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Two of the fundamental assumptions used in contemporary tight-binding models for
calculating the energies of deep defect levels in semiconductors are examined through
comparison with a general model that avoids these assumptions. It is found that these
assumptions are likely to invalidate the chemical trends predicted by the tight-binding
models for the ordering of the impurity energy levels with atomic potentials.

In recent years, the defect Green's-function
method' has been implemented in both a complex
but precise self-consistent pseudopotential formal-
Ism, ' ' and In a simplified tight-binding (TB)
scheme, to study the electronic structure of
deep defect levels in semiconductors. By virtue of
its simplicity and ease of application, the TB ap-
proach has been used to study a large number of
systems, including not only defects in bulk solids '

but also defects at free surfaces and superlattices.
These applications have often produced a very in-
teresting organization of the experimental data on
defect energy levels in terms of simple semiclassi-
cal coordlnatcs sUch Rs atomic 1onlzation cncrgics
and electronegativity differences. ' Among others,
one of the most intriguing regularities suggested by
these models is the TB pinning phenomena: As
the on-site central-cell defect potential perturbation
b, V becomes increasingly large (e.g., more positive
for the repulsive defects discussed here) the gap-
state defect levels c;(hV) will saturate [e.g.,
Be;(hV)/Bb, V=O] at a value c'„( ao ) characteristic
of the energy of the host vacancy (u); all of the
repulsive (0& A V& co ) impurity levels e; would
then lie below e„, i.e., be "pinned" to it. Although
not supported by existing experimental data, this
pinning idea has found wide applications in discus-
sions of various interesting chemical trends.

To achieve computational simplicity, a number
of well-known approximations have been applied to
thc TB model. Thcsc werc amply d1scusscd 1n thc
hterature (e.g. , Refs. 10 and 11}and are often
shwvn to lead to some uncertainties in the absolute
values of thc prcd1ctcd cncrg1cs. Here %c Rddlcss
two different tacit assumptions which pertain to
the predicted chemical trends (i.e., variation of cal-

culated energies with chemical coordinates of the
defect) rather than absolute energies:

(i) Irrespective of the strength of the central-cell
potential 5V, the localized defect wave functions
g;(r ) are expanded by a small and fixed number
M of (extended) Bloch bands PJ(k, r), i.e.,

M

j=& k

The number M is limited inherently by the under-
lying TB construction to R maximum of MTg =8
(Refs. 6, 8, and 9}or Mril ——10 (Ref. 7). It is not
related to the chemical identity of the impurity.

(ii) The central-cell defect potential b, V, as sam-
pled by the underlying basis orbitals I ~

a) I is as-
sumed to be "on site, " i.e., it does not couple to the
nearest-neighbor (or more distant) host atoms. In
other words, if the basis I ~

a }' I is anchored to
atomic sltcs, the pcrtUIbat1on IQRtfix AV~p 1s as-
suIQcd to bc diagonal.

The conventional TB model itself does not pro-
vide ally s1111plc Internal IIlcaIIS of cxa1111ng tllc
physical validity of these two assumptions. In this
report we examine the physical consequences of
these two approximations using a general defect
Green's-function approach recently developed. Be-
cause neither of the approximations are required by
this model, it provides a means of examining their
cffccts. It 18 demonstrated that a IIlodcl fIec of as-
sumptions (i) and (ii) does not support the chemical
trends predicted by the TB model.

In the TB Green's-function approach to deep de-
fects one first obtains the band structure of the
host crystal by fitting the lowest MTII bands to a
local pseudopotential band structure (e.g., that of
Ref. 12). One then proceeds to express the Green's
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function matrix and the diagonal potential matrix
in terms of these MTB bands and solves for the de-

fect energies e;(hV, MTB) and wave functions
I(;(h, V,Mrs) in the standard Slater-Koster
fashion. The defect wave function is hence
spectrally constructed from host band wave func-
tions extending up to the energy e,„,(MTB) of the
highest (MTBth) host band included. The cutoff
energy e«, (MTB) does not correspond to any physi-
cally special host energy. In general, however, for
defect state 1(; belonging to the ith representation
of the system's point group (e.g., a tz representa-
tion for acceptors), all host states IPJ(k, r) j con-
taining the ith character (for t2 states the ( =1, 2,
3, 4, . . . or p, d, f, g, . . . partial waves) could be
coupled by the appropriate component of the per-
turbation potential hV. The TB model, limited in-

herently to small values of MTa, forces the defect
wave functions to be spectrally described by a nar-
row range of host states, irrespective of the chemi-
cal characteristics of the impurity (reflected in the
radius and depth of b, V).

Rather than limit ourselves to the lowest

MTa( =8—10) bands, we solve here for e;(6V,M)
as a function of M )MTB using precisely the same
host crystal pseudopotential band structure as in-

puted in most TB calculations. For each perturba-
tion b, V, the cutoff energy e,„,(M) is hence in-

creased until further coupling of host states of the
appropriate symmetry does not change the defect
energy. The silicon host band structure is calculat-
ed self-consistently from a local pseudopotential,
using a basis of 189 plane waves at I" and an addi-
tional 200 plane waves via a second-order perturba-
tion theory. The i =t2 representation of these
band wave functions is projected out and used

directly to calculate the acceptor wave function
and energy. To simplify our presentation we use a
particularly simple form for the defect perturba-
tion potential 5V in the shape of a repulsive (i.e.,
acceptorlike) square well with radius Ro and height

Vo. This choice incorporates the two basic physi-
cal coordinates of a realistic defect potential: its
"atomic size" Ro and "atomic ionization energy"
Vo. This simple choice will suffice for our illus-

tration: We will indicate below the similarity of
the results to those obtained by using for 6V( r ) a
self-consistent pseudopotential. The value (and

range) of Vo, hence, takes the role of "p-like" per-
turbation potentials in TB models. Since the
ionization energy of levels inside a square-well po-
tential is monotonic with Vo, variations in Vo are
directly mapped into variations in the p-like impur-
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FIG. 1. Convergence of the t2 acceptor level in sili-
con with respect to the number of host crystal bands
used in the expansion of the defect's wave function.
The substitutional acceptorlike defect potential is
modeled by a repulsive square well with a radius
Ro ——2.2 a.u. and a height Vo. The host is modeled by a
self-consistent local pseudopotential band structure (used
in a fitted form in TB defect calculations). The errors
made by including only 8—10 bands in the wave-
function expansion (Refs. 6—9) are indicated with verti-
cal arrows; they are indicated as a fraction of the host
band gap E~. VBM and CBM denote the valence-band
maximum and conduction-band minimum, respectively.

ity ionization energy used in TB models. The per-
turbation 6V is not restricted to couple only im-
purity orbitals. The wave function of the t2 accep-
tor gap state is then expanded in the standard
Green's function approach by a dual representation
consisting of local (impurity-anchored) orbitals
and, independently, by the unperturbed host wave
functions. SuKcient local orbitals are included in
the first expansion to make it converged for all
perturbations 5V(r) considered (15 radial
Coulomb orbitals for each of the p, d, f, and g
waves are used). All energy levels are converged to
a precision better than 0.05 eV. One now asks how
many bands M are required in the complementary
expansion in terms of host wave functions such
that the variation of e; with b, V= I VO, RO[ be
reproduced with physically relevant precision (say,
a tenth or two of the host energy band gap).

Figure 1 shows the energy of the i =t2 gap level

e, (IV, M) in silicon as a function of the number

M of host bands included in the wave-function ex-
pansion. We use a range of repulsive square-well
defect potentials Vo and a radius Ro ——2.2 a.u. , i.e.,
the Si covalent radius. The most striking result of
this calculation is that the error in the defect ener-
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a.u. (half a Si —Si bond length), one finds from
Fig. 2 that the known unrelaxed Si vacancy tz en-

ergy e2 ——0.7 eV (Refs. 3 and 4) is mapped" into
the square-well model by taking Vo

' ——2.375 Ry.
One hence finds that an impurity with radius
Ro =3 R.U. )&0 w111 have its energy level e&

above eq (e.g., e&
——1 eV for Vo" =0.875 Ry) even if

its potential amplitude Vo" is smaller than Vo '.

Hence, a large size impurity atom having a shallow
potential well can form acceptor levels above the
host vacancy level, if the host atom is sufficiently
small. This clearly does not support the TB notion
that "weaker" impurities will have their energy
pinned below that of the "stronger" impurities.

The physical reason behind this observation is
simple: in the TB model the defect is character-
ized by a single variable; the difference
A V~@——V —Vpp between diagonal TB matrix ele-
ments of the impurity and the host atom being re-
placed. Except in the work of Ref. 8, the diagonal
elements V«and V~p are not fixed uniquely by
the fitting procedure of the band structure since
the latter is invariant (up to a constant related to
the host's work function ) under constant changes
in I V;; I. In a more complete model, however, the
perturbing potential is characterized by a continu-
ous function b, V(r) and a complete basis set

I ~
a) I. The physically relevant characteristics of

b, V( r ) are then reflected in two coordinates rather
than one: the radius Ro and the potential strength
Vo. [This information is contained in the matrix
representation (a

~

b, V( r )
~
P) if the basis I ~

a ) I is
complete in the domain of EV(r), but not if it is

grossly incomplete as in TB models. ] Figure 2
shows that the predictions of a two-coordinate
model' ' e;(Ro, Vo) (e.g., the ordering of the lev-
els) can be the reverse of those based on a cruder
one-coordinate model e;( V~ —Vpp). In particular,
1n 8 slnglc-coordlnatc IIlodcl with 8 diagonal pcI-
turbation matrix the vacancy is the strongest per-
turbation possible (i.e., 6V=0o). Under these con-
dltlons, any rcpuls1vc impunty w111 have 8 wcakcl
pcrtUIbing potcnt181 Rnd conscqUcntly its energy
level will be "pinned" below the energy of the va-
cancy level. In a more general two-coordinate
model with a nondiagonal perturbation matrix,
stIongcI' pcrtU1bat1ons Rlc posslblc 1n princ1plc by
vlrtUc. of coUpllng to thc host atoms Rs %'cll Rs by
steric size effects, i.e., variations in Ro). Impurity
levels need not then be pinned to the vacancy level.

%c conclude that while the TB defect model
may be used as an expedient interpolative tool,
greater caution must be exercised when applying it
to deduce chemical regularities over large ranges of
chemical coordinates (viz. , atomic sizes and elec-
tronegativities). While extensive and careful
parametrization of the model can lead to a number
of valid predictions, its inherent dependence on the
rcplcscntat1on of locR11zcd states by 8 small nU1Tl-

ber of extended host states considerably limits its
applicability.

One of us (V. S.) acknowledges support by SERI
through Subcontract No. HS-0-9188-4. Useful and
stimulating comments by J. Joannopoulus and J.
Bernholc are gratefully acknowledged.

*Also at: Department of Physics, University of Colora-
do, Boulder, Colorado 80309.

~6. F. Koster and J. C. Slater, Phys. Rev. 96, 1208
(1954); L. M. Roth, Ph.D. thesis, Harvard University,
1957 (unpublished); J. Callaway, J. Math. Phys. 5,
783 (1964).

2M. Jaros and S. Brand, Phys. Rev. B 14, 4494 (1976);
M. Jaros, J. Phys. C 8, 2455 (1975};M. Jaros, C. G.
Rodriquez, and S. Brand, Phys. Rev. 8 19, 3137
(1979).

3J. Bernholc, N. O. Lipari, and S. T. Pantelides, Phys.
Rev. Lett. 41, 895 (1978); Phys. Rev. B 21, 3545
(1980); J. Bernholc, S. T. Pantelides, N. O. Lipari, and
A. Baldereschi, Solid State Commun. 37, 705 (1981).

4G. A. Baraff and M. Schluter, Phys. Rev. Lett. 41, 892
(1978};Phys. Rev. B 19, 4965 (1979); G. A. Baraff, E.

O. Kane, and M. Schluter, ibid. 21, 5662 (1980).
5U. Lindefelt and A. Zunger, Phys. Rev. B 24, 5913

(1981).
6J. Bernholc and S. T. Pantelides, Phys. Rev. B 18, 1780

(1978).
7H. P. Hjalmarson, P. Vogl, D. J. %olford, and J. D.

Dow, Phys. Rev. Lett. 44, 810 (1980); H. P. Hjalmar-
son, R. E. Allen, H. Biittner, and J. D. Dow, J. Vac.
Sci. Technol. 17, 993 (1980); R, E. Allen, H. P. Hjal-
marson, H. Biittner, P. Vogl, D. %'olford, O. F. San-
key, and J. D. Dow, Int. J. Quantum Chem. S14,
(1980).

"S.Das Sarma and A. Madhukar, J. Vac. Sci. Technol.
17, 1120 (1980); Solid State Commun. 38, 183 (1981).

9M. S. Daw and D. L. Smith, Phys. Rev. B 20, 5150
(1979); M. S. Daw and D. L. Smith, Appl. Phys. Lett.



25 EVALUATION OF TIGHT-BINDING MODELS FOR. . .

36, 690 (1980).
J. B. Krieger and P. M. Laufer, Phys. Rev. B 23, 4063
(1981).

'D. W. Bullet, in Solid State Physics, edited by H.
Ehrenreich, F. Seitz, and D. Turnbull (Academic,
New York, 1980), Vol. 35, p. 129.
J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14,
556 (1976).
C. Weigel, S. T. Chui, and J. W. Corbett, Phys. Rev.
B 18, 2377 (1978).

~4We examined whether the results of Figs. 1 and 2
depend in any qualitative way on the fact that we
model the perturbation AV(r ) by a rounded square
well rather than by a "realistic" potential. We have
repeated the results of Fig. 1 by using for the pertur-
bation EV(r ) the self-consistently screened pseudopo-
tential perturbation for a Si vacancy. Similar to what
we show in Fig. 1, we found that by using only
M = 8 —10 bands one makes errors in the t2 energy

gap level of 25%%uo of the host band gap relative to the
converged results (M & 25). Hence, the convergence
properties associated with a self-consistent pseudopo-
tential perturbation are very similar to those of curve
Vo ——2.25 Ry; 8.0

——2.2 a.u. Further, to examine the
qualitative behavior shown in Fig. 2, we have calcu-
lated e, (f), where f is a constant scale factor, multi-'2

plying the self-consistent vacancy perturbation AV(r)

of Ref. 3. For f=1 (no scaling), we recover the re-

sult e, =0.8 eV, very close to that of Ref. 3. For'2

f & 1.5 we find, much like in Fig. 2, that the defect
level merges into the conduction band rather than sat-
urate in the band gap. We conclude therefore that
the results of the square-well potential shown in Figs.
1 and 2 correctly model the M as well as the 6 V

dependence of the defect energies.
'5Notice that the square-well defect model does not map

into the TB orbital removal model (cf. Ref. 10) at the
limit Vo~ ce. At this limit, not used in this work,
the defect wave function is discouraged from
penetrating the potential well (except through low

probability tunneling) and therefore does not corre-
spond to a dangling bond state. Tight-binding vacan-

cy levels are obtained in the orbital removal scheme

by taking Vo~ oo, whereas in the present more ap-
propriate potential removal scheme the vacancy (as
well as impurity) level correspond to a finite Vo.

'6Although the coordinates [Rp VpI are physically in-

terrelated, one can hardly expect that this subtle
correlation [provided, for instance, by careful self-
consistent pseudopotential atomic calculations (Ref.
17)] will be reflected in the much cruder fitting of the
host band structure achieved by varying V p (but not
V or Vpp).

A. Zunger, Phys. Rev. B 22, 5839 (1980).


