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Atomistic Pseudopotential Theory of Droplet
Epitaxial GaAs/AlGaAs Quantum Dots
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Abstract In this chapter, following the introduction to the basic electronic
properties of semiconductor quantum dots (QDs), we first briefly introduce our
atomistic methodology for multi-million atom nanostructures, which is based
on the empirical pseudopotential method for the solution of the single-particle
problem combined with the configuration interaction (CI) scheme for the many-
body problem which were developed in the solid-state theory group at the National
Renewable Energy Laboratory over the past two decades. This methodology,
described in Sect. 14.2, can be used to provide quantitative predictions of the
electronic and optical properties of colloidal nanostructures containing thousands
of atoms as well as epitaxial nanostructures containing several millions of atoms.
In Sect. 14.3, we show how the multi-exciton spectra of a droplet epitaxy QD
encodes nontrivial structural information that can be uncovered by atomistic many-
body pseudopotential calculations. In Sect. 14.4, we investigate the vertical electric
field tuning of the fine-structure splitting (FSS) in several InGaAs and GaAs QDs
using our atomistic methodology. We reveal the influence of the atomic-scale
structure on the exciton FSS in QDs. Finally, a comprehensive and quantitative
analysis of the different mechanisms leading to HH–LH mixing in QDs is presented
in Sect. 14.5. The novel quantum transmissibility of HH–LH mixing mediated by
intermediate states is discovered. The design rules for optimization of the HH–LH
mixing in QDs are given in this section.
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14.1 Introduction

Until recently, epitaxial quantum dots (QDs) were mostly made by a growth
protocol (“Stranski–Krastanov”, or SK) [1–3] requiring that the QD material has a
significantly different lattice constant (generally larger) than the substrate on which
it is grown, e.g., InAs-on-GaAs [1] or InP-on-GaP [3]. Lattice-matched material
pairs such as GaAs on AlGaAs or InAs on GaSb were excluded until recently.
The advent of the “droplet epitaxy” growth mode [4–6] (involving the growth of
cation-element droplets on a substrate and subsequently their crystallization into
QDs by incorporation of the anion element) has enabled the epitaxial growth of
lattice-matched pairs, thus opening a window to the understanding of the physics of
confinement in unstrained semiconductor material such as GaAs. GaAs QDs have
recently also been grown using an alternative approach [7–11] where nanoholes are
etched on the surface of an AlGaAs layer. The holes are etched by arsenic debt
epitaxy (also referred to as local droplet etching) and filled with GaAs. Migration
of the GaAs toward the bottom of the holes leads to GaAs QD formation. The
QDs are subsequently capped with AlGaAs. The lattice-mismatch-induced strain in
In(Ga)As/GaAs QDs represents a main difference from unstrained GaAs/AlGaAs
QDs and it markedly modifies the bulk band structure. Figure 14.3 shows that
the built-in biaxial strain present in InAs QDs embedded in GaAs [12, 13] lifts
the degeneracy of the bulk heavy-hole (HH) and light-hole (LH) bands by as
much as 0.18 eV, without considering the quantum confinement effect. The built-
in shear strain also couples the HH and LH bands and it appears in the Pikus–Bir
Hamiltonian as off-diagonal term [12, 13]. Furthermore, in the droplet case, GaAs
represents the QD material, whereas in InAs/GaAs the barrier is GaAs and the QD is
InAs. Therefore, the conduction and valence band offsets (confinement potentials)
in these two types of QDs are different as shown in Fig. 14.3. Moreover, InAs
and GaAs differ in bandgap, electron, and hole effective masses and the relative
positions of the conduction band states at Γ,X , and L. It is thus by no means obvious
that there will be a similarity in the electronic structure results of GaAs/AlGaAs
with InAs/GaAs. Indeed, we find a very different electronic structure in one critical
aspect: the order of hole states. In GaAs/AlGaAs the LH-derived S-like state lies
between two HH-derived P-like hole states, whereas in InAs/GaAs the LH state is
well below the HH-derived P-like hole states.

The symmetry reduction of low-dimensional nanostructures can lead to mixing
between electronic states not only from the same bulk band [14] but also from
different valleys of the Brillouin zone and different bulk bands [15–18], which
are forbidden in their parent bulk semiconductors. Among various possibilities of
electronic state mixing, the HH–LH mixing in semiconductor QDs has attracted
much attention over the last few years for its profound effects on electronic and
optical properties. Specifically, HH–LH mixing is essential to tune the exciton fine-
structure splitting (FSS) of an epitaxial grown QD using a vertical electric field
[19–21], since it can manipulate FSS only via acting on the bulk |Z〉 component
of the Bloch functions. The QD ground hole state has dominantly bulk HH
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character [21], whereas the bulk HH band, |3/2,±3/2〉=∓(|X〉± i|Y 〉)| ↑,↓〉/√2,
contains exclusively |X〉, |Y 〉 components, and the bulk LH band |3/2,±1/2〉 =
(1/

√
3)[(|X〉 ± i|Y 〉)| ↓,↑〉+√

2|Z〉| ↑,↓〉] contains |Z〉 component. Thus, mixing
LH with HH leads to the control of the FSS via vertical electric field Fz. HH–
LH mixing also leads to fast spin decoherence of HH-dominated QD holes [22]
by introducing additional efficient spin relaxation channels belong to LH band.
In addition, both experimentally and theoretically observed optical polarization
anisotropy of neutral excitons (e.g., X0 and XX0) and charged trion (e.g., X−1 and
X+1) radiative recombination is known to arise from HH–LH mixing [23–27].

In the remainder of this chapter, we first briefly introduce our atomistic method-
ology for multi-million atom nanostructures, which is based on the empirical
pseudopotential method [28], combined with the configuration interaction (CI)
scheme for the many-body problem developed by solid-state theory group at NREL
over the past two decades. This methodology, described in Sect. 14.2, can be
used to provide quantitative predictions of the electronic and optical properties
of colloidal nanostructures [15, 29–34] containing thousands of atoms as well as
epitaxial nanostructures [17, 18, 21, 35–41] containing several millions of atoms. In
Sect. 14.3, we then show how the multi-exciton spectra of an unstrained GaAs QD
encodes nontrivial structural information that can be uncovered by atomistic many-
body pseudopotential calculations. In Sect. 14.4, we investigate the vertical electric
field tuning of the FSS in several InGaAs and GaAs QDs and reveal the influence
of the atomic-scale structure on the exciton FSS in QDs. Finally, in Sect. 14.5 a
comprehensive and quantitative analysis of the different mechanisms leading to
HH–LH mixing in QDs is presented. We specifically highlight the discovery of
the quantum transmissibility of the HH–LH mixing mediated by QD intermediate
states. The design rules for optimization of the HH–LH mixing in QDs are given in
this section.

14.2 Atomistic Many-Body Pseudopotential Method
for Multi-million Atom Nanostructures

The basis of our methodology, which was reviewed recently by one of us in [42],
is divided into four parts, atomic position relaxation, Schrödinger equation for
single-particle electronic states, many-body Hamiltonian accounting for Coulomb
interaction and correlation effect, and post-processors for optical properties, all
feeding into each other. The calculation of the single-particle electronic states
requires the input of the geometry and relaxation of the atomic positions to minimize
strain. The development of empirical pseudopotentials for each atom type is the
the Schrödinger equation. The ensuing eigenfunctions are fed into a configuration
H H i n t e r a c t i o n ( C I ) t r e a t m e n t t o o b t a i n e x c i t a t i o n s . F i n a l l y , f r o m t h e m a n y - b o d y
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wavefunctions, observables can be obtained through the use of post-processor tools.
These different components will be briefly discussed below and we refer to [28,42–
47] for more detail.

Calculation of Atomistic Strain and Atom Position Relaxation. The first step
is to construct a simulation cell (supercell) containing a QD with an assumed
shape, size, and composition (gradient) and place the atoms on ideal zinc-blende
crystal sites. The atoms within the supercell are then allowed to relax in order
to minimize the strain energy using Keating’s valence force field (VFF) method
[45, 46, 48], including bond stretching, bond bending, and bond bending–bond
stretching interactions:

EVFF = ∑
i

nni

∑
j

3
8

[
α(1)

i j Δd2
i j +α(2)

i j Δd3
i j

]

+∑
i

nni

∑
k< j

3β jik

8d0
i jd

0
ik

[
(Rj −Ri) · (Rk −Ri)− cosθ 0

jikd0
i jd

0
ik

]

+∑
i

nni

∑
k< j

3σ jik

8
√

d0
i jd

0
ik

Δdi j

[
(Rj −Ri) · (Rk−Ri)−cosθ 0

jikd0
i jd

0
ik

]
, (14.1)

where Δdi j =
[
(Ri −Rj)

2 − (d0
i j)

2
]
/d0

i j, Ri is the coordinate of atom i, d0
i j is the

ideal (unrelaxed) bond length between atoms i and j, and θ 0
i jk is the ideal (unrelaxed)

angle of bonds j − i − k. ∑nni
i denotes summation over the nearest neighbors

of atom i (nni = 4 for diamond, zinc-blende, and wurtzite crystal structures).
The bond stretching, bond-angle bending, and bond-length–bond-angle interaction

coefficients α(1)
i j (≡ α), β jik, and σ jik are directly related to the elastic constants in

bulk materials [46]:

C11 +2C12 =

√
3

4d0 (3α +β −6σ)

C11 −C12 =

√
3
d0 β

C44 =

√
3
d0

αβ −σ2

α +β +2σ
. (14.2)

The second-order bond-stretching term is included to correct the pressure depen-
dence of Young’s modulus dB/dP, where B = (C11 + 2C12)/3. After the atomic
positions are relaxed by minimizing EVFF, the local strain tensor ε at a cation site is
calculated by considering a tetrahedron formed by four nearest neighboring anions
[45]. The distorted (relaxed) tetrahedron edges (R12, R23, R34) are related to the
ideal (unrelaxed) tetrahedron edges (R0

12, R0
23, R0

34) via the local strain tensor ε as
illustrated in Fig. 14.1:



14 Atomistic Pseudopotential Theory of Droplet Epitaxial GaAs/AlGaAs. . . 333

Fig. 14.1 Schematic to illustrate how the local strain is calculated in zinc blende semiconductors.
For a cation Ga (or In), three vectors (R12, R23, R34) forming a distorted tetrahedron after atomic
relaxation are related to the equivalent vectors (R0

12, R0
23, R0

34) of an ideal tetrahedron via the strain
tensor ε

(R12,R23,R34) = (1+ ε) · (R0
12,R

0
23,R

0
34). (14.3)

Solving the Schrödinger Equation for the Nanostructure. The single-particle
QD electronic states are obtained from solving the empirical pseudopotential
Schrödinger equation [35, 46, 47],

(
− h̄2

2m
∇2 +V (r)+ |e|F · r

)
ψi(r,σ) = εiψi(r,σ), (14.4)

within a basis of linear combination of strained Bloch bands (SLCBB) [43]. Here
{εi,ψi(r,σ)} are the eigenvalues and eigenstates of state i with spin σ . The bare
electron mass is given by m and h̄ is Planck’s constant. An external electric field F
is optionally applied in the supercell [49] for investigating the influence of electric
field on QD electronic structure and excitons. The crystal (dot + matrix) potential
V (r) is a superposition of overlapping screened atomic (pseudo) potentials centered
at the atomic positions:

V (r) = ∑
n

∑
α

v̂α(r−Rn −dα), (14.5)

where v̂α(r − Rn − dα) pertains to atom-type α at site dα in the nth primary
cell Rn [46, 47]. Thus, it forces upon eigenstates the correct atomically resolved
symmetry. The atomic potentials v̂α were empirically fit to experimental transition
energies, spin–orbit splittings, effective masses, deformation potentials of the bulk
materials, as well as the band offsets between two materials in a heterostructure
[46, 47]. Readers wishing to review the fitting of the GaAs/AlAs and InAs/GaAs
pseudopotentials in detail are referred to [47] and [46], respectively. Figure 14.2
shows the calculated square of the single-particle wave functions of the four lowest
electron states and the four highest hole states for both strain-free GaAs/AlGaAs and
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Fig. 14.2 The squared wave functions (3D isosurface and 2D in-plane mapping) of the first
four electron and first four hole states for an unstrained GaAs/Al0.3Ga0.7As QD and a strained
InAs/GaAs QD, with the same lens shape and the same size (25.2 nm base and 3 nm height). For
analysis purposes, we project the wave functions of the QDs on bulk heavy-hole (HH), light-hole
(LH), split-off (SO) bands, and the lowest conduction band (CB). The wave functions are further
decomposed with respect to their axial angular momentum components (S, P, D)

strained InAs/GaAs QDs with a lens shape. The orbital characters of each state are
obtained by decomposing our atomistic electron and hole states with respect to their
axial angular momentum components (S, P, D, . . . ). The bulk Bloch band character
of the QD electronic states are gained by projecting them onto bulk Bloch bands at
the Γ-point, including HH (|3/2,±3/2〉), LH (|3/2,±1/2〉), spin–orbit split (SO)
(|1/2,±1/2〉), bands as well as conduction bands (CB).

Solution of the Many-Body Problem. Once the single particle states of the QD
are obtained, the excitonic energies and wave functions, including many-body
interactions are calculated in the framework of the CI scheme [44]. In this approach,
the excitonic wave functions Ψ(i) are expanded in terms of single-substitution Slater
determinants Φv,c, constructed by promoting an electron from the occupied single-
particle state v to the unoccupied single-particle state c:
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Ψ(i) =
Nv

∑
v=1

Nc

∑
c=1

C(i)
v,cΦv,c. (14.6)

The coefficients C(i)
v,c of the CI expansion are calculated by diagonalizing the CI

Hamiltonian for a single exciton:

Hvc,v′c′ ≡
〈
Ψv,c|HCI|Ψv′,c′

〉
= (εc − εv)δv,v′δc,c′ − Jvc,v′c′ +Kvc,v′c′ , (14.7)

where the Coulomb and exchange integrals Jvc,v′c′ and Kvc,v′c′ are, respectively,
given by

Jvc,v′c′ = e2 ∑
σ ,σ ′

∫ ∫ ψ∗
v (r,σ)ψ∗

c (r
′,σ ′)ψv′(r,σ)ψc′(r′,σ ′)

ε(r,r′)|r− r′| drdr′ (14.8)

Kvc,v′c′ = e2 ∑
σ ,σ ′

∫ ∫ ψ∗
v (r,σ)ψ∗

c (r
′,σ ′)ψc′(r,σ)ψv′(r′,σ ′)

ε(r,r′)|r− r′| drdr′. (14.9)

The Coulomb potential in the two equations above are screened using a
position-dependent and size-dependent screening function ε(r,r′) [44]. The
excitonic wavefunctions of Eq. (14.6) are built using 6 valence and 6 conduction
band states, including envelope functions with S, P, and D orbital character.

Post-processor Tools. The modification of the potential due to strain can be
obtained from the Pikus–Bir Hamiltonian [12] once the atoms within the supercell
are relaxed using the VFF method [45, 46, 48] and the strain tensor has been
calculated. A comprehensive study of the effect of strain on the band structure has
been performed by Bir and Pikus [13]. Here, a simplified Pikus–Bir Hamilton is
used to describe the strain-modified confinement potentials, which is, however, not
used in our atomistic pseudopotential calculation of the single-particle eigenstates,
but serves only as illustration of strain effects. Following [12], in which the model
is written in real space, the strain-modified conduction band state is given by

Ec(r) = E0
c (r)+ac(r)Tr[ε(r)], (14.10)

where E0
c (r) is the conduction band minimum (CBM) of bulk material at r and ac is

the hydrostatic deformation potential of the CBM, generally at Γ. For valence bands
including spin–orbit coupling, the Pikus–Bir Hamiltonian is

Hv(r) = HSO +avTr[ε(r)] (14.11)

−bv

⎡
⎣
⎛
⎝

−2 0 0
0 1 0
0 0 1

⎞
⎠εxx +

⎛
⎝

1 0 0
0 −2 0
0 0 1

⎞
⎠εyy +

⎛
⎝

1 0 0
0 1 0
0 0 −2

⎞
⎠εzz

⎤
⎦
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a b

Fig. 14.3 Confinement potential of the lowest conduction band (CB), heavy-hole (HH), light-
hole (LH), and split-off (SO) bands for (a) a strain-free GaAs/Al0.3Ga0.7As QD and (b) a strained
InAs/GaAs QD with lens shape of base size 30 and 3 nm height. The dashed lines in (b) represent
the bulk energy levels without considering strain. ΔHL is built-in strain-induced splitting of bulk
HH and LH bands

−
√

3dv

⎡
⎣
⎛
⎝

0 −1 0
−1 0 0
0 0 0

⎞
⎠εxy +

⎛
⎝

0 0 0
0 0 −1
0 −1 0

⎞
⎠εyz +

⎛
⎝

0 0 −1
0 0 0
−1 0 0

⎞
⎠εzx

⎤
⎦ ,

where HSO is the spin–orbit Hamiltonian [12], av is the hydrostatic deformation
potential of the VBM, bv is the biaxial deformation of the valence band maximum
(VBM), and dv is the deformation potential due to shear strain. The value of
deformation potentials ac, av, bv, and dv are taken from [12, 50]. The calculated
strain-modified confinement potentials of a strained InAs/GaAs and an unstrained
GaAs/AlGaAs QD using the Pikus–Bir model, as well as the natural band offsets at
their equilibrium lattice constants are shown in Fig. 14.3.

After we have calculated the many-body wavefunctions, we have access to
observables through the use of post-processor tools. For example, the excitonic
optical-absorption spectrum I(E) are calculated with the CI eigenstates of Eq. (14.6)
by using Fermi’s golden rule [51]:

I(E) = ∑
v
|Mv|2 exp

[
−
(

E −Ev

σ

)2
]
, (14.12)

where Mv = ∑hi,e j
C(v)(hi,e j)〈ψhi | p̂|ψe j〉 is the transition dipole matrix between

hole state hi and electron state e j, Ev is the exciton energy and the broadening of
spectral lines modeled by a chosen σ .
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14.3 Geometry of Epitaxial GaAs/(Al,Ga)As QDs as Seen
by Excitonic Spectroscopy

Molecular spectroscopy has always been intimately connected with molecular
structure and symmetry through fundamental interpretative constructs such as
symmetry-mandated selection rules, level degeneracies, and polarization [52]. Yet,
the spectroscopy of epitaxial semiconductor QDs—large simple molecules made of
103–106 atoms such as Si, InAs, or GaAs—has been largely conducted and inter-
preted without basic knowledge of the underlying structure. Indeed, the extremely
rich (10–20 lines), high-resolution (∼10 μeV) single-dot excitonic spectra of such
simple “macromolecules” being now measured almost routinely [1, 2, 53–56] has
not been accompanied by detailed structural information, other than cross-sectional
scanning tunneling microscopy (XSTM) measurements [57, 58] which, however,
can produce a range of diverging structures from the same measured relaxation
profile on the same QD [39]. A possibly more accurate structure profile of epitaxy
QDs can be indirectly obtained from a full three-dimensional electron density
map measured by 9 coherent Bragg rod analysis (COBRA) method [59]. Attempts
to bridge the gap between spectra and structure have recently been made in the
context of self-assembled (strained) In(Ga)As/GaAs QDs by combining measured
excitonic spectra with XSTM structural assessment of the same QD sample, using
a quantitative excitonic theory as the bridge. It was found [39] that the calculated
excitonic spectra produced by using as input a range of structural models offered
by XSTM conflicted with the experimental spectra in a number of crucial aspects.
However, a structure derived theoretically by matching the calculated spectra with
experiment did agree with the basic data used to derive XSTM structural models
(i.e., the measured outer relaxation profile of the cleaved QD). It was concluded that
high-resolution excitonic spectra contain significant structural information that can
be unearthed using theory as a mining tool.

Recent XSTM measurements [57] suggest that droplet GaAs QDs have Gaussian
shape instead of the lens shape often deduced from atomic force microscope (AFM)
measurements [56, 60–62] and QD heights of around 14 nm [57, 62]. The exciton
band gap measured by optical spectroscopy is about 1.7–1.9 eV [25, 56, 60, 63, 64].
In [41] we discussed the spectra vs. structure link for such QDs. We found
that the GaAs QDs grown by droplet epitaxy have indeed a Gaussian-shape, as
suggested by the XSTM measurements [57]. However, we found that QDs as seen
by optical spectroscopy correspond to QDs with 2–4 nm height rather than the 14 nm
determined by XSTM. The fact that XSTM sees tall QDs and spectroscopy sees
flat QDs points to the fact that different QDs must have been probed. This was
uncovered by theoretical simulations showing that the two experiments could not
possibly correspond to the same QD.

Measured Structure. GaAs/GaAlAs QDs grown by droplet epitaxy in Sakoda’s
group [63] were initially described, on the basis of AFM measurements of uncapped
QDs [62], as being lens shaped [56, 60–62] (schematic in left inset of Fig. 14.4),
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Fig. 14.4 Atomistic many-body pseudopotential calculated exciton emission energy of Gaussian-
shaped, lens-shaped, and disk-shaped GaAs/ Al0.3Ga0.7As QDs (base size in diameter given in
parentheses) as a function of QD height. The base diameter of Gaussian-shaped QD is defined by
the largest QD lateral size, which is truncated by the requirement that the QD material must be
thicker than 1 ML. Taken from [41]. ©(2011) by the American Physical Society

with averaged [11̄0]-elongated base size of 70× 50 nm (spread ±10%) and a QD
height of 14 nm (spread±19%) [62]. Subsequently, XSTM measurement of these
capped QDs were performed by Keizer et al. [57] showing instead a rather different,
Gaussian shape (schematic in right inset to Fig. 14.4) with an average base size of
40 nm, height of 14 nm, and a size distribution of 10–20%.

Spectra of Single Exciton. The measured spectroscopy [25, 56, 60, 63, 64] of the
QDs grown by Sakoda’s group [63] shows that the fundamental exciton emission
from many different spectroscopy measurements were in a range of 1.7–1.9 eV.

Calculated Spectra for the Measured Structure Lead to Conflicts with the Assumed
Structure. We have calculated the exciton gap energy of lens-shaped, Gaussian-
shaped, and disk-shaped strain-free GaAs/AlGaAs QDs using our atomistic many-
body pseudopotential method (Fig. 14.4). Notwithstanding the shape, the QDs
with calculated exciton energy in the range of the experimental measured exciton
energy of 1.7–1.9 eV have a much smaller QD height, of only 1–4 nm compared
to the experimentally stated value (∼14 nm) by both AFM [62] and XSTM [57]
approaches. This discrepancy, being well outside the measured size distribution in
the sample, indicates that the QDs measured by AFM or XSTM are not the same
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as the QDs seen by optical spectroscopy. We conclude1 that the QD, the height
of which was measured to be 14 nm in [57, 62], is not the same QD that was
used in [25, 56, 60, 63, 64] to measure the band gap and exciton fine structure. It
is worth mentioning that the QD height decreases from 14 nm when the QDs are
grown by droplet epitaxy on a (001)-oriented GaAs substrate [57] to much smaller
value of 2.3± 0.6 nm when they are grown on a (311)A-oriented GaAs substrate
[65]. However, the XSTM [57] and spectroscopy [25, 56, 56, 60, 63] measurements
considered here, as well as theory, are all on (001) substrates.

Whereas to first order, the magnitude of the excitonic emission energy reveals
information mostly on the QD height, a more detailed measurement can also
distinguish different QD shapes. We see from Fig. 14.4 that for the same base size
and QD height, the lens-shape QDs have an exciton gap energy that is smaller by
as much as ∼40 meV than that of Gaussian-shaped QDs and that this is so in a
wide range of QD heights of 1–12 nm. If droplet epitaxy grown GaAs/AlGaAs QDs
are known to be either lens shaped or Gaussian shaped, this exciton shift is large
enough to distinguish the QD shape if the base size, QD height, and exciton energy
are accurately measured.

The Shape of the QD as Seen by the Sequence of Multi-exciton Lines. Experimen-
tally, different types of excitons can be created: neutral monoexciton X0 (1e,1h) or
neutral biexciton XX0 (2e,2h), as well as charged excitons such as positive trion
X+ (1e,2h), negative trion X− (2e,1h), positive biexciton XX+ (2e,3h), and negative
biexciton XX− (3e,2h), etc. Figure 14.5 shows the calculated emission spectrum
when a single electron–hole pair recombines within such a multi-exciton complex
[66]. The spectra consist of a few lines. Specially for XX+ and XX− we see several
manifolds of four and two lines, respectively, due to various S and P recombination
channels and e–h exchange interaction induced FSS of multi-exciton complexes.
The emission energy reflects both direct Coulomb interactions and correlation
effects between holes and electrons; these interactions ultimately reflect the overlap
of the corresponding wave functions which is sensitive to the shape and size of the
QD. Such complex and implicit dependences between the sequence of multi-exciton
lines (“multi-exciton barcode”) and QD structure were used recently to decipher
structural features from excitonic features. It was proposed [39] that such barcodes
consisting of X , X+, X−, XX , XX+, XX−, and X−2 lines can be correlated with
geometrical features of the strained SK-grown InAs/GaAs QDs.

Here we will use this barcoding approach to unearth structural features of another
class of QDs based on unstrained, droplet epitaxy grown GaAs/GaAlAs. For this
purpose we have calculated the sequence of multi-excitonic lines for a large number
of QDs with three different basic shapes (lens shape, Gaussian shape, and disk
shape) and many structural parameters within these shapes (height, base size, and
shape anisotropy). Using this barcoding method, we can build a link between the
structure of strain-free GaAs/AlGaAs QDs and their excitonic emission spectra.

1We are grateful to Prof. P.M. Koenraad and Dr. M. Takaaki for clarifying to us now that the QDs
used in XSTM were different than those used for PL measurements.
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However, at present, the available experimentally measured excitonic emission
spectrum of such QDs includes only neutral monoexciton X0, positive and negative
trions X+ and X−, and neutral biexciton XX0 transitions [25, 56, 56, 60, 63].
Figure 14.5 shows the atomistic calculated emission spectra (where we have aligned
the energy of the monoexciton X0 lines) for lens-shaped (Fig. 14.5a) and Gaussian-
shaped (Fig. 14.5b) QDs. In this partial excitonic emission spectrum, we find that
the sequence of the following lines always obeys some “hard rules” [39],

X− < XX− < XX0 < X0. (14.13)

The hard rules observed in all experimental spectra [25, 56, 60, 63, 64] are that
(i) both X− and XX0 are red shifted with respect to X0 (i.e., have positive binding
energies) and (ii) the XX line always lies between X and X−. Hard rule (iii) [39],
related to X−2, has not been measured yet for GaAs/AlGaAs QDs. These three hard
rules plus the position of the X0 line will provide the size of the base and the height
of the QD [39]. From hard rules (i) and (ii) we estimate that the QDs seen in the
optical spectroscopy measurement has a base diameter of 30–40 nm.

Interestingly, we find that the energetic relative position of the positive trion
(X+) is related to the QD shape. Figure 14.5a shows that in lens-shaped QDs
the positive trion (X+) is always redshifted with respect to neutral monoexciton
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(X0). In contrast to lens-shaped QDs, in Gaussian-shaped QDs (Fig. 14.5b) the
X+ has a transition from redshift to blueshift, when the QD height decreases,
in agreement with experimental measurements [56]. Furthermore, our calculated
transition energy EX0 = 1.758 eV also agrees with the experimental value of
1.748 eV [56]. Thus, we conclude that Gaussian shape is more likely in droplet
epitaxy-grown GaAs/AlGaAs QDs.

FSS of Mono-exciton vs. QD Shape. The FSS of an exciton [31, 66–68] refers
to the splitting of the optical-allowed (bright) exciton states due to both intrinsic
crystal asymmetry as well as external shape anisotropy. The role of these two
factors has been often misconceived in the literature [56, 60, 63, 69], leading to
the misuse of the FSS to infer shape anisotropy: In the Luttinger Hamiltonian
representation, the effective mass of the hole is anisotropic in that its value along
(100) is different from that along (110). Thus, if one ignores the fact that the QDs
under consideration are made of an atomistically discrete material, the symmetry of
circular-based QD in this Hamiltonian is C4v. Despite this, numerous papers [25,70]
claimed that circular-based lens-shape QDs have D2d symmetry. This is because in
a continuum approximation the [110] and [11̄0] directions are equivalent. In such
a D2d symmetry, the fourfold degenerate exciton (originating from an electron of
Jz =±1/2 and a heavy hole of Jz =±3/2) splits into doubly degenerate bright state
(Γ5) and two nondegenerate dark states (Γ1 and Γ2, respectively). Because Γ5 is
degenerate in this approximation, the FSS is zero for cylindrically symmetric QDs
under the continuum point of view. To account for the observed nonzero FSS, the
continuum theory assumes that the FSS originates, in its entirety, from deviations
from cylindrical symmetry [56, 60, 63, 69]. This shape anisotropy (e.g., elongation
in the [11̄0] direction [56, 60, 63]) of the QD lowers the D2d symmetry to C2v. The
doubly degenerate bright Γ5 states splits into two nondegenerate states (Γ2 and Γ4

symmetry). The lifting of the degeneracy of the two bright exciton states is referred
to as FSS and is used under the continuum point of view to fit the measured FSS
into a geometric shape anisotropy. If the base center of the QD does not anchor
on a common atom (namely, As atom in GaAs/AlGaAs), then the symmetry of the
circular-based QD is C1, rather than C2v. In the C1 point group, the two bright exciton
states belong to the same irreducible representation and they will couple, if their
energy are close enough (namely FSS< 5 μeV [68]). For QDs with FSS> 5μeV,
the FSS is not sensitive anymore to the choice of the QD base center.

In reality, the [110] and [11̄0] directions are nonequivalent for QDs with zinc-
blende crystal lattice. This leads to the fact that a QD with cylindrical shape does not
have the commonly thought D2d symmetry, but already has the lower C2v symmetry.
Thus, even a shape-symmetric QD has nonzero FSS. Although, this intrinsic
crystal anisotropy was pointed out many times in atomistic theories[35, 45, 67], its
contribution to the FSS has often been neglected by the community [56, 60, 63, 69].
Figure 14.6 shows the calculated atomistic many-body pseudopotential FSS for
symmetric and asymmetric Gaussian-shaped QDs as well as symmetric lens-shaped
QDs. In agreement with the atomistic point of view, we see that even the shape-
symmetric Gaussian-shaped QD with base size of 30 nm has already a large FSS
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(∼30μeV for QDs having an exciton energy of 1.7 eV) and that shape asymmetry
additionally adds some (∼10μeV) FSS. Whereas, the increase of base size for
the shape-symmetric QDs from 30 to 40 nm reduces the FSS by ∼20μeV. Thus,
attributing all of the FSS to shape asymmetry will greatly exaggerate the shape
asymmetry.

It is most interesting to note that the slope of the size-dependent FSS, for both
symmetric and asymmetric Gaussian-shaped QDs, is opposite to the one seen in
lens-shaped and in disk-shaped QDs. Specifically, the FSS of the Gaussian-shaped
QDs decreases with increasing exciton emission energy (i.e., decreasing the QD
height) in strong contrast to the case of lens-shaped and disk-shaped QDs, where
the FSS increases with increasing exciton emission energy. We ascribe these two
opposite size-dependent trends of the FSS to two competing effects: (i) FSSs will
be enhanced by quantum confinement effect due to increased overlap of electron
and hole wave functions; (ii) FSSs will be washed out by random AlGaAs alloy
distribution due to an increased wave function leakage with decreasing QD height.
Because the wave functions are expected to be more localized inside the QD (in the
in-plane direction) in lens-shaped and disk-shaped QDs than in Gaussian-shaped
QDs, the item (i) is dominant in lens-shaped and disk-shaped QDs. However,
in Gaussian-shaped QDs, item (i) and (ii) are comparable. These factors explain
the observed opposite trends. The calculated size-dependent trend of the FSS in
Gaussian-shaped QDs is in excellent agreement with experimental measurements
[60]. Thus, from the size-dependent trend of the FSS we suggest that droplet
epitaxy-grown GaAs/AlGaAs QDs have a Gaussian shape.
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In summary, we showed how the multi-exciton spectra of a droplet epitaxy QD
encodes nontrivial structural information that can be uncovered by atomistic many-
body pseudopotential calculations. We calculated single-particle energy levels,
exciton gap, optical emission spectra, and FSSs for a large number of strain-free
GaAs/AlGaAs QDs with three different shapes and different structure parameters
(base size, height, and shape anisotropy). From such multi-exciton complex emis-
sion spectrum (“barcode”) and from the size-dependent trends of the FSS, we
showed that the droplet epitaxy strain-free GaAs/AlGaAs QDs have a Gaussian
shape, in agreement with XSTM measurements, but the previously determined QD
height (∼14 nm) as “seen” by XSTM [57, 62] could not possibly be consistent with
the excitonic signature (1.7–1.9 eV) [25, 56, 56, 60, 63], as the latter must reflect
a 1–4 nm tall QD. Both, spectroscopy and XSTM measurements, were done on
GaAs QDs capped by an Al0.3Ga0.7As barrier layer. The fact that XSTM sees tall
QDs and spectroscopy sees flat QDs suggests that different QDs must have been
investigated. Indeed, Koenraad and Takaaki clarified for us that the droplet QDs
used in XSTM were different than those used for PL measurements. This approach
therefore holds the promise that, with increasing spectral resolution and more multi-
excitonic barcode lines, a detailed structural information could be revealed.

14.4 Influence of the Atomic-Scale Structure on the Exciton
Fine-Structure Splitting in of QDs in a Vertical
Electric Field

One of the leading proposals for the on-demand generation of polarization-entangled
photons is the utilization of the cascade decay of biexciton–exciton–ground state
[71] in semiconductor QDs [72], as illustrated schematically in Fig. 14.7a. A serious
impediment to the success of this proposal is the existence of the FSS discussed
previously, which must be suppressed below the radiative linewidth (≈1 μeV).
The FSS is affected by the atomistic symmetry of the QD confining potentials
[35, 73–77] and can be manipulated by strain [78, 79], lateral electric fields [80],
vertical electric fields [19, 20, 81], magnetic field [82], and strong coherent lasers
[83, 84]. A number of surprising puzzles surround the tuning of the FSS by
a vertical electric field. First, it is predicted theoretically [68], and confirmed
experimentally [19, 79] and theoretically [85], that for QDs made of random alloys
(with symmetry lower than C2v) the two bright components of the excitons undergo
an anticrossing as a function of field applied along the {100} or {110} directions
[68]. Second, since it has been established that the FSS is related to the atomistic
in-plane asymmetry between the [110] and [11̄0] crystallographic directions, it
would appear that such an intrinsic quantity would not lend itself to tuning via
vertical field. Nevertheless, it was shown experimentally that the FSS can be tuned
rather effectively in In(Ga)As/GaAs QDs by applying an electric field along the
growth direction [19]. Third, the role of strain is unclear: while electric field control
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Table 14.1 Sizes and
compositions of different
QDs investigated in this
section

Barrier (% Al)

QD Composition Size (nm) a,b,h Top Bottom

Lens shape
00 In0.8Ga0.2As 10, 7.5, 2.5 0 0
01 GaAs 45, 45, 3 35 35
02 GaAs 70, 50, 3 45 45
03 GaAs 70, 50, 3 35 45
04 GaAs 60, 40, 2 35 45
05 GaAs 25, 31, 3.9 35 35

Gaussian shape
06 GaAs 30, 30, 3 30 30
07 GaAs 30, 30, 4 30 30
08 GaAs 30, 30, 6 30 30
09 GaAs 35, 30, 3 30 30
10 GaAs 35, 30, 4 30 30
11 GaAs 35, 30, 6 30 30
12 Al0.06Ga0.94As 30, 30, 3 30 30
13 Al0.06Ga0.94As 30, 30, 6 30 30
14 Al0.06Ga0.94As 35, 30, 3 30 30
15 Al0.06Ga0.94As 35, 30, 6 30 30

The sizes a, b, and h describe the elliptic axis along the [110]
and [11̄0] directions and the height, respectively. Taken from
[21]. ©(2012) by the American Physical Society

We consider lens-shaped and Gaussian-shaped QDs with the properties
(composition and geometry) given in Table 14.1. The atom positions are relaxed
using the VFF method [46] and the single particle states are calculated using the
atomistic empirical pseudopotential approach [43, 46] as outlined in Sect. 14.2. We
apply an external electric field following [49]. The direct and exchange Coulomb
interactions are calculated from the atomic wave functions, and the correlated
excitonic states are calculated by the CI approach as shown in Sect. 14.2 using 12
electron and 12 hole states (spin included), thus accounting for correlations.

Before we present our numerical results, we introduce a mesoscopic simple
model where the Hamiltonian is split into different components:

H = HC2v +δHC1 +qsFz, (14.14)

where qs is the charge of a particle in band s, i.e., −e(+e) for conduction (valence)
bands, HC2v is the Hamiltonian of the QD with C2v point group symmetry, which
must be supplemented by the deviation from this symmetry by the term δHC1. This
latter term represents the random alloy present in the barrier and possible impurities
inside the GaAs QD, as well as shape asymmetries. In the space of the two bright
states |1〉 and |2〉 the Hamiltonian has a simple form:
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H =

(
E1 +δE1 + γ1F s0/2

s0/2 E2 +δE2 + γ2F

)
. (14.15)

The exciton energies of the high symmetric hypothetical structure given by E1 =
〈1|HC2v|1〉 and E2 = 〈2|HC2v|2〉 are different due mainly to strain [36] (nearly
vanishing in the case of strain free GaAs QDs). The lowering of the symmetry
to C1 leads to the terms δE1 = 〈1|δHC1|1〉 and δE2 = 〈2|δHC1|2〉 and also to
s0/2 = 〈1|δHC1|2〉 and γi = 〈i|qsz|i〉. Redefining E1 +δE1 as E0 and δ = E2 −E1 +
δE2 −δE1 and removing the linear term in the field from |1〉 leads to

H =

(
E0 s0/2

s0/2 E0 +δ +(γ2 − γ1)F

)
, (14.16)

which corresponds to the anticrossing model used by Bennett et al.[19]:

E

(
cosθ
sinθ

)
=

(
E0 s0/2

s0/2 E0 − γ(F −F0)

)(
cosθ
sinθ

)
. (14.17)

We identify γ = γ1 − γ2 and γF0 = δ from Eqs. (14.15) and (14.17). This simple
reformulation clarifies the origin of the terms:

• γ represents the difference in the response of |1〉 and |2〉 to the applied field and
γF0 the intrinsic FSS due to the inequivalence of [110] and [11̄0] in C2v (small for
a strain-free structure) and the lowering to C1 symmetry through atomistic alloy
effects.

• s0 is the FSS at the anticrossing and quantifies the coupling between the bright
states. In a pure GaAs QD embedded in a pure AlAs matrix, the bright states
are expected to cross [68] due to the high C2v symmetry of the structure and
s0 = 0. However, the reduction of the QD symmetry due to the alloy fluctuations
in the AlGaAs barrier at the QD interface leads to an avoided crossing [68] with
s0/2 �= 0.

• F0 is the field at the anticrossing. As the field approaches F0, the exciton
eigenstates become a coherent mixture with components sinθ and cosθ , where
θ is the angle describing the orientation of the lowest eigenstate relative to the
[110] crystal axis.

The solution of Eq. (14.17) yields the eigenvalues (E±) and angles [19]:

E± = E0 − γ(F −F0)

2
± 1

2

√
γ2(F −F0)2 + s2

0 (14.18)

θ = ± tan−1
[

s0

γ(F −F0)± (E−−E+)

]
. (14.19)

We note at this point that the model of Eq. (14.15) does not include any field
dependence of the off-diagonal terms. Such terms would lead to an additional
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Table 14.2 Transition
energy E0 and FSS
parameters defined in
Eq. (14.17) and extracted
from our numerical results

E0 s0 γ F0

QD (meV) (μeV) (μeV cm/kV) (kV/cm)

00 1363 ? 0.15 + 273
01 1644 0.1 0.11 +17
02 1650 0.1 0.08 −48
03 1643 0.1 0.08 −48
04 1742 0.9 0.14 −43
05 1679 0.3 0.33 +29
06 1762±2 0.8±0.3 0.85±0.08 −21±5
07 1718±2 0.4±0.1 0.95±0.06 −26±3
08 1666±1 0.9±0.8 1.06±0.07 −25±2
09 1754 0.9 0.79 −33.5
10 1714 0.4 0.78 −37.4
11 1660 0.7 0.96 −40.5
12 1806±5 1.2±0.7 0.74±0.11 −14±7
13 1727±2 1.2±0.5 0.85±0.09 −15±9
14 1799±2 1.3±1.0 0.73±0.03 −25±6
15 1721±2 1.8±1.4 0.84±0.07 −40±5

The error bars represent the range of parameters we obtain by
running five different random alloy realizations (see Fig. 14.9).
Taken from [21]. ©(2012) by the American Physical Society

coupling of the two bright states and could be used to tune the FSS through
zero (if it would exactly compensate s0/2). In our case of vertical field, this
coupling is negligible, but in the case of a field with a component along a low
symmetry direction (any direction but [110] or [11̄0]) this term should exist. A future
investigation of this effect would be worthwhile.

We first present our results for the strained In0.8Ga0.2As QD00 (see Table 14.1)
an emission energy that fits the measured results of Bennett et al. [19] very well.
Figure 14.7 shows the Stark shift, FSS, and the oscillator strength as a function of
vertical electric field.

We obtain a nearly linear change in the FSS with the E field in agreement
with the experimental results [19]. A fit of our numerical results to the model of
Eq. (14.17) yields the parameters given in Table 14.2. For the field dependence of
the FSS, γ , we obtain a value of 0.15 μeV cm/kV, somewhat lower than the value
of 0.28 μeV cm/kV reported by Bennett et al. [19]. The strong shape and size
dependence of the slope can explain this discrepancy and will be illustrated below.
Our results for the set of strain-free GaAs QDs given in Table 14.1 are shown in
Figs. 14.8 and 14.9, where we plotted the Stark shift, the FSSs, the polarization
angle θ , and the oscillator strength as a function of the vertical E field. The results
of the fit to the model of Eq. (14.17) are given in Table 14.2. We make the following
observations.

FSS and Polarization Angle. The anticrossing described by Eq. (14.17) can be seen
in Figs. 14.8c and 14.9 as a reduction of the FSS until the value s0, followed by an
increase. The anticrossing is accompanied by a rotation of the polarization angle of
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the lowest energy exciton state [68], as shown in Fig. 14.8a. At the field F0, where
the anticrossing occurs, the polarization angle changes more rapidly when s0 is small
in agreement with the model.

Shape and Size Effects on the Tunability γ . Table 14.2 reveals that γ increases with
the height of the QDs: tall QDs are more tunable in the vertical electric field, which
correlated with the polarizability of the exciton states. Comparing QD05 and QD07
with similar dimensions but different shapes shows that Gaussian-shaped QDs have
a larger γ value.

Shape and Size Effects on s0. From Table 14.2 we conclude that the shape effect
on s0 is rather moderate, while the size effect shows a trend for larger values of s0

in larger QDs. This latter trend is, however, overshadowed by a very strong random
alloy effect (see next).

Random Alloy Effects on s0 and F0. In Fig. 14.9a–c we generated the same QD
structure with different random realizations of the barrier material. In Fig. 14.9e–
g the QDs have a 6% Al content and these Al atoms are randomly distributed in
five different realizations within the QDs. These variations represent fluctuations
that should be encountered experimentally. We notice that both s0 and F0 are
significantly affected by these atomistic effects. For instance, the pure GaAs QD
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QD08 can exist with s0 of 0.1 or 1.7 μeV by merely changing the realization (i.e.,
the random distribution of the cations) of the barrier material. Furthermore, QD15
can exist with s0 of 0.4 or 3.2 μeV by changing the random distribution of the
6%Al atoms inside the QD. The sensitivity of s0 and F0 on the alloy realization
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is in agreement with our model (Eq. (14.15)), where these terms have been shown
to originate from the lowering of the symmetry (term δHC1).

Random Alloy Effect on γ . The value of γ is only weakly dependent on the details
of the alloy realization (see Fig. 14.9) but rather strongly on the QDs geometry,
size, and composition (see Fig. 14.8c). Indeed, following our model, γ gives the
difference in the response of |1〉 and |2〉 to the applied field and is directly related
to the light-hole component of the exciton state. For a pure heavy-hole exciton, γ
vanishes. The light-hole component does change significantly for different shapes
(QD01, QD02, QD03, QD04, and QD05 have 3.5%, 2.4%, 2.6%, 5.0%, and
8.2%, light-hole component, respectively) but remains constant for different alloy
realizations.

Oscillator Strength. Figure 14.8d shows a moderate change of the oscillator
strength, in the range of 10%, with varying E field in the range of −100 to
+100kV/cm.

How to Select QDs with Small s0. Our present work shows not only that GaAs
QDs are good candidates to achieve small FSS via vertical electric field but also
that rather large fluctuations of s0 should be expected within one homogenous set
of QDs (that differ only by random alloy effects and have the same shape, size and
composition). A selection of appropriate QDs (as practiced experimentally [87,88])
will therefore be advantageous, if not necessary. From Eqs. (14.18) and (14.19) at
zero field (F = 0) we can derive the following expressions:

F0 =
ΔE cos2θ

γ
; s0 =−ΔE sin2θ , (14.20)

where ΔE is the FSS at F = 0. Interestingly, s0 does not depend on the slope γ and
only requires a single measurement of the FSS and the corresponding polarization
angle θ at zero field. We have used Eq. (14.20) in Table 14.2 to report our value of
F0 for QD00. For the value of s0, however, if ΔE is large, a small inaccuracy in the
measurement, or the calculation in our case, of the angle θ will lead to an inaccurate
determination of s0. With a ΔE of 50 μeV and an angle accuracy of 2◦ we obtain s0

with an error bar of ±3.5 μeV, which is too large to be useful. However, Eq. (14.20)
is very useful for QDs where ΔE is not too large, which represent the QDs that will
require weaker E fields to be tuned.

In summary, we showed that the FSS in GaAs/AlGaAs and InGaAs/GaAs self-
assembled QDs can be effectively tuned by a vertical electric field. Indeed, the
tuning rate for GaAs QDs is between 0.1 and 1 μeV cm/kV, depending on size
and geometry, and is surprisingly similar to the tuning rate obtained with lateral
electric fields (0.15 μeV cm/kV [89]). Our results for InGaAs QDs are in good
agreement with experiment, while the results for GaAs QDs represent predictions.
The minimum FSS, s0, for GaAs QDs, is between 0.1 and 1.8 μeV, depending on
size and geometry. However, alloy fluctuations in the surrounding barrier lead to
a variations of s0 in the range of ±1.4 μeV calling for a postselection of the “best
QDs,” for which we suggest a simple experimental procedure requiring only one
measurement at zero field.
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This dependence of s0, and also F0, on the random atomic arrangement is
in agreement with the expectations from a simple mesoscopic model that shows
these terms to be proportional to the “amount of deviation from C2v” symmetry
toward the lower C1 symmetry. Hence, a QD made of a random alloy (with
formally C1 symmetry) with an atomic decoration of the lattice that will resemble
the C2v symmetry, will have the smallest s0. This represents a striking example
of an observable, where the conventional treatment of a random alloy through a
replacement of the atomic distribution by an average (VCA [90]) or an effective
medium (CPA [90]) fails. In this case, the position of each and every atom in a
structure made of several thousand atoms is relevant.

As we mentioned above, the FSS can be tuned to zero in the case of vertical
electric field plus a component of field along a low symmetry direction (any
direction but [110] or [11̄0]). Because the model of Eq. (14.15) under a single
vertical field does not include any field dependence of the off-diagonal terms, an
additional field giving rise to field-dependent terms to the off-diagonal terms can be
used to compensate field-independent terms and then tune the FSS to zero. Indeed,
it was demonstrated in a recent experiment [91] in InGaAs/GaAs QDs, where in
addition to vertical electric field a field of anisotropic biaxial strain delivered by
piezoelectric actuators was applied in the (001) plane. However, our finding of the
significant influence of random alloy fluctuations in both QD and barrier on the
values of minimum FSS s0 and F0 show that tuning several QDs to the optimum
properties in the same sample is unlikely. The realization of large arrays of QD
entanglement sources [92] would therefore require a receipt to suppress the alloy
randomness, which is certainly a formidable challenge. Thus, the alloy randomness
will prevent us to integrate large number of entanglement sources into one chip.

14.5 HH–LH Mixing in Semiconductor QDs

HH–LH mixing occurs only when states derived from bulk HH band and from
bulk LH band, respectively, belong to the same irreducible representation of the
point group in a nanostructure. The point group of self-assembled QDs on (001)
substrates are often mis-assigned to be D2d [23, 25, 70, 93], because the QD shape
resembles a lens or a truncated cone with a circular base [39] and the in-plane [110]
and [11̄0] directions are incorrectly considered to be equivalent. The underlying bulk
HH and LH bands at the Γ-point (Γ8 in bulk Td symmetry) transform to two different
representations Γ7 and Γ6 in the D2d point group [94], and therefore HH–LH mixing
is expected to be forbidden in QDs. The experimentally observed HH–LH mixing
in self-assemble In(Ga)As/GaAs [24] and CdTe/ZnTe [23] QDs were thus attributed
to strain, which was assumed to deform the QD symmetry from D2d to C2v. In
this scenario, HH–LH mixing is allowed since both HH and LH transform to the
same representation Γ5 of C2v. HH–LH mixing is proportional to the magnitude
of shear strain components (described by the off-diagonal terms of the Pikus–Bir
Hamiltonian [12, 13]). One therefore expects HH–LH mixing to vanish in strain-
free QDs. However, large HH–LH mixing was recently observed experimentally
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in strain-free GaAs/AlGaAs QDs grown by molecular droplet epitaxy [4, 86]. The
anisotropic QD geometric shape, which also lowers the QD symmetry from D2d to
C2v is alone considered as the origin of this unexpected HH–LH mixing [25].

In reality, the atomistic symmetry of ideal circular-based lens-shape or Gaussian-
shape QDs is already C2v because the [110] and [11̄0] directions are nonequivalent.
This is unlike Td zinc-blende crystal and D2d symmetric (001) quantum well (QW),
where the [110] direction is identical to the [11̄0] direction with S4 operations i.e.,
90◦ rotation followed with reflection through a (001) mirror plane [94]. HH–LH
mixing is consequently intrinsically allowed in self-assembled QDs even without
built-in strain or QD shape anisotropy. Furthermore, HH–LH mixing was found
earlier even for k = 0, in D2d QWs [95–97] and assigned to stem from C2v

interfaces [98, 99] since HH–LH mixing is allowed under local microscopic point
group C2v. The k-linear terms, originating from Rashba and Dresselhaus spin–orbit
interactions, existing as off-diagonal terms in bulk valence band Luttinger–Kohn
[100] or Kane [101] Hamiltonians, can also induce HH–LH mixing in QDs as a
result of quantum confinement [22,99,102]. Fischer and Loss [22] and Tanaka et al.
[102] studied HH–LH mixing in strain-free QDs taking account of the mechanism
of the bulk linear terms alone. We notice that the alloy randomness in the QDs
or barrier further lowers the QD symmetry and thus enhances HH–LH mixing. In
summary, there are six mechanisms discussed in connection to HH–LH mixing in
QD: (i) built-in shear strain [23, 24]; (ii) QD shape anisotropy [25]; (iii) intrinsic
nonequivalence of the [110] and [11̄0] directions; (iv) low local microscopic
symmetry of the interfaces [49, 98, 99]; (v) bulk k-linear terms [22, 99, 102]; and
(vi) alloy randomness in the QD or barrier, which was often neglected. To the best
of our knowledge, the relative importance of these six HH–LH mixing mechanisms
in QDs has yet to be addressed.

In this section a comprehensive and quantitative analysis of the aforementioned
mechanisms is given using the atomistic empirical pseudopotential method [43, 46,
47] for both strain-free GaAs/Al(Ga)As and strained In(Ga)As/GaAs QDs with
various shapes and sizes. We find that in strain-free nominal C2v GaAs QDs (the
nominal point group defines the QD symmetry, neglecting the symmetry breaking
by alloy randomness), mechanisms (iii) (intrinsic nonequivalence of the [110] and
[11̄0] directions) and (iv) (interface effects) contribute 60% and 40%, respectively,
to the HH–LH mixing. In strained In(Ga)As/GaAs QDs, mechanism (i) (built-in
shear strain) provides 80% of the HH–LH mixing and the remaining 20% originate
from mechanisms (iii) and (iv) in the ratio 3:2. Most interestingly we discover
a quantum chain mediated by QD intermediate states that effectively brings the
ground state of bulk LH band closer in energy to the ground state of bulk HH
band and then enhances the HH–LH mixing. We refer this phenomena to quantum
transmissibility of the HH–LH mixing.

The bulk band character of the QD states is gained by projection onto the bulk
HH = |3/2,±3/2〉, LH = |3/2,±1/2〉, and spin–orbit split (SO) = |1/2,±1/2〉
bands. However, all available HH–LH mixing mechanisms blend together in the QD
states and prevent them to be accessed individually. We develop a formula, based
on perturbation theory, to isolate the impact of the aforementioned mechanisms onto
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the HH–LH mixing of the QD ground hole state h0. Specifically, we separate the QD
Hamiltonian into two parts: H = H0+δV , where H0 is the QD Hamiltonian without
HH–LH mixing producing unperturbed QD ground states derived from bulk HH
and LH bands: Ψ0

HH = |uHH;φ 0
HH〉 and Ψ0

LH = |uLH;φ 0
LH〉, respectively, where |uHH〉

and |uLH〉 are bulk Bloch functions and φ 0
i are the envelop functions associated

with the bulk band i. The perturbative potential is δV = δV(i) + δV(ii) + δV(iii) +
δV(iv) +δV(v) +δV(vi), accounting for the six HH–LH mixing mechanisms (i)–(vi),
respectively. δV couples unperturbed QD states. The perturbed QD ground state h0,
with dominant bulk HH character, can now be evaluated by a perturbation expansion
[18, 22, 23]:

|Ψh0〉= λHH|Ψ0
HH〉+λLH|Ψ0

LH〉+ · · · , (14.21)

where λLH is a mixing coefficient given by

λLH = 〈Ψ0
LH|δV |Ψ0

HH〉/Δ0
HL, (14.22)

λHH is a renormalization factor and Δ0
LH is the energy splitting between |Ψ0

HH〉
and |Ψ0

LH〉. The numerator of Eq. (14.22) is the HH–LH coupling matrix element
δVHL = 〈Ψ0

LH|δV |Ψ0
HH〉 which can be inferred (as shown in Fig. 14.10) by fitting

the bulk LH character of h0 to Eq. (14.22). Δ0
HL is approximated by the energy

splitting ΔHL of the highest HH- and highest LH-dominated QD hole states. The
relative importance of the HH–LH mixing mechanism γ for a QD is obtained from
the ratio of δVγ ,HL to δVHL, where δVγ ,HL = 〈Ψ0

LH|δVγ |Ψ0
HH〉 is the component of

HH–LH coupling matrix originating from mechanism γ . The challenge is how to
isolate δVγ ,HL, γ = (i), . . . ,(vi), from the overall δVHL. In the following we extract
each δVγ ,HL using a comparative study approach through the design of different
types of QDs.

Mechanism (i) Built-In Nonuniform Strain. The lattice-mismatch-induced strain,
which has a significant impact on the electronic properties of strained QDs,
is the main difference between strained In(Ga)As/GaAs QDs and strain-free
GaAs/AlGaAs QDs. Figure 14.3b shows that the built-in biaxial strain [12,13] splits
the bulk InAs HH and LH bands by as much as 0.18 eV in an In(Ga)As/GaAs QD,
otherwise bulk HH and LH bands are degenerate, as shown in Fig. 14.3a for a strain-
free GaAs/AlAs QD. As mentioned above, the magnitude of the HH–LH mixing
is proportional to shear strain components as they are present in the off-diagonal
terms of the Pikus–Bir Hamiltonian [12, 13]. Figure 14.10 shows the LH character
λ 2

LH of the h0 state (represented as
�

) as a function of ΔHL for 24 nominal C2v

lens-shape or Gaussian-shape GaAs/Al(Ga)As QDs with height varying from 2 to
7 nm. The corresponding base sizes are listed in Table 14.3. Here, nominal refers
to symmetry excluding alloying effect. Despite different shapes, sizes, and barrier
compositions, λ 2

LH of all QDs, except QD #3, fall on the blue line described by
Eq. (14.22) with an overall HH–LH coupling matrix element δVHL = 2.15 meV.
The single value of δVHL for all GaAs QDs illustrates the negligible contribution
of the QD height and QD shape to δVHL for C2v symmetry QDs. The LH character
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Fig. 14.10 Bulk LH character λ 2
LH of QD ground hole state h0 as a function of HH–LH splitting

ΔHL for nominal C2v lens-shape and Gaussian-shape GaAs/Al(Ga)As, lens-shaped In(Ga)As/GaAs,
and nominal D2d disk-shaped GaAs/Al(Ga)As QDs. The numbering of the QDs corresponds to the
numbers in Table 14.3, which gives QD geometry properties and more detailed results, except #8
and #9 which correspond to the QDs shown and described in Fig. 14.2

λ 2
LH of 11 nominal C2v lens-shaped In(Ga)As/GaAs QDs with varying QD height

from 2 to 6 nm are shown by green dots in Fig. 14.10. In contrast to GaAs QDs, the
value of λ 2

LH of In(Ga)As QDs can not be described by Eq. (14.22) using a single
δVHL value. Surprisingly, if one subtracts δEHL = 78.6 meV from ΔHL, then all
data points lie around a curve (green line in Fig. 14.10) given by Eq. (14.22) with
δVHL = 9.82 meV. The enhancement of the HH–LH coupling matrix element δVHL

from 2.15 meV for strain-free GaAs QD to 9.82 meV for strained In(Ga)As QDs
exclusively arises from the built-in nonuniform strain. We therefore conclude that
the mechanism of built-in strain contributes around 80% to the HH–LH mixing since
δV(i),HL/δVHL = 0.78 in strained In(Ga)As/GaAs QDs.

Quantum Transmissibility of HH–LH Mixing in QDs. The “red shift” δEHL of
the effective HH–LH splitting (ΔHL − δEHL) required to fit the data in strained
In(Ga)As/GaAs QDs arises from the effect of intermediate QD states energetically
located between the HH and LH two ground states |Ψ0

HH〉 and |Ψ0
LH〉. In strained

In(Ga)As/GaAs QDs there are tens of intermediate QD states derived from the bulk
HH band between |Ψ0

HH〉 and |Ψ0
LH〉. This is a consequence of the large splitting

between bulk HH and LH bands (shown in Fig. 14.3) induced by built-in strain.
The direct coupling between |Ψ0

HH〉 and |Ψ0
LH〉 is expect to be very small since it is

inversely proportional to ΔHL (Eq. (14.22)). However, the unperturbed LH ground
state |Ψ0

LH〉 in a QD can strongly mix with its nearest HH-dominated QD states and
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Table 14.3 Bulk band (HH, LH, and SO) characters of the highest
three hole states h0, h1, and h2 for strain-free GaAs/Al(Ga)As and
strained In0.6Ga0.4As/GaAs QDs

HH/LH/SO (%)

QD
Shape cylindrical
Composition Point group E(h0) E(h1) E(h2)

#1 Cylindrical D2d 96/2/0 92/5/0 92/5/1
GaAs/AlAs 0.0 −8.1 −8.6

#2 Gaussian C1(D2d) 95/4/0 42/57/0 15/84/0
GaAs/AlGaAs 0.0 −2.8 −4.0

#3 Gaussian C2v 87/9/1 54/42/2 43/52/2
GaAs/AlAs 0.0 −3.2 −7.1

#4 Gaussian C1(C2v) 85/13/0 34/64/0 47/51/0
GaAs/AlGaAs 0.0 −7.1 −10.3

#5 Elong. [11̄0] C1(C2v) 85/14/0 37/61/0 49/49/0
GaAs/AlGaAs 0.0 −7.3 −10.1

#6 Elong. [110] C1(C2v) 87/12/0 34/64/0 44/54/0
GaAs/AlGaAs 0.0 −6.2 −9.7

#7 Lens C1(C2v) 94/4/0 89/8/1 89/8/1
InGaAs/GaAs 0.0 −12.1 −17.2

The Ga composition in the AlGaAs alloy barrier is 70%. All QDs
have a height of 3 nm. The base size is 25.2 nm for both disk-shape
and lens-shaped QDs. The base size is 30 nm and 35× 30 nm for
circular (#3 and #4) and elongated (#5 and #6) Gaussian-shape QDs,
respectively. The energy levels (in meV) of h1 and h2 with respect
to h0 are also given beneath the bulk band character of each QD.
The point group in parentheses is the symmetry of the QD without
considering alloy randomness

these states increase the LH character of their own nearest HH-dominated QD states
and eventually brings LH character to |Ψ0

HH〉. This process forms a transmission
chain for HH–LH mixing. We refer to this enhancement of the HH–LH mixing
mediated by intermediate QD states as quantum transmissibility of the HH–LH
mixing. This quantum transmissibility is further confirmed by the special point
(QD #3) of a nominal C2v GaAs QD in Fig. 14.10. In its QD family, the impact
of quantum transmissibility of HH–LH mixing is exclusively acting on QD #3
because its h0 ≈ |Ψ0

HH〉 and h2 ≈ |Ψ0
LH〉 are mediated by a HH-dominated QD

state (h1) (as shown in Table 14.3), whereas in the remaining QDs of this family
the state h0 ≈ |Ψ0

HH〉 is immediately followed by h1 ≈ |Ψ0
LH〉. Surprisingly, the

redshift energy δEHL modifying the HH–LH splitting with respective to the bare
HH–LH splitting is universal for one QD family, e.g. ΔHL−78.6 meV, for a family of
nominal C2v In(Ga)As/GaAs QDs. To the best of our knowledge, this novel quantum
transmissibility of HH–LH mixing in QDs is discovered and quantitatively analyzed
here for the first time.

Mechanism (vi) Effect of Alloy Randomness in the Barrier or Inside the QD. Its
negligible contribution to HH–LH mixing in QDs (δV(vi),HL ∼ 0) is exhibited by
the fact that (shown in Fig. 14.10) both InAs/GaAs and In60Ga40As/GaAs QDs and
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Fig. 14.11 (a) LH character of QD ground hole state h0 and (b) HH–LH splitting ΔHL as
a function of QD height for nominal D2d and C2v GaAs/Al(Ga)As QDs and nominal C2v

In(Ga)As/GaAs QDs

both GaAs/AlAs and GaAs/AlGaAs QDs share an overall HH–LH coupling matrix
element δVHL = 9.82 meV and 2.15 meV, respectively. A further analysis of alloy
effects is done via studying λ 2

LH variation induced by fluctuations in the random
atomic configuration. These atomic fluctuations have a significant effect on both
FSS [21] and optical polarization [39] in QDs. Five random atomic configurations
of the alloy barrier for a Gaussian-shape 3 nm height GaAs/Al30Ga70As QD
lead to λ 2

LH = 13.3,13.0,12.9,13.1,12.8%, with a standard deviation σ = 0.2%.
Meanwhile, five random atomic configurations of a In60Ga40As/GaAs alloy QD
with 3 nm height give rise to four λ 2

LH = 3.6% and one λ 2
LH = 3.8%. Our assertion

of negligible alloy effect on HH–LH mixing is well supported by these results.

Mechanism (v) Bulk k-Linear Terms. Fischer and Loss [22] considered this mech-
anism as the only origin of HH–LH mixing in strain-free QDs and derived λLH =√

3βHLγ3/(2
√

2γ2)× azL/(L2 − a2
z ) for a strain-free QD of base size L and QD

height az, where γ2,3 are Luttinger parameters and βHL accounts for the difference
in effective masses between the bands. For flat GaAs QDs (az � L), λLH � 0.53az/L
[22] is linear proportional to the QD height az for fixed base size L. However, using
atomistic pseudopotentials we find that λ 2

LH of both D2d disk-shaped and C2v lens-
shaped GaAs/Al(Ga)As flat QDs (shown in Fig. 14.11a) to be nonmonotonic with
a weak dependence on QD height. This marked difference to the model of Fischer
and Loss [22] demonstrates the negligible impact of bulk k linear terms on HH–LH
mixing in flat QDs.
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Mechanism (iv) Low Local Microscopic Symmetry Interfaces. The impact of local
atomic symmetry of C2v interface on HH–LH mixing was first proposed by Ivchenko
et al. [98, 99] using phenomenological Hamiltonian to explain unexpected HH–LH
mixing observed in D2d GaAs/AlAs QWs [95–97]. The filled triangles in Fig. 14.10
show that the LH character λ 2

LH of disk-shaped nominal D2d GaAs QDs embedded
in AlAs and Al0.3Ga0.7As barriers can be fitted by the functions [0.8/(ΔHL −13)]2

and (0.8/ΔHL)
2, respectively. Quantum transmissibility of HH–LH mixing plays

again an important role in D2d GaAs/AlAs QDs giving rise to a redshift of 13 meV
in the effective HH–LH splitting. Table 14.3 shows that the confinement potential
of the AlAs barrier is so large that additional QD states exist between the two
QD ground hole states of |Ψ0

HH〉 and |Ψ0
LH〉 in D2d GaAs/AlAs QDs. No such

intermediate states exist in QDs embedded in Al0.3Ga0.7As. The low local atomic
symmetry interfaces induce a HH–LH coupling δV(iv),HL = 0.8 meV. Moreover,
the barrier composition independence of δV(iv),HL = 0.8 meV further confirms the
negligible contribution of alloy randomness effect onto the HH–LH mixing.

Mechanism (ii) QD Shape Anisotropy. Seven out of the 24 nominal C2v GaAs QDs
have an anisotropic shape: 6 QDs are elongation along the [11̄0] direction and one
along the [110] direction, having base size of 35× 30 nm and various heights. The
LH character λ 2

LH of seven irregular QDs, together with 17 circular-based QDs, fall
on a single curve (shown in Fig. 14.10) indicating the minor contribution of the
QD shape anisotropy to the HH–LH mixing. Specifically, the LH characters are
λ 2

LH = 14,13, and 12% for QDs elongated along the [11̄0] direction (QD #5), with a
circular base (QD #4), and elongated along [110] (QD #6), respectively. Mechanism
(ii) induces a HH–LH mixing with magnitude δV(ii),HL � 0.2 meV which is less than
10% of the overall δVHL. This finding indicates the incorrect link between HH–LH
mixing, in strain-free GaAs/AlGaAs QDs, and QD shape anisotropy [25].

Mechanism (iii) Intrinsic Nonequivalence of the [110] and [11̄0] Directions. The
impact of QD shape anisotropy and alloy randomness on HH–LH coupling is fairly
small, as discussed above. HH–LH coupling δVHL = 2.15 meV of nominal C2v

GaAs QDs is thus mainly arising from the remaining mechanisms (iii) and (iv),
i.e., intrinsic nonequivalence of the [110] and [11̄0] directions and low symmetry
interfaces. Interface-induced HH–LH coupling is found to be δV(iv),HL = 0.8 meV
and intrinsic nonequivalent of the [110] and [11̄0] directions leads consequently to
δV(iv),HL � 1.35 meV. Therefore, mechanisms (iii) and (iv) contribute 50–60% and
50–40%, respectively, of the HH–LH mixing in nominal C2v GaAs QDs, depending
on QD shape.

In conclusion, we comprehensively and quantitatively analyzes the impact of
a total of six mechanisms leading to HH–LH mixing in semiconductor QDs.
The novel quantum transmissibility of HH–LH mixing meditated by intermediate
states is highlighted. We find that the HH–LH mixing in strain-free nominal D2d

GaAs QDs majorly arises from the mechanism (iv) low local symmetry interfaces
with a HH–LH coupling δVHL = 0.8 meV. In strain-free nominal C2v GaAs QDs,
mechanisms (iii) and (iv) related to atomistic interfaces and intrinsic nonequivalence
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of the [110] and [11̄0] directions contribute 50–60% and 50–40%, respectively,
to the HH–LH mixing. The mechanism (ii) related to the QD shape anisotropy
contributes less than 10%. In strained In(Ga)As/GaAs QDs, mechanism (i) given
by built-in shear strain contributes 80% to the HH–LH mixing and the remaining
20% stems from intrinsic nonequivalence of the [110] and [11̄0] directions and
the interface effect in a ratio of 3:2. Most importantly thing the HH–LH mixing
in strained QDs is mainly due to the quantum transmissibility of HH–LH mixing
meditated by intermediate QD states. Since the HH–LH coupling δVHL is nearly
insensitive to the QD morphology for a type of QDs, the HH–LH mixing can only
be tuned by designing QDs with specific HH–LH splitting ΔHL. For nominal C2v

In(Ga)As/GaAs QDs (as shown in Fig. 14.11b), flatter QDs usually have larger
HH–LH splitting and consequently smaller HH–LH mixing. This is a consequence
of quantum confinement and built-in strain that tends to be larger in flat structures.
Whereas, for nominal C2v GaAs/Al(Ga)As QDs, the QD height is inefficient to
tune the HH–LH mixing. The lens-shape GaAs QDs often exhibit larger HH–LH
splittings than Gaussian-shape GaAs QDs and thus have weaker HH–LH mixing.
Increasing the Ga composition of the barrier for GaAs/Al(Ga)As QDs leads to
enhanced HH–LH splitting and to reduced HH–LH mixing.
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