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Biexcitons feature prominently in various scenarios for utilization of quantum dots (QDs) for enhancing the
efficiencies of solar cells, and for the generation of entangled photon pairs in single QD sources. Two-dimensional
double quantum coherence (2D-DQC) nonlinear optical spectra provide novel spectroscopic signatures of such
states beyond global intensity and lifetime characteristics which are available by more conventional techniques.
We report the simulation of a prototype 2D-DQC optical experiment of a self-assembled InAs/GaAs dot. The
simulations consider the QD in different charged states and are based on a state-of-the-art atomistic many-body
pseudopotential method for the calculation of the electronic structure and transition dipole matrix elements.
Comparison of the spectra of negatively charged, neutral, and positively charged QD reveals optical signatures of
their electronic excitations. This technique directly accesses the biexciton (XX) energies as well as the projections
of their wave functions on the single-exciton manifold. These signals also provide a unique tool for probing the
charged state of the QD and thus the occupation of the quantum state. Signatures of Pauli blockade of the creation
of certain single and two excitons due to charges on the particles are observed. For all quantum states of the QD,
the spectra reveal a strong multiconfiguration character of the biexciton wave functions. Peak intensities can be
explained by interference of the contributing Liouville space pathways.
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I. INTRODUCTION

The confined electronic space created by matrix-embedded
quantum dots often leads to the association of single excitons
into exciton complexes. The existence of such natural com-
plexes has led to the proposal of numerous schemes for their
utilization in solar cells1,2 (multiple excitons generated from a
single electron-hole pair via inverse Auger process), quantum
computing,3–11 entangled photons (created from a cascade
decay of biexciton and monoexciton)8,9,11,12 and “on-demand”
single photon emitters,5–7 which realize a light source that,
upon a trigger event, emits one and only one photon within
a short time interval. Self-assembled dots represent artificial
macromolecules of molecular weight ≈1 000 000, correspond-
ing, for example, to simple covalent semiconductors such
as InAs embedded seamlessly in GaAs matrix.13,14 As a
result of the confinement of both InAs electrons and holes
by the GaAs barrier, the electron Coulomb interaction and
electron correlations are enhanced in such zero-dimensional
(0D) QDs with respect to 2D quantum wells and 1D quantum
wires. Such self-assembled QDs represent a special case
where multiexcitons made of Ne electrons and Nh holes
(including neutral Ne = Nh as well as charged multiexcitons)
are readily formed and decay radiatively, surviving many of the
nonradiative decay channels that rapidly destroy multiexcitons
in colloidal QDs.2,15 They are thus a natural laboratory for
studying optical and electronic features of interacting excitons.
These appear in a series of charged and neutral states as
follows: Xq and XXq correspond to QDs with Ne electrons
and Nh holes and charge q = Nh − Ne. A neutral monoexciton
(Nh = Ne = 1) is denoted X0, positively charged monoexciton
(Nh = 2,Ne = 1) is X+ and negatively charged monoexciton

(Nh = 1,Ne = 2) is X−, whereas neutral biexciton (Nh =
Ne = 2) is XX0, positively charged biexciton (Nh = 3,Ne =
2) is XX+, and negatively charged biexciton (Nh = 2,Ne = 3)
is XX−. The transition from the ground state manifold Gq [we
considered neutral (no unpaired electron e or hole h (0,0)),
negatively charged (an additional unpaired e in the QD (0,1))
and positively charged QD (an additional unpaired h in the
QD (1,0))] into the single-exciton manifold Xq generates an
additional electron-hole pair in the respective charged QDs,
characterized by the transitions G0 = (0,0) → X0 = (1,1),
G− = (0,1) → X− = (1,2), and G+ = (1,0) → X+ = (2,1).
Accordingly, monoexciton to biexciton transitions appear as
XX0 = (2,2) → X0 = (1,1); XX+ = (3,2) → X+ = (2,1);
XX− = (2,3) → X− = (1,2) (the charged state q is the same
in both monoexciton and biexciton manifolds).

Linear spectra of self-assembled semiconductor QDs show
in high resolution, a series of multiexciton transition peaks ob-
served with ultra high resolution with zero-phonon linewidth
less than 10 μeV at low temperature (T = 4 K).16 The
absorption and emission spectra of single- and multiexci-
tons encode information about the Coulomb interactions
between carriers, such as exchange and correlation effects
and thus reveal many-particle physics in confined spaces.17

Nevertheless, information about homogeneous widths or two-
quantum coherence induced by many-body effects can not be
accessed by linear one-dimensional (1D) techniques. Coherent
two-dimensional (2D) optical spectroscopic techniques like
double quantum coherence (DQC) or photon echo became
experimentally feasible in the last decade.18–21 These can
unfold complex and highly congested spectra by spreading
them in two dimensions as is done in NMR.22–24 Third-order
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2D spectra carry information about the mono- (Xq) and the
biexciton (XXq) manifold beyond what can be inferred from
linear spectroscopy: for example, the 2D-DQC technique
correlates biexciton states XXq to the constituent monoexciton
Xq , and thus offers a direct probe of the XXq energy and
composition. The phase relations between interfering quantum
pathways of the density matrix define the 2D-DQC signal
intensity,25 beyond the interaction of light with a single
transition moment.26

In a typical coherent 2D third-order DQC experiment the
QD interacts with a sequence of four (femtosecond and phase
stable) laser pulses, the first two with wave vectors k1 and k2
excite the QD and induce a polarization that oscillates at the
frequency of the biexciton manifold XXq ; after a waiting time
t2, the third pulse with wave vector k3 acts as a probe and
deexcites the biexciton manifold XXq to the single exciton
manifold Xq . The fourth pulse k4 is used for heterodyne
detection, which allows to record frequency, amplitude and
phase information of the optical high frequency signal. The
2D-DQC technique offers the advantage that the biexciton
energies XXq show up directly as resonances along the �2 axis
and are thus directly accessible. Due to the third interaction k3
the XXq states are projected on the Xq manifold along the �3

axis giving a direct probe of the XXq-Xq correlations.27,28

This feature of 2D-DQC reveals high-order electron and
hole correlations not accessible by linear spectroscopy. The
temporal control of the pulses and detection of the signal
S

(3)
kIII

in the direction kIII = +k1 + k2 − k3 reduces the number
of contributing Liouville space pathways to two purely
excited state absorption (ESA) type contributions compared
to frequency domain techniques.16,22,29,30 Compared to other
coherent 2D third-order techniques, like, e.g., the photon echo
technique, the DQC technique has the advantage that the
biexciton energies XXq are directly accessible, whereas in
photon echo spectroscopy excited state emission and ground-
state bleach contribute to the signal together with excited
state absorption components. In bulk assemblies of QDs, the
kIII signal can be observed in the direction +k1 + k2 − k3
(phase matching condition). Single-dot signals are isotropic.
Nevertheless, the kIII signal can be extracted by using a wave
guide geometry16 and by repeating the experiment several
times with different phases ϕl of the various pulses. This
procedure, commonly used in 2D-NMR, is known as phase
cycling.

Alternatively, the detection of emission induced by a
sequence of four phase controlled pulses yields similar in-
formation about quantum pathways31–35 in ensembles33,34,36,37

and even in single molecules.38 This alternative DQC phase
modulated fluorescence (DQC-PM-Fl) experiment contains
comparable information as obtained from the third-order
coherent technique DQC, a detailed deviation can be found in
Ref. 35. In PM-Fl techniques, one additional ladder diagram
contributes to the fourth-order signal, moreover, the signs of
the interfering pathways vary.34 In an ideal coherent DQC-PM-
Fl experiment, the quantum yield of photon emission from
the XXq state reaches a value of two (|XXq〉 → |Xq〉 →
|Gq〉) and no nonradiative decay (like nonradiative Auger
decay) of the XXq biexciton manifold occurs. In this case,
the DQC-PM-Fl signal with phase �III = φ1 + φ2 − φ3 − φ4

equals the third-order DQC signal. Unavoidable nonradiative

decay processes lead to differences in the DQC-PM-Fl and
third-order DQC spectra and reveal information about the XXq

population and quantum yield. Due to the unique photolumi-
nescence properties of QDs,39 DQC-PM-Fl may serve as a
promising alternative to third-order coherent techniques, the
spectrally resolved ESA contributions of the 2D-DQC signal
of the QDs would allow to record the different pathways
independently.

Here, we report the theoretical simulation of the 2D-DQC
signal of single InAs/GaAs QD carrying different charges.
Such dots contain a few million atoms (dot + matrix) so
their electronic structure requires special techniques. For
the electronic structure of the QD, we use a high-level
atomistic many-body pseudopotential method.17,39–43 We will
demonstrate that the DQC technique provides a sensitive
tool for characterizing the charged state. We observe clear
signatures of Pauli-blocking due to partially occupied electron
or hole states in the charged QD. Furthermore, the 2D-DQC
signal reveals correlations between excitons (also called high-
order electron correlations), which are impossible to observe
in linear spectroscopy allowing the analysis of XXq states
with regard to their constituent Xq manifold. In all different
quantum states, the spectra reveal strong electron correlation
due to geometric confinement within the dot, evidenced by
the fact that the energy of XXq states is reduced with respect
to the sum of contributing Xq states. The characteristic Xq

manifold pattern reflects the multiconfiguration character of
the XXq wave functions. Peak intensities are explained by the
interference of the contributing quantum pathways beyond a
simple transition dipole analysis.

II. THEORETICAL METHODS

A. Atomistic many-body calculations

As specific system we consider a lens-shaped InAs/GaAs
self-assembled QD with a circular base size of 25-nm
diameter and 2-nm height sitting on one monolayers of
“wetting layer” [see Fig. 1(a)]. It contains 41 776 atoms and
the matrix contains 1 948 880 atoms. The lattice mismatch
between InAs and GaAs induces a built-in strain in the
InAs/GaAs dot. An atomistic valence force field model is
used to relax the atomic position r in order to minimize
the strain energy.42 Given the relaxed atomic positions, we
calculate the energy levels and wave functions using atomistic
many-body pseudopotential method40,42,43 in two steps. The
first step is to obtain single-particle approximated (without
many-body interaction) energy levels {εi} and wave func-
tions {�i(r)} by solving the Schrödinger equation of crystal
(dot+matrix) potential V (r) in a linear combination of bulk
bands method.41,42 The screened potential V (r) is described
as a superposition of overlapping atomic (pseudo) potentials
centered at the atomic positions: V (r) = ∑

n

∑
α v̂α(r − Rn −

dα), where v̂α(r − Rn − dα) pertains to atom type α at site
dα in the nth primary cell Rn. Thus the correct atomically
resolved symmetry is retained for the eigenstates.44–46 The
atomic potentials v̂α were empirically fit to experimental bulk
quantities:42 transition energies, spin-orbit splittings, effective
masses, and deformation potentials as well as the band offsets
of two materials in a heterostructure. This approach cures
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FIG. 1. (Color online) (a) Schematic of a lens-shaped InAs dot
with base of 25 nm and 2 nm heigh, sitting on one monolayer wetting
layer, embedded in a GaAs matrix. The dot contains 41 776 atoms and
the matrix contains 1 948 880 atoms. (b) The corresponding strain
modified band edge alignment of electron band (EL), heavy-hole
(HH), light-hole (LH), and spin-orbit split (SO) bands. The atomistic
pseudopotential method calculated lowest 10 electron (e0,e1, . . . ,e9)
and top 10 hole (h0,h1, . . . ,h9) levels of the QD are shown in black
lines. (c) Wave-function square of six lowest energy single-particle
electron states and six highest hole states. The percentage of its
dominant orbital character (S, P , and D) and its energy with respect
to h0 are given underneath the corresponding wave-function plot.

the well-documented DFT band gap and effective mass errors
and captures the multiband and intervalley couplings. The
wave functions are expanded by a set of plane waves with
a small energy cutoff Ecut = 5 Ry (68.03 eV). The solved
single-particle QD states are shown in Figs. 1(b) and 1(c):
the ground electron state e0 is S-like followed by two P -like
and three D-like electron states, whereas the S-like ground
hole state h0 is followed by two P -like and then one S-like
state inserts into the three D-like states. The reduced weight
of the dominant orbital contribution (S, P , and D) of hole
states (compared to the respective electron states) shows that
the interorbital (e.g., S-P ) coupling is stronger in hole states
than in electron states.

The second step is to calculate the many-body excitonic
states {εi,�i} using a screened configuration interaction
(CI) method40 in a basis set of Slater determinants {�v,c}
constructed from 12 electron and 12 hole single-particle states
(including spin) for the InAs/GaAs QD. The electron corre-
lations, which play a predominant role in multidimensional
quantum coherent spectra, are taken into account by the
configuration interaction. The interaction consists of electron-
hole (e-h) Coulomb interaction (binding the e-h pair and thus
forming the exciton) and e-h exchange interaction (splitting

symmetry-different exciton states). The many-body exciton
problem is set up in a basis set of Slater determinants as a CI
expansion,40

〈�v,c|H |�v′,c′ 〉 = (εc − εv)δv,v′δc,c′ − Jvc,v′c′ + Kvc,v′c′ ,

(1)

where J and K are the Coulomb and exchange integrals:

Jvc,v′c′ =
∑
σ1,σ2

∫∫
�∗

v (r1,σ1)�∗
c (r2,σ2)�v′(r1,σ1)�c′ (r2,σ2)

ε(r1,r2) |r1 − r2|
× d r1d r2, (2)

Kvc,v′c′ =
∑
σ1,σ2

∫∫
�∗

v (r1,σ1)�∗
c (r2,σ2)�c′(r1,σ1)�v′(r2,σ2)

ε(r1,r2) |r1 − r2|
× d r1d r2. (3)

The size-dependent screening function ε(r) for Coulomb
and exchange integrals is calculated following the micro-
scopic model of Resta40 and exhibits a smooth transition
from unscreened at short range to screened at long range.
This approach naturally includes both long- and short-range
exchange.47,48 Once the many-body wave functions of multi-
excitons are solved from above equations, the dipole transition
matrix elements will be readily obtained. The linear absorption
spectra, calculated according to Fermi’s golden rule with a
broadening parameter γ = 1 meV, of transitions G0 = (0, 0)
→ X0 = (1, 1), G− = (0, 1) → X− = (1, 2), and G+ = (1,
0) → X+ = (2, 1) are shown in Figs. 2(a)–2(c), respectively.
Earlier calculations of photoluminescence spectra for different
exciton charges of this QD reproduce well the experimental
measurement by Warburton’s group.39

B. 2D double quantum coherence (2D-DQC) spectra

The simulation of the 2D-DQC spectra starts with the
construction of an effective three band exciton Hamiltonian,
used for the calculation of the third-order optical response.
The relevant exciton states accessed by the 2D-DQC technique
are the ground-state manifold Gq , the single-exciton manifold
Xq as well as the biexciton manifold XXq (with q = 0, +,
and − for the neutral, positively charged, and negatively
charged QD, respectively). The three different manifolds of
states, obtained from the atomistic many-body calculations
upon diagonalization of the CI Hamiltonian are connected by
the respective dipole transition matrix elements μi,j . The total
Hamiltonian has the form

H = H0 + HeL, (4)

H0 =
∑
Gq

εGq |Gq〉〈Gq | +
∑
Xq

εXq |Xq〉〈Xq |

+
∑
XXq

εXXq |XXq〉〈XXq |, (5)

HeL =
∑

Gq,Xq

E(t) · μGq,Xq |Gq〉〈Xq | (6)

+
∑

Xq,XXq

E(t) · μXq,XXq |Xq〉〈XXq | + c.c.,

where H0 describes the isolated dot and HeL is the interaction
between quantum states of the isolated dot with the optical
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FIG. 2. (Color online) Many-body atomistic pseudopotential
method calculated linear absorption spectra of the InAs/GaAs dot:
(a) G0 = (Nh = 0,Ne = 0) → X0 = (Nh = 1,Ne = 1), (b) G− =
(Nh = 0,Ne = 1) → X− = (Nh = 1,Ne = 2), and (c) G+ = (Nh =
1,Ne = 0) → X+ = (Nh = 2,Ne = 1) transitions. The inserts show
the corresponding dominant configuration of main peaks.

field. In the case of negatively or positively charged QDs, the
ground-state manifold Gq has several states, in all simulations
we assume that the QD is initially in the lowest-energy
state G

q

0 . The energy range of the Xq and XXq manifold
is chosen to cover the energy range of the Pe − Ph channel
(εXq,max = 1.19 eV, see below Fig. 2) for Gq → Xq transitions
and εXXq,max ≈ 2.31 eV for the Gq − XXq total energy range.
In total, we consider 144 X0 and 4356 XX0 states, 500 X+
and X− and 1000 XX+ and XX− states. Together with the
considered Gq manifold (12 states), this gives rise to 6 × 107

different transitions for the calculation of the 2D-DQC signal.
We consider a time-domain 2D-DQC experiment where a

sequence of four (femtosecond and phase stable) laser pulses
(E1,E2,E3, and E4) interacts with the QD [see Fig. 3(a,i)],
the first pulse E1 excites the QD into a |Xq〉〈Gq | coherence
of the density matrix during the waiting time t1; the second
pulse E2 accesses the biexciton manifold XXq and creates
a |XXq〉〈Gq | coherence during t2 [see Fig. 3(a,ii)]. The
third pulse E3 acts as a probe, projecting the biexcitons
XXq on the single exciton manifold Xq , the fourth pulse
E4 is used for heterodyne detection, which allows to record
frequency, amplitude, and phase information of the optical
signal S

(3)
kIII

(t3,t2,t1). The temporal control of the pulses and
the phase matching condition kIII = +k1 + k2 − k3 reduces
the number of contributing pathways to two excited state

absorption (ESA) type contributions:24

S
(3)
kIII

(t3,t2,t1) = S
(ESA1)
kIII,i

(t3,t2,t1) − S
(ESA2)
kIII,ii

(t3,t2,t1). (7)

Both ladder diagrams are depicted in Figs. 3 (a,iii) and
3(a,iv). The signal S

(3)
kIII

(t3,t2,t1) depends on three controlled
delay periods t1, t2, t3. The frequency domain 2D-DQC signal
is obtained by a double Fourier transform with respect to two
time intervals holding the third fixed. Since the most interesting
biexciton dynamics is contained in t2, we chose to correlate it
either with t1 [S(3)

kIII
(t3,�2,�1)] or with t3 [S(3)

kIII
(�3,�2,t1)]. The

S
(3)
kIII

(�3,�2,t1) signal with fixed t1 and transformed t2 and t3 to
�2 and �3 is easier to measure since it only requires to scan a
single delay (t2), the t3 information is revealed by dispersion in
a spectrometer. The 2D-DQC technique offers the advantage
that the biexciton energies XXq show up directly as resonances
along the �2 axis and are thus directly accessible.28 Due to
the third interaction k3 the XXq states are projected on the Xq

manifold along the �3 axis.
The 2D-DQC signals S

(3)
kIII

(t3,�2,�1) and S
(3)
kIII

(�3,�2,t1)
are simulated using sum-over-states expressions of the third-
order nonlinear response23,27 (expressions are given in the
Appendix). The signals involve the summation over all
possible transitions between the different blocks of the three
band exciton Hamiltonian H0, namely, from the ground-state
manifold Gq to the single-exciton manifold Xq , and from Xq

to the biexciton manifold XXq . All transitions are weighted
by the respective transition matrix elements μGq,Xq and
μXq,XXq . The same phenomenological dephasing linewidth of
γ = 1 meV as used in the calculation of linear spectroscopy
is assumed for all exciton transitions, reflecting the width
of sidebands of the QDs due to acoustical phonons16,49–52

and the similar radiative exciton lifetimes of single- and
biexcitons in single QD.53,54 In contrast to colloidal QDs, in
single self-assembled QD, the inhomogenous broadening is
absent49 and thus neglected in the calculations. If required, it
can be added subsequent to the calculation of the third-order
response function.55 In all calculated spectra, we assume that
the bandwidth of the laser pulses is broader than the exciton
band (exciton bandwidth from Se − Se to Pe − Pe is on the
order of 100 meV). To acquire this bandwidth, the required
laser pulses have to be shorter than 18 fs (FWHM), centered
around 1.12 eV (1107 nm). The broad bandwidth allows us to
cover a large area of contributing exciton states and to reveal
the relevant physical correlation between them in a single
measurement. However, the same information can be obtained
by a series of measurements with narrower bandwidth and
various color pulses.

III. RESULTS AND DISCUSSION

A. Optical absorption spectra of neutral and charged QDs

Figure 2(a) depicts the stick spectrum together with
absorption spectrum of the transition G0 = (0,0) → X0 =
(1,1) in a neutral QD. The corresponding spectra of the
negatively charged [G− = (0,1) → X− = (1,2)] and positively
charged QD [G+ = (1,0) → X+ = (2,1)] are shown in
Figs. 2(b) and 2(c). In the energy range ω = 1.05–1.32 eV,
the neutral QD absorption spectrum shows several resonances,
which can be characterized by the angular momentum of the
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FIG. 3. (Color online) (a) Schematic of a 2D double quantum coherence (DQC) experiment: in (i) the phase matching direction of the
pulses is indicated. (ii) Successive interactions induce a polarization in the QD, which oscillates at the frequencies of |Xq〉〈Gq | and |XXq〉〈Gq |
coherences during the waiting times t1 and t2. (iii) and (iv) Relevant ladder diagrams for the 2D-DQC signal. (b)–(d) Simulated 2D double
quantum coherence signals S

(3)
kIII

(t3,�2,�1) of a neutral (b), negatively (c), and positively charged quantum dot (d). The DQC signal is depicted
as absolute value on a nonlinear scale defined by Eq. (8) [see dashed line in (b)], t3 = 100 fs.

envelope wave functions. The dominant orbital configuration
of the many-body CI states to an electron-hole state ei − hj

are presented in Fig. 1(c), sorted with increasing angular
momentum of the envelope wave functions of electron ei and
hole states hj .

The lowest energy exciton transition (ω = 1.08 eV) con-
sists of the single-exciton Se − Sh channel, where both electron
and hole states have spherical symmetry (ei − hj = e0 − h0).
Due to the additional spin degree of freedom and the spin
selection rule this transition is double degenerate. This channel
corresponds to transitions between states with S-like wave
functions [see Fig. 1(c), top]. The exciton Pe − Ph channel
(ω = 1.16–1.18 eV) consists of two orthogonal P -like states
in both electron and hole [see Fig. 1(c), middle]. Additionally,
two-fold degeneracy due to the spin has to be taken into ac-
count. The higher energy, symmetry allowed De − Dh channel
splits into three main peaks in the linear absorption spectrum
[ω = 1.24–1.27 eV, Fig. 1(c), bottom], which are composed
of e3 − h3, e4 − h3, and e4 − h5 transitions, respectively. The
transition ei − ej = e0 − h4; (ω = 1.13 eV) lies between the
Se − Sh and Pe − Ph states and shows only weak transition
strength.

In both, the negatively charged QD [G− = (0,1) → X− =
(1,2)] [see Fig. 2(b)] and the positively charged QD [G+ =
(1,0) → X+ = (2,1)] [see Fig. 2(c)] the oscillator strength of
the lowest energy Se − Sh transition is reduced compared to
Pe − Ph. The number of possible transitions is reduced by a
factor of two relative to the neutral QD. The additional electron
in the negatively charged QD (0h,1e) occupies one of the spin
degenerate e0 states, in the positively charged QD (1h,0e)
the additional hole occupies one of the two spin degenerate
S-like h0. The transitions of the e0 − h4 channel are shifted
towards higher energies in the negatively charged QD (�ω =
0.02 eV), in the positively charged QD the e0 − h4 transitions
are split into two weak resonances [see Fig. 2(c)]. The Pe − Ph

and De − Dh transitions with doublet structure in the neutral
QD are split into several different states in the negatively and
positively charged QD. Due to the odd population pattern of
electron or hole states in the charged QDs the degeneracy of
the exciton states is lifted and several distinct exciton states
contribute to the absorption. For all three different quantum
states of the QD, we note that only a few discrete states out of
the joint density of states of a strongly anharmonic oscillator
contribute to the linear absorption. Of all possible Gq → Xq
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transitions (144 for X0 and 500 for X+/−) only a few posses
substantial transitions strength due to the selection rules of QD
transitions.56

B. 2D double quantum coherence (2D-DQC) spectra
of neutral and charged QDs

The 2D-DQC technique correlates biexciton states XXq

to the constituent monoexciton Xq and thus offers a direct
probe of the XXq energy and composition. We start with
the S

(3)
kIII

(t3,�2,�1) signal that shows |Xq〉〈Gq | resonances
along �1 and |XXq〉〈Gq | resonances along �2. Accordingly,
the Xq doorway states to a specific XXq state and the
high-order correlations between the Xq monoexcitons are
revealed.

The absolute value of S
(3)
kIII

(t3,�2,�1) signals of the neutral
(q = 0), the negatively charged (q = −) and the positively
charged (q = +) QD are depicted in Figs. 3(b)–3(d) in the
energy range 1.05 eV < �1 < 1.20 eV and 2.16 eV < �2 <

2.26 eV. Horizontal dashed lines indicate a specific biexciton
resonance XXq , whereas respective vertical dashed lines
indicate the projection on the single-exciton axis. The signals
are depicted on a nonlinear scale:

arcsinh(S) = ln(S +
√

1 + S2), (8)

with S = 10abs(S)/S(N), where S(N) is a real normalization
constant and S correspond to the 2D-DQC signal S

(3)
kIII

on
the linear scale. This representation highlights both weak
and strong signal components since it interpolates between a
linear and a logarithmic scales. In Fig. 3(b), top the nonlinear
signal intensity arcsinh(S) is depicted as a dashed line and
compared with the linear scale for the absorption signal of the
neutral QD.

For the neutral QD [see Fig. 3(b)], four XX0 = (2,2)
resonances along the �2 axis are identified in the investigated
energy range. The lowest-energy XX0 resonance at �2 =
2.165 eV shows contributions only from the Sh − Se channel
along the �1 axis reflecting the two-fold degeneracy of this
state. Accordingly, the XX0 state composition arises from the
product of two S-like X0 = (1,1) excitons. A comparison with
the charged QDs [see Figs. 3(c) and 3(d)] shows that this lowest
energy XX0 resonance only appears in the neutral QD. The
single electron (hole) in the S configuration of the charged
QDs induces a Pauli blockade and prohibits the creation of
the XX− = (2,3) and XX+ = (3,2) only from the Sh − Se

channel. For the neutral QD, the weak XX0 resonance at
�2 = 2.215 eV shows contributions from the e0 − h4 channel
and the S-like X0 excitons. The composition of the prominent
XX0 resonance at �2 = 2.241 eV is more complex with
contributions from Se − Sh, e0 − h4, and Pe − Ph channels
revealing the multiconfiguration character of this XX0 wave
function and the strong high-order electron correlations. The
highest-energy XX0 state with low intensity (�2 = 2.25 eV)
arises from contributions of the high-energy duplet of the
Pe − Ph and the Se − Sh transitions.

For the negatively charged QD, the lowest energy XX−
resonance (�2 ≈ 2.24 eV) shows contributions from the
Se − Sh, the e0 − h4 and the Pe − Ph channels. Compared
to the neutral QD, the XX−1 resonance is shifted towards

lower �2 frequencies (2.237 versus 2.241 eV). In the
negatively charged QD, the single-exciton X−1 configura-
tion of the Se − Sh channel is dominant, whereas in the
neutral dot single-exciton X0 configurations of the Se − Sh

and Pe − Ph channels contribute with similar magnitude.
At higher energies (�2 ≈ 2.25 eV), two additional XX−
resonances show up in the negatively QD arising predomi-
nantly from the Pe − Ph channels, Se − Sh contributions are
minor.

A characteristic signature is found for the positively charged
QD [see Fig. 3(d)] due to the splitting of the e0 − h4 channel,
leading to a duplet of XX+1 states (�2 ≈ 2.21 eV) with
additional contributions from Se − Sh. At higher energies
(�2 = 2.24–2.26 eV), two prominent XX+1 states with strong
multiconfiguration character of single excitons X−1 from the
Pe − Ph, e0 − h4, and Se − Sh channels appear. From the
above discussion, we have demonstrated that the 2D-DQC
spectra of neutral, negatively and positively charged QDs
allow to distinguish uniquely between the quantum states
of the QD by the presence and composition of the XXq

resonances.
In the S

(3)
kIII

(�3,�2,t1) signal, both |XXq〉〈X′q | and
|X′q〉〈Gq | coherences are contained along the �3 axis, which
complicates the spectra and analysis. Complementary informa-
tion about the biexcitons is contained in the (�3,�2) spectra.18

The 2D-DQC signal S
(3)
kIII

(�3,�2,t1) is depicted for the neutral,
the negatively charged and the positively charged QD in
Figs. 4(b)–4(d), respectively. Here, along �3 monoexciton
transitions (|Gq〉 → |Xq〉) together with mono to biexciton
transitions (|Xq〉 → |XXq〉) are revealed. The additional
information contained in this signal representation becomes
evident from the photoluminescence of the monoexciton Xq

and biexciton XXq channels of the QDs [see Fig. 4(a)]. The
emission occurs from the ground state of either Xq or XXq

states, respectively. The detuning of the transition |XXq〉 →
|Xq〉 with respect to |Xq〉 → |Gq〉 reveals partial information
about the XXq manifold of the QDs [see black, red, and blue
lines in Fig. 4(a)]. In the 2D-DQC signal, the QD density
matrix is in a |XXq〉〈Xq | or |Xq〉〈Gq | coherence during t3
[see diagrams (i) and (ii) in Fig. 3(a)]. Accordingly, both
ωXXq,Xq and ωXq,Gq resonances appear along the �3 axis of the
S

(3)
kIII

(�3,�2,t1) signal, the contribution of states is not restricted
to the ground state of the XXq , Xq , and Gq manifold, just by
the laser pulse bandwidth. The detuning from the |Xq〉 → |Gq〉
fundamentals is reflected in the |XXq〉 → |Xq〉 resonances.
The horizontal dashed lines in Figs. 4(b)–4(d) indicate a spe-
cific biexciton resonance XXq . The respective black vertical
dashed lines indicate the projection on the monoexciton axis
revealing the |Xq〉 → |Gq〉 contributions, whereas red vertical
dashed lines highlight the |XXq〉 → |Xq〉 contributions to
S

(3)
kIII

(�3,�2,t1).
In the neutral QD [see Fig. 4(b)], we identify a minor shift

and peak shape asymmetry for the lowest energy XX0 (�2 =
2.165 eV) along the �3 axis due to a detuning of the Se −
Sh (2,2) → (1,1) channel from the Se − Sh (1,1) → (0,0)
fundamental transitions. The prominent XX0 resonance (�2 =
2.24 eV) shows a characteristic double peak structure in the
(�3,�2) signal representation. The (2,2) → (1,1) transitions
of both the Se − Sh and Pe − Ph channels are red shifted from
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FIG. 4. (Color online) Simulated photoluminescence spectra (a) and simulated 2D double quantum coherence signals S
(3)
kIII

(�3,�2,t1) over
�3 and �2 of a neutral (b), negatively (c), and positively charged quantum dot (d). The 2D-DQC signal is depicted as absolute value on a
nonlinear scale defined by Eq. (8), t1 = 100 fs.

the (1,1) → (0,0) fundamental. Furthermore, two additional
weak XX0 states appear at �2 = 2.222 and 2.259 eV in the
S

(3)
kIII

(�3,�2,t1) signal, compared to the S
(3)
kIII

(t3,�2,�1) signal
[see Fig. 3(b)]. The first one shows Se − Sh and e0 − h4

channel contributions, the latter one is composed of the Se − Sh

and Pe − Ph channels.
The 2D-DQC signal S

(3)
kIII

(�3,�2,t1) of the negatively and
positively charged QDs reveals multipeak structures [see
Figs. 4(c) and 4(d)]. The complex peak pattern arises from
shifts of the |XXq〉 → |Xq〉 resonances with respect to the
|Xq〉 → |Gq〉 fundamentals. In contrast to the negative and
neutral QD, where red shifted |XXq〉 → |Xq〉 resonances
dominate, the positively charged QD shows a strong contri-
bution from a blue shifted (3,2) → (2,1) transitions of the
Se − Sh channel (�2 = 2.25 eV).

C. Biexciton X Xq peak intensities

In contrast to linear absorption and emission signals [see
Figs. 2 and 4(a)], the peak intensities in the 2D-DQC spectra
[see Figs. 3 and 4(b)–4(d)] can be only inferred from the

interference between the contributing pathways and are not
related to a single transition moment. The imaginary part
of both pahways ESA1 and ESA2 to the (�3,�2) signal
is depicted in Fig. 5(a) for the neutral QD. The phase of
both contributions leads to interference that defines the DQC
signal intensity. The prominent double peak structure at �2 =
2.24 eV in the absolute value of the DQC signal [see Fig. 4(b)]
can be decomposed into distinct contributions from both
diagrams. Both ESA contributions are spectrally separated
along the �3 axis with the (2,2) → (1,1) resonances being
red shifted by 11–12 meV from the (1,1) → (0,0) transitions
in both the Se − Sh and Pe − Ph channels. The lowest-energy
biexciton XX0(�2 = 2.165 eV) is composed solely of the
Sh − Se channel, here the shift between (1,1) → (0,0) and
(2,2) → (1,1) resonances is less pronounced (3 meV) but
introduces the discussed asymmetry in the line shape of the
total (�3,�2) signal. Cuts along the �3 axis are depicted
for the neutral, the negatively and positively charged QDs in
Fig. 5(b) at the �2 value of maximum peak intensity. In both
charged QDs, the individual ESA contributions of the XX−1

and XX+1 states are spectrally resolved: the Se − Sh channel
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FIG. 5. (Color online) (a) Imaginary part of the ESA1 and ESA2 contributions to the 2D-DQC signal S
(3)
kIII

(�3,�2,t1) of the neutral quantum
dot, Eq. (7), t3 = 100 fs. The signal is plotted on a nonlinear scale defined by Eq. (8). (b) Interfering pathways ESA1 and ESA2 for the
S

(3)
kIII

(�3,�2,t1) and the S
(3)
kIII

(t3,�2,�1) (c) signals.

((1,2) → (0,1) and (2,1) → (1,0)) is dominant in the ESA2
contribution. The |XXq〉 → |Xq〉 transitions of the Pe − Ph

channel (�3 ≈ 1.16 eV) dominate the ESA1.
Slices along �1 are given in Fig. 5(c) for the (�2,�1) signal.

In this signal representation, XXq states are projected only on
|Xq〉 → |Gq〉 transitions and the signal contributions ESA1
and ESA2 show up at the same �1 frequency. In the neutral
and positively charged QD [see Fig. 5(c), top and bottom], the
ladder diagrams ESA1 and ESA2 add up constructively and the
XX0 state shows predominant contributions from the Se − Sh

configuration (�1 = 1.083 eV) but weaker from the Pe − Ph

channel (�1 = 1.169 eV). For the XX+1 state, the importance
of configurations is inverted and the Pe − Ph configuration
becomes dominant (�1 = 1.163 eV). In contrast, in the
negatively charged QD [see Fig. 5(c), middle], both ladder
diagrams add up with opposite phases defining the the XX−1

intensity. The presented slices along the monoexciton axis
(�1 or �3) reveal the pronounced differences between QD’s
CI wave function compositions of the quantum states. This
allows to decipher the underlying mechanism of the signal

intensity, modulation of peak shapes and the occurrence of
double peak structures in 2D-DQC signals on a fundamental
level.

IV. CONCLUSIONS

We have simulated two projections of the 2D-DQC spectra
[(�2,�1) and (�3,�2) representations] of QDs in different
charged states. Both reveal only the biexciton XXq energies
along the �2 axis that corresponds to the Fourier transform of
the waiting time t2 between the second and third laser pulse.
Their constituent single-excitons Xq show up as resonances
along the �1 or �3 axis revealing the multiconfiguration
character of biexcitons XXq . The simulations demonstrate,
that different charged states of the QD lead to modulations
in 2D-DQC peak pattern directly reflecting the dominant con-
figurations to the CI wave function of biexcitons XXq . Only
in the neutral QD the lowest biexciton state XX0 is projected
exclusively on the Se − Sh channel as single contributing CI
configuration. In the charged QDs, the Pauli blocking due

235303-8



DISSECTING BIEXCITON WAVE FUNCTIONS OF SELF- . . . PHYSICAL REVIEW B 86, 235303 (2012)

to partially occupied electron or hole states eliminates this
low-energy XXq resonance with exclusive Se − Sh character.
All biexcitons of charged QD show strong configuration inter-
actions in the XXq wave functions with more than one leading
configuration from Se − Sh and Pe − Ph channels revealing the
strong high-order electron correlation within the QDs. In the
S

(3)
kIII

(�3,�2,t1) representation, the neutral QD XX0 states show
a double peak structure, which is assigned to |X0〉 → |G0〉 and
red shifted |XX0〉 → |X0〉 resonances as doorway transitions
to biexcitons XX0. In the negatively charged QD multiple
|X−〉 states act as doorway transitions to XX− with red shifted
|XX−〉 → |X−〉 resonances, whereas a XX+1 biexciton con-
stituent from blue shifted |XX+〉 → |X+〉 frequencies is
identified.

In contrast to the linear optical signals, the intensity of
2D-DQC peaks results from the interference of density matrix
diagrams, and may not be attributed to single transition mo-
ments. We find pronounced differences for the three charged
states of the QDs with a destructive interference mechanism in
the negatively charged QD and constructive interference in the
neutral and positive QDs. In the (�3,�2) signal, the resonances
of the individual pathways are spectrally resolved, which
leads to the occurrence of the double peaks in the 2D-DQC
signals.

We have demonstrated theoretically that the coherent
third-order DQC technique can distinguish the quantum state
of individual QDs and directly extract information about the
wave function composition of the biexciton manifold XXq , not
accessible from linear spectroscopy. Optical signatures of dif-
ferent charged QD (neutral, negatively charged, and positively
charges) in 2D-DQC spectra where identified. Multidimen-
sional DQC spectroscopy (or 2D phase modulated fluores-
cence analogues) may serve as a particularly suitable tool for
recording the charging state of single QD devices in operation
and open the route for nonlinear spectroscopy with entangled
photons.
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APPENDIX: SUM-OVER-STATES (SOS) EXPRESSION FOR
THE 2D DOUBLE-QUANTUM-COHERENCE

(2D-DQC) SIGNAL

Heterodyne detection is the most advanced detection
method allowing to measure amplitude and phase of the
DQC signal. The third-order heterodyne detected DQC signal
S

(3)
kIII

(t3,t2,t1) depends parametrically on the delays between the
laser pulses. The last pulse E4 serves as a local oscillator field
used for the heterodyne detection mode. Assuming that all
pulses are temporally separated and phase matching conditions
(kIII = k1 + k2 − k3), the contributions to S

(3)
kIII

are given by
two excited state (ESA) type ladder diagrams [see Figs. 3(a,iii)
and 3(a,iv)]:

S
(3)
kIII

(t3,�2,�1) = S
(ESA1)
kIII,i

(t3,�2,�1) − S
(ESA2)
kIII,ii

(t3,�2,�1).
(A1)

Here, we use a mixed time-frequency representation by
performing a double-Fourier transform for t1 and t2. Both
contributions to the 2D-DQC signal are given by the closed
sum-over-state expressions derived in detail in Ref. 27:

S
(3)
kIII,i

(t3,�2,�1)

=
∑

f ee′g′
[μ∗

f e′ E
∗
4 (ωf e′ − ω4)][μ∗

eg′ E
∗
3 (ωeg′ − ω3)]

× [μf e E2(ωf e − ω2)][μeg0 E1(ωeg0 − ω1)]

h̄3(�2 − ξfg0 )(�1 − ξeg0 )
e−ıξf e′ t3 ,

(A2)

S
(3)
kIII,ii

(t3 = 0+,�2,�1)

=
∑
f ee′

[μ∗
e′g0

E∗
4 (ωe′g0 − ω4)][μ∗

f e′ E
∗
3 (ωf e′ − ω3)]

× [μf e E2(ωf e − ω2)][μeg0 E1(ωeg0 − ω1)]

h̄3(�2 − ξfg0 )(�1 − ξeg0 )
e−ıξe′g0

t3 .

(A3)

Here, g denotes the ground state manifold of the QD
|Gq〉, g0 is the initially occupied lowest energy state |Gq

0〉
of the QD, e denotes single-excitons |Xq〉, f are biexcitons
|XXq〉, and ξij = ωi − ωj − ıγ . The phenomenological
dephasing linewidth γ is assumed to be equal for all exciton
transitions and reflects the width of sidebands of the QDs
due to acoustical phonons16,49–52 and the similar radiative
exciton lifetimes of single- and biexcitons in single QD.53,54

The spectral pulse envelopes

E(ω) =
∫

dtexp(ıωt)E(t) (A4)

select possible transitions allowed by their bandwidth and thus
serve as frequency filers that remove all transitions outside
the bandwidth. In the simulations, we assume that the pulse
bandwidth is larger than the exciton bandwidth, the impulsive
signal then coincides with the third-order response function
of the QD.
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