 53-56] has
not been accompanied by detailed structural information, other than cross-sectional
scanning tunneling microscopy (XSTM) measurements [57, 58] which, however,
can produce a range of diverging structures from the same measured relaxation
profile on the same QD [39]. A possibly more accurate structure profile of epitaxy
QDs can be indirectly obtained from a full three-dimensional electron density
map measured by 9 coherent Bragg rod analysis (COBRA) method [59]. Attempts
to bridge the gap between spectra and structure have recently been made in the
context of self-assembled (strained) In(Ga)As/GaAs QDs by combining measured
excitonic spectra with XSTM structural assessment of the same QD sample, using
a quantitative excitonic theory as the bridge. It was found [39] that the calculated
excitonic spectra produced by using as input a range of structural models offered
by XSTM conflicted with the experimental spectra in a number of crucial aspects.
However, a structure derived theoretically by matching the calculated spectra with
experiment did agree with the basic data used to derive XSTM structural models
(i.e., the measured outer relaxation profile of the cleaved QD). It was concluded that
high-resolution excitonic spectra contain significant structural information that can
be unearthed using theory as a mining tool.

Recent XSTM measurements [57] suggest that droplet GaAs QDs have Gaussian
shape instead of the lens shape often deduced from atomic force microscope (AFM)
measurements [56, 60—-62] and QD heights of around 14 nm [57, 62]. The exciton
band gap measured by optical spectroscopy is about 1.7-1.9eV [25, 56,60, 63, 64].
In [41] we discussed the spectra vs. structure link for such QDs. We found
that the GaAs QDs grown by droplet epitaxy have indeed a Gaussian-shape, as
suggested by the XSTM measurements [57]. However, we found that QDs as seen
by optical spectroscopy correspond to QDs with 2—4 nm height rather than the 14 nm
determined by XSTM. The fact that XSTM sees tall QDs and spectroscopy sees
flat QDs points to the fact that different QDs must have been probed. This was
uncovered by theoretical simulations showing that the two experiments could not
possibly correspond to the same QD.

Measured Structure. GaAs/GaAlAs QDs grown by droplet epitaxy in Sakoda’s
group [63] were initially described, on the basis of AFM measurements of uncapped
QDs [62], as being lens shaped [56, 60—62] (schematic in left inset of Fig. 14.4),
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Fig. 14.4 Atomistic many-body pseudopotential calculated exciton emission energy of Gaussian-
shaped, lens-shaped, and disk-shaped GaAs/ Aly3Gagp7As QDs (base size in diameter given in
parentheses) as a function of QD height. The base diameter of Gaussian-shaped QD is defined by
the largest QD lateral size, which is truncated by the requirement that the QD material must be
thicker than 1 ML. Taken from [41]. ©(2011) by the American Physical Society

with averaged [110]-elongated base size of 70 x 50 nm (spread +10%) and a QD
height of 14 nm (spread +19 %) [62]. Subsequently, XSTM measurement of these
capped QDs were performed by Keizer et al. [57] showing instead a rather different,
Gaussian shape (schematic in right inset to Fig. 14.4) with an average base size of
40 nm, height of 14 nm, and a size distribution of 10-20%.

Spectra of Single Exciton. The measured spectroscopy [25, 56, 60, 63, 64] of the
QDs grown by Sakoda’s group [63] shows that the fundamental exciton emission
from many different spectroscopy measurements were in a range of 1.7-1.9eV.

Calculated Spectra for the Measured Structure Lead to Conflicts with the Assumed
Structure. We have calculated the exciton gap energy of lens-shaped, Gaussian-
shaped, and disk-shaped strain-free GaAs/AlGaAs QDs using our atomistic many-
body pseudopotential method (Fig. 14.4). Notwithstanding the shape, the QDs
with calculated exciton energy in the range of the experimental measured exciton
energy of 1.7-1.9eV have a much smaller QD height, of only 1-4 nm compared
to the experimentally stated value (~14nm) by both AFM [62] and XSTM [57]
approaches. This discrepancy, being well outside the measured size distribution in
the sample, indicates that the QDs measured by AFM or XSTM are not the same
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as the QDs seen by optical spectroscopy. We conclude' that the QD, the height
of which was measured to be 14 nm in [57, 62], is not the same QD that was
used in [25, 56, 60, 63, 64] to measure the band gap and exciton fine structure. It
is worth mentioning that the QD height decreases from 14 nm when the QDs are
grown by droplet epitaxy on a (001)-oriented GaAs substrate [57] to much smaller
value of 2.3 & 0.6 nm when they are grown on a (311)A-oriented GaAs substrate
[65]. However, the XSTM [57] and spectroscopy [25, 56, 56, 60, 63] measurements
considered here, as well as theory, are all on (001) substrates.

Whereas to first order, the magnitude of the excitonic emission energy reveals
information mostly on the QD height, a more detailed measurement can also
distinguish different QD shapes. We see from Fig. 14.4 that for the same base size
and QD height, the lens-shape QDs have an exciton gap energy that is smaller by
as much as ~40meV than that of Gaussian-shaped QDs and that this is so in a
wide range of QD heights of 1-12 nm. If droplet epitaxy grown GaAs/AlGaAs QDs
are known to be either lens shaped or Gaussian shaped, this exciton shift is large
enough to distinguish the QD shape if the base size, QD height, and exciton energy
are accurately measured.

The Shape of the QD as Seen by the Sequence of Multi-exciton Lines. Experimen-
tally, different types of excitons can be created: neutral monoexciton X° (1e,1h) or
neutral biexciton XX° (2e,2h), as well as charged excitons such as positive trion
X (le,2h), negative trion X~ (2e,1h), positive biexciton XX+ (2e,3h), and negative
biexciton XX~ (3e,2h), etc. Figure 14.5 shows the calculated emission spectrum
when a single electron—hole pair recombines within such a multi-exciton complex
[66]. The spectra consist of a few lines. Specially for XX and XX~ we see several
manifolds of four and two lines, respectively, due to various S and P recombination
channels and e-h exchange interaction induced FSS of multi-exciton complexes.
The emission energy reflects both direct Coulomb interactions and correlation
effects between holes and electrons; these interactions ultimately reflect the overlap
of the corresponding wave functions which is sensitive to the shape and size of the
QD. Such complex and implicit dependences between the sequence of multi-exciton
lines (“multi-exciton barcode”) and QD structure were used recently to decipher
structural features from excitonic features. It was proposed [39] that such barcodes
consisting of X, X*, X~, XX, XX, XX, and X2 lines can be correlated with
geometrical features of the strained SK-grown InAs/GaAs QDs.

Here we will use this barcoding approach to unearth structural features of another
class of QDs based on unstrained, droplet epitaxy grown GaAs/GaAlAs. For this
purpose we have calculated the sequence of multi-excitonic lines for a large number
of QDs with three different basic shapes (lens shape, Gaussian shape, and disk
shape) and many structural parameters within these shapes (height, base size, and
shape anisotropy). Using this barcoding method, we can build a link between the
structure of strain-free GaAs/AlGaAs QDs and their excitonic emission spectra.

'We are grateful to Prof. PM. Koenraad and Dr. M. Takaaki for clarifying to us now that the QDs
used in XSTM were different than those used for PL measurements.
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Fig. 14.5 Excitonic emission spectrum of (a) symmetric lens-shaped and (b) symmetric
Gaussian-shaped GaAs/Alg 3Gag 7As QDs with base size of b = 40 x 40 nm and QD height & = 2,
3, and 4 nm. Taken from [41]. ©(2011) by the American Physical Society

However, at present, the available experimentally measured excitonic emission
spectrum of such QDs includes only neutral monoexciton X°, positive and negative
trions X and X, and neutral biexciton XX° transitions [25, 56, 56, 60, 63].
Figure 14.5 shows the atomistic calculated emission spectra (where we have aligned
the energy of the monoexciton X lines) for lens-shaped (Fig. 14.5a) and Gaussian-
shaped (Fig. 14.5b) QDs. In this partial excitonic emission spectrum, we find that
the sequence of the following lines always obeys some “hard rules” [39],

X~ <XX <Xxx°<Xx° (14.13)

The hard rules observed in all experimental spectra [25, 56, 60, 63, 64] are that
(i) both X~ and XX are red shifted with respect to X (i.e., have positive binding
energies) and (ii) the XX line always lies between X and X~. Hard rule (iii) [39],
related to X 2, has not been measured yet for GaAs/AlGaAs QDs. These three hard
rules plus the position of the X° line will provide the size of the base and the height
of the QD [39]. From hard rules (i) and (ii) we estimate that the QDs seen in the
optical spectroscopy measurement has a base diameter of 30—40 nm.

Interestingly, we find that the energetic relative position of the positive trion
(X1) is related to the QD shape. Figure 14.5a shows that in lens-shaped QDs
the positive trion (X ™) is always redshifted with respect to neutral monoexciton
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(X%). In contrast to lens-shaped QDs, in Gaussian-shaped QDs (Fig. 14.5b) the
X" has a transition from redshift to blueshift, when the QD height decreases,
in agreement with experimental measurements [56]. Furthermore, our calculated
transition energy Eyo = 1.758¢eV also agrees with the experimental value of
1.748 eV [56]. Thus, we conclude that Gaussian shape is more likely in droplet
epitaxy-grown GaAs/AlGaAs QDs.

FSS of Mono-exciton vs. QD Shape. The FSS of an exciton [31, 66-68] refers
to the splitting of the optical-allowed (bright) exciton states due to both intrinsic
crystal asymmetry as well as external shape anisotropy. The role of these two
factors has been often misconceived in the literature [56, 60, 63, 69], leading to
the misuse of the FSS to infer shape anisotropy: In the Luttinger Hamiltonian
representation, the effective mass of the hole is anisotropic in that its value along
(100) is different from that along (110). Thus, if one ignores the fact that the QDs
under consideration are made of an atomistically discrete material, the symmetry of
circular-based QD in this Hamiltonian is Cy,. Despite this, numerous papers [25,70]
claimed that circular-based lens-shape QDs have D,; symmetry. This is because in
a continuum approximation the [110] and [110] directions are equivalent. In such
a D,; symmetry, the fourfold degenerate exciton (originating from an electron of
J, ==+1/2 and a heavy hole of J, = 4-3/2) splits into doubly degenerate bright state
(I's) and two nondegenerate dark states (I'; and I', respectively). Because I's is
degenerate in this approximation, the FSS is zero for cylindrically symmetric QDs
under the continuum point of view. To account for the observed nonzero FSS, the
continuum theory assumes that the FSS originates, in its entirety, from deviations
from cylindrical symmetry [56, 60, 63, 69]. This shape anisotropy (e.g., elongation
in the [110] direction [56, 60, 63]) of the QD lowers the D,; symmetry to C,,. The
doubly degenerate bright I'5 states splits into two nondegenerate states (I'; and I's
symmetry). The lifting of the degeneracy of the two bright exciton states is referred
to as FSS and is used under the continuum point of view to fit the measured FSS
into a geometric shape anisotropy. If the base center of the QD does not anchor
on a common atom (namely, As atom in GaAs/AlGaAs), then the symmetry of the
circular-based QD is Cj, rather than C;,. In the C| point group, the two bright exciton
states belong to the same irreducible representation and they will couple, if their
energy are close enough (namely FSS < 5 ueV [68]). For QDs with FSS > 5ueV,
the FSS is not sensitive anymore to the choice of the QD base center.

In reality, the [110] and [110] directions are nonequivalent for QDs with zinc-
blende crystal lattice. This leads to the fact that a QD with cylindrical shape does not
have the commonly thought D,; symmetry, but already has the lower C, symmetry.
Thus, even a shape-symmetric QD has nonzero FSS. Although, this intrinsic
crystal anisotropy was pointed out many times in atomistic theories[35,45, 67], its
contribution to the FSS has often been neglected by the community [56,60, 63, 69].
Figure 14.6 shows the calculated atomistic many-body pseudopotential FSS for
symmetric and asymmetric Gaussian-shaped QDs as well as symmetric lens-shaped
QDs. In agreement with the atomistic point of view, we see that even the shape-
symmetric Gaussian-shaped QD with base size of 30 nm has already a large FSS
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Fig. 14.6 FSS of neutral mono-excitons of GaAs/AlGaAs QDs as a function of exciton emissi