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Despite the great success that theoretical approaches based on density functional theory have in describing
properties of solid compounds, accurate predictions of the enthalpies of formation (�Hf ) of insulating and
semiconducting solids still remain a challenge. This is mainly due to incomplete error cancellation when
computing the total energy differences between the compound total energy and the total energies of its elemental
constituents. In this paper we present an approach based on GGA + U calculations, including the spin-orbit
coupling, which involves fitted elemental-phase reference energies (FERE) and which significantly improves the
error cancellation resulting in accurate values for the compound enthalpies of formation. We use an extensive set
of 252 binary compounds with measured �Hf values (pnictides, chalcogenides, and halides) to obtain FERE
energies and show that after the fitting, the 252 enthalpies of formation are reproduced with the mean absolute
error MAE = 0.054 eV/atom instead of MAE ≈ 0.250 eV/atom resulting from pure GGA calculations. When
applied to a set of 55 ternary compounds that were not part of the fitting set the FERE method reproduces their
enthalpies of formation with MAE = 0.048 eV/atom. Furthermore, we find that contributions to the total energy
differences coming from the spin-orbit coupling can be, to a good approximation, separated into purely atomic
contributions which do not affect �Hf . The FERE method, hence, represents a simple and general approach,
as it is computationally equivalent to the cost of pure GGA calculations and applies to virtually all insulating
and semiconducting compounds, for predicting compound �Hf values with chemical accuracy. We also show
that by providing accurate �Hf the FERE approach can be applied for accurate predictions of the compound
thermodynamic stability or for predictions of Li-ion battery voltages.
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I. INTRODUCTION

The enthalpy of formation (�Hf ) of a chemical compound
An1 Bn2 . . . is defined as the change in enthalpy that accompa-
nies the following chemical reaction:

n1 A + n2 B + · · · −→ An1 Bn2 . . . , (1)

where A, B,. . . reperesent the pure elements in their conven-
tional reference phases (not free atoms) and ni stands for the
number of atoms of the ith element in a single formula unit.
In many important areas of modern materials science, this
quantity, i.e., the energy needed to form a compound out of
its elemental constituents, plays a central role. For example,
�Hf of a compound, if negative, determines ranges of
chemical potentials of its elemental constituents within which
the examined compound is thermodynamically stable. This is
needed for predicting defect concentrations in a semiconductor
material under various realistic growth conditions1 as well as
for predicting the thermodynamic stability of new, not yet syn-
thesized solid-state compounds.2,3 Furthermore, improving the
performance of Li-ion batteries or designing better materials
for chemical hydrogen storage assumes quantitive predictions
of the energetics of chemical reactions that involve atomic
Li or H2 molecules.4,5 In general, to predict accurately the
energies needed for chemical reactions to occur (enthalpies of

reactions), one ultimately needs to know the �Hf values of
all chemical compounds involved.

Enthalpies of formation, the subject of this paper, cor-
respond to total energy difference between a compound
An1 Bn2 . . . and the elemental phases A, B,.... When all pertain
to similar classes of materials, such as all being metallic
solids, the calculation of �Hf can be performed within one
of the standard approximations to density functional theory
(DFT), namely, the local density approximation (LDA) or
the generalized gradient approximation (GGA), which benefit
from cancellation of errors associated with similarly imperfect
description of bonding in An1 Bn2 . . . and its constituent solids
A, B,.... Indeed, GGA works well for �Hf of intermetallic
compounds.6 However, when some of elemental constituents
of An1 Bn2 . . . are metals and other nonmetals, as is the case
for metal chalcogenides or metal pnictides, we may not
benefit from systematic cancellation of errors in evaluating
the �Hf in which case one typically encounters large errors.
Unfortunately, simple DFT corrections such as GGA + U may
be problematic as they could apply to the compound but not to
the metallic constituents A, B, ...(mixtures of GGA + U for
some and GGA for the other have been suggested.7)

In this paper, we present a computationally inexpensive
theoretical approach based on GGA + U calculations with
fitted elemental-phase reference energies (FERE) that can be
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used for accurate predictions of the �Hf values of binary,
ternary, and multinary solid compounds involving chemical
bonding between metals and nonmetals (such as pnictides,
chalcogenides, halides). As we show here, by providing
accurate �Hf , the FERE approach can be applied for accurate
predictions of the compound thermodynamic stability with
respect to decomposition into the competing phases which
can be used for predicting the existence and needed growth
conditions for new/unknown compounds.2,3 Additionally, our
method can also be used for accurate predictions of Li-ion
battery voltages as we also show in this paper.

II. THE PROBLEM OF PREDICTING THE COMPOUND
ENTHALPIES OF FORMATION

Supposed that sufficiently accurate enthalpies are available
�Hf would simply be determined as the difference of
enthalpies of the right- and the left-hand side of Eq. (1). At
zero pressure and zero temperature the enthalpy of a system
equals its total energy, and the enthalpy of formation is

�Hf (An1 Bn2 . . .) = Etot
(
An1 Bn2 . . .

) −
∑

i

ni μ
0
i , (2)

where Etot(An1 Bn2 . . .) is the total energy per formula unit of
a given compound and μ0

i are the total energies per atom
of the elements A, B,... in their elemental reference phase.
Calculating total energies to chemical accuracy (1kcal/mol ≈
0.043 eV/atom) is a daunting task and is presently achievable
only within computationally very expensive configuration
interaction (CI) or quantum Monte Carlo (QMC) approaches
and is restricted to systems having a relatively small number of
electrons, like light atoms.8 From Eq. (2), we see, however, that
the accurate prediction of �Hf does not necessitate extremely
accurate total energies, since �Hf is not affected by a
systematic error cancellation between the elemental reference
phases and the compounds, i.e., any atomic total-energy error
that does not depend on the chemical phase the atom is
located in will leave �Hf unchanged. Hence, approximate
total-energy methods like DFT can be very successful if a
systematic error cancellation occurs. For example, Wolverton
and Ozoliņš6 showed that when computing enthalpies of
formation of intermetallic alloys, within the two standard
approximations to DFT, namely, LDA and GGA, the error
cancellation is almost exact. In this case, one calculates the
total energy differences between chemically and physically
similar systems, the metallic alloy and its elemental (also
metallic) constituents. However, both LDA and GGA fail to
reproduce accurately measured �Hf values of semiconduct-
ing and insulating compounds as shown for the 3d transition
metal pnictides and chalcogenides in the upper part of Fig. 1
as well as in Refs. 4 and 9. In such cases, calculating �Hf

implies total energy differences between systems that are
both chemically and physically very different, the insulating
compound versus its constituents such as pure metals and
molecular species (e.g., O2 gas). For example, GGA predicts
�Hf (Al2O3) = −3.04 eV/atom,9 which deviates from the
experimental value of −3.48 eV/atom10 by +0.44 eV/atom.
Similarly, both LDA and GGA predict �Hf of group II
and III sulfides too positive by +0.25 eV/atom on average.9

These errors, which exceed considerably the uncertainty of
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FIG. 1. (Color online) Histogram showing absolute errors of
the GGA (upper part) and of the FERE approach (lower part) in
reproducing measured enthalpies of formation10,11 for 45 binary
pnictides and chalcogenides containing 3d transition metals. Dashed
lines represent the mean absolute error (MAE) of the two methods
corresponding to the full set of 252 binary compounds listed in
Table II. Numerical values for the compounds shown in this figure
are provided in Table I.

experiments that is generally well below 0.1 eV/atom, can
be attributed to the incomplete error cancellation between the
total energies of the compounds An1 Bn2 . . . and the elemental
reference phases.9

The most striking example of the GGA failure in repro-
ducing experimental �Hf are certainly binary pnictides and
chalcogenides of 3d transition metals. In the upper part of
Fig. 1, absolute deviations of the �Hf values calculated in
GGA from the experimental ones10,11 are shown. For 21 out of
45 compounds, the GGA errors are in 0.2–0.8 eV/atom range
and for VO the error amounts to even ∼1 eV/atom. These
deviations are unacceptably high as they would lead to serious
errors in predictions, both quantitatively and qualitatively. In
case of transition metal (TM) compounds, which can occur in
different oxidation states of the TM, there exists an additional
source of uncertainty: due to the residual self-interaction error,
standard DFT tends to favor energetically the compounds with
higher TM oxidation states (lower d occupancies), which can
lead to unrealistic predictions about the stability or instability
of compounds with certain compositions.12,13 Expressing
the actual atomic chemical potential by its deviation from
the elemental reference state, μi = μ0

i + �μi , and using
Eq. (2), we obtain the relation

∑
ni�μi = �Hf (An1 Bn2 . . .)

for equilibrium conditions, which is shown in Fig. 2 for
the case of NiO and Ni2O3. We see that in GGA, Ni2O3

is more stable than NiO for the entire range of allowed
chemical potentials (�μO � 0,�μNi � 0). In other words,
GGA predicts, in contrast to the experimental observation, that
NiO should spontaneously decompose into Ni2O3 by release
of Ni or uptake of O from the atomic reservoirs. The instability
of the lower oxidations state, e.g., Ni+2 (d8) in NiO relative to
Ni+3 (d7) in Ni2O3, can be remedied by the DFT+U method,14

as shown before in Refs. 12 and 13. For the direct calculation
of �Hf , however, DFT+U suffers from the problem that
numerical values for U that correct the relative stability of
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FIG. 2. (Color online) The relation of the chemical potentials
�μ of Ni and O for equilibrium with the NiO and Ni2O3 compound
phases, as calculated in GGA and in the present FERE method based
on GGA + U compound energies. In GGA, NiO is unstable against
Ni2O3 for the full range of allowed chemical potentials �μ � 0. The
correct phase stability of NiO is recovered in the present method.

different oxidation states in the compounds lead to serious
errors in the total energies of pure metallic elemental phases
which do not cancel when computing �Hf .30 On the other
hand, applying computationally much more expensive hybrid
functionals15 is shown to improve only slightly the �Hf values
and the remaining error is still relatively large.4

Another alternative approach for computing �Hf has been
recently proposed7. It mixes GGA and GGA + U exchange-
correlation functionals by dividing compounds and elemental
substances into groups within which the accurate description
is provided by either GGA or GGA + U . Enthalpies of
formation are than computed by combining the total energies
obtained by GGA and GGA + U (renormalized in a special
way to be compatible with each other). In this approach,
the Hubbard U values are element dependent and are fitted
to a set of experimental enthalpies of reactions. It has been
shown that the measured enthalpies of formation of 49
ternary oxides can be reproduced with the average error of
0.045 eV/atom.

Also recently, Lany9 showed that accurate �Hf values of
insulating and semiconducting compounds can be obtained
by fitting a set of elemental-reference energies (μ0) that
systematically improve the error cancellation in Eq. (2). In
the present work, we build on and extend the work of Lany9

from 14 to 50 elements, including 21 transition metals, fitted
to a set of 252 measured �Hf for binary compounds, and,
in addition, we address three important issues: (i) how to
determine the value of the Hubbard U needed for computing
total energies of transition metal compounds that will lead to
accurate enthalpies of formation, (ii) to what extent the method
that we propose can be predictive, or in other words, what is its
accuracy when applied to compounds not used for fitting, and
(iii) what is the effect of spin-orbit interactions on calculated
compound enthalpies of formation.

Following Ref. 9, the FERE energies are obtained by
solving the linear least-squares problem

�Hexp
f

(
An1 Bn2 . . .

) = EGGA+U
tot

(
An1 Bn2 . . .

) −
∑

i

ni μFERE
i ,

(3)

for the elemental-phase energies μFERE
i that optimally cancel

total-energy errors with the compound energies EGGA+U
tot ,

which are computed using the experimental crystal structures
with the GGA + U optimized lattice vectors and atomic
positions. Our choice for the value of the Hubbard U parameter
(U = 3 eV for all transition metals except Cu and Ag for
which U = 5 eV) is discussed in details in Sec. V A. The
experimental values �H

exp
f are taken from Refs. 10 and 11.

The FERE energies can be expressed as an energy shifts
δμFERE

i relative to the calculated elemental total energies

μFERE
i = μGGA+U

i + δμFERE
i , (4)

which can be used to express the FERE predicted heat of
formation as a correction of the directly calculated �HGGA+U

f

by a sum of the energy shifts δμFERE
i weighted by the

stoichiometric factors ni of the respective elements in the
compound:

�H FERE
f

(
An1 Bn2 . . .

) = �H GGA+U
f

(
An1 Bn2 . . .

)
−

∑
i

ni δμ
FERE
i . (5)

The δμFERE
i values that are obtained in this work are given in

Fig. 3. We emphasize, however, that the energy shifts δμFERE
i

are not meant to improve the absolute total energies for the
elemental phases, but rather are constructed such to optimize
the systematic error cancellation with the total energies of the
compounds. Moreover, the GGA + U total energies of the pure
elemental phases are used in this work only as a reference point
for the use of the corrections δμFERE

i , and that, in general, one
cannot expect that U = 3 is reasonable choice for pure metals.

We solve the least-square problem of Eq. (3) for 50 elements
in their conventional reference phase using a set of 252
binary compounds. We cover the majority of the standard,
earth abundant elements including the full list of, for DFT
“problematic” 3d transitions metals. This list shown in Fig. 3
also includes a good portion of the 4d and 5d transition
metals. We show that the FERE energies obtained in this
way significantly improve the �Hf of the binary compounds
leading to the mean absolute error (MAE) of 0.054 eV/atom
(root-mean-square error, rms = 0.070 eV/atom). Further-
more, we demonstrate the predictive power of our approach
by computing the �Hf values for 55 ternary compounds with
measured enthalpies of formation and show that the FERE
approach reproduces accurately the experimental values with
MAE = 0.048 eV/atom (rms = 0.059 eV/atom) as shown
in Fig. 4. Furthermore, since our set contains a number of
elements for which the contribution of spin-orbit coupling
cannot be neglected, we also performed the analysis of the
magnitude of this contribution to �Hf values and found
that to a good approximation spin-orbit coupling energy in
a compound can be separated in purely atomic contributions
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FIG. 3. (Color online) Part of the periodic table listing the δμFERE
i values (in eV) of Eq. (4) for 50 chemical elements. Colors denote the

values of the Hubbard U parameter used in the calculations: U = 3 (light blue), 5 (orange), and 0 eV (light grey). Absolute {μFERE
i } values

are given in Table V of the Appendix. It is important to note that {μFERE} are obtained by fitting using a set of 252 binary compounds with
measured �Hf within which elements from groups I-IV of the periodic table appear formally as cations and from groups V, VI, and VII as
anions (see text for details).

which, as already said, to a good approximation cancel when
calculating the total energy differences in Eq. (2).

The FERE method corrects for the difficulty of DFT
to determine accurate energy differences when an atom is
located in different bonding environments. We are interested
metal-nonmetal compounds (with well defined cations and
anions). The FERE method then determines fictitious energies
for the elemental phases (metallic, molecular, and covalent
bonding), such that they are described consistently with the
DFT energy of the same atom in an ionic bonding environment.
Our FERE energies do not apply, e.g., for �Hf of metallic
alloys, where all total energies are determined for systems
with metallic bonding. Here, direct calculation in GGA is
known to be accurate.6 Notably, the variation of the ionic
vs covalent character within a series of ionic compounds (e.g.,
MgO versus ZnO, ZnO versus ZnSe) does not noticeably affect

the ability to fit all elements with one single μFERE as long
as one can clearly assign a formal oxidation number to the
element in the compound (e.g., Mg2+, Zn2+, O2−, Se2−). This
indicates that DFT consistently describes (i.e., the DFT total
energy error is constant for) “ionic” compounds with a varying
degree of covalency in the bonding. However, this systematic
error cancellation breaks down toward the limit of perfect
covalency, as seen, e.g., by the large difference of 0.43 eV
between μFERE for Si4+ and the directly calculated energy of
elemental Si having a formal oxidation number of 0. Thus one
can in general expect FERE only to work for a fixed oxidation
number of the element. Note that in case of transition metals
it is only thanks to GGA + U that a certain range of oxidation
states are covered, e.g., Ni2+/Ni3+ or V2+ trough V5+ as long
as we stay within the realm of compounds with metal-nonmetal
bonding.
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FIG. 4. (Color online) Histogram showing deviations of �H FERE
f [see Eq. (5)] relative to �H

exp
f for 55 ternary compounds. Dashed line

represent the mean absolute error (MAE) of the method. Numerical values are provided in Table IV.
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III. COMPUTATIONAL APPROACH

The standard scheme, frequently used in DFT calculations
has been employed also in this work. The PBE exchange-
correlation functional16 is used both in GGA and GGA +
U calculations.14 All calculations are performed within the
projected augmented wave (PAW) method17 as implemented in
VASP computer code.18 Constant U = 3 eV value is used for all
transition metals except Cu and Ag for which we use U = 5 eV
value (for justification see the discussion in Sec. V A). For
all nontransition elements as well as for Zn, Cd, and Hg, the
Hubbard U parameter is set to zero. A Monkhorst-Pack k-point
sampling19 is applied with all total energies converged within
3 meV/atom with respect to the number of k points. The plane
wave cutoff is set to the value 30% higher than the highest
suggested by the employed pseudopotentials (e.g., 520 eV for
oxygen). Spin degrees of freedom are treated explicitly, and
the limited search for the ground-state magnetic configurations
has been performed. Experimentally determined magnetic
configurations are used whenever possible (mostly for binary
compounds) and in the cases where there is no experimental
data (e.g., ternaries) the search is done on a primitive unit cell
by initializing magnetic moments in different ways including
both high and low spin values as well as up to ten different
relative orientations (ferro, anti-ferro and different random re-
alizations) and letting the system relax. We find that the energy
differences associated with different magnetic configurations
are typically of the order of ∼0.01–0.02 eV/atom and do not
contribute appreciably to relatively large errors that ab-initio
methods usually make. Full list of all chemical elements
included in this work as well as the list of corresponding

pseudopotentials used in calculations is presented in Table V of
the Appendix. As already noted total energies of all compounds
considered in this work are computed on their experimental
structures with GGA + U optimized lattice constants and
atomic positions. The structures are taken from the inorganic
crystal structure database (ICSD).20,21 For GeO2, we consider
both the hexagonal and the tetragonal phases, total energy
of Al2SiO5 we compute for all three andalusite, kyanite, and
silimanite phases, and CaSiO3 we consider both in wollastonite
and pseudowollastonite structures.

IV. RESULTS OF THE FITTING

As we show in this work, the errors in computing compound
�Hf can be corrected for, by introducing semiempirical FERE
energies and obtaining their values by solving the least-square
fitting problem of Eq. (3). A full list of 252 binary compounds,
comprising 50 different elements, that we used for fitting, is
presented in Table II. We consider only ionic compounds with
elements from groups I-IV of the periodic table as cations
and the elements from groups V, VI, and VII as anions. The
system of 252 linear equations with 50 unknown μFERE

i values
we solve using the standard least-square routine. The resulting
set of 50 fitted {μFERE

i } values is shown in Fig. 3 in terms
of corrections δμFERE

i defined in Eq. (4). The absolute μFERE
i

values are given in Table V in the Appendix. However, the
absolute values should be used with caution as they correspond
to a particular numerical scheme (discussed already) and to a
particular choice of pseudopotentials that are also listed in
Table V in the Appendix. On the other hand, the corrections

TABLE I. Comparison of measured �Hf
10,11 and those resulting from pure GGA and the FERE method [see Eq. (5)] on a set of 45 binary

pnictides and chalcogenides containing 3d transition metals. All numbers are given in eV/atom. Conversion factor to kJ/mol is ≈96.5 × N ,
where N stands for the number of atoms per compound formula unit. Absolute errors of the two approaches are presented graphically in Fig. 1.

Compound �H GGA
f �H FERE

f �H
exp
f Compound �H GGA

f �H FERE
f �H

exp
f

Sc2O3 −3.59 −3.88 −3.94 Fe3O4 −1.30 −1.71 −1.66
ScAs −1.42 −1.39 −1.39 FeS −0.32 −0.61 −0.52
Ti2O3 −2.92 −3.14 −3.15 FeSe +0.24 −0.24 −0.39
TiO2 −3.04 −3.24 −3.26 CoO −0.66 −1.34 −1.23
TiS −1.47 −1.46 −1.41 Co3O4 −1.02 −1.41 −1.32
TiS2 −1.32 −1.44 −1.41 CoS −0.31 −0.43 −0.43
TiN −1.74 −1.58 −1.58 Co3S4 −0.48 −0.53 −0.53
TiAs −0.93 −0.70 −0.78 CoSe −0.15 −0.26 −0.32
VO −1.06 −2.26 −2.24 NiO −0.64 −1.26 −1.24
VO2 −1.85 −2.55 −2.47 Ni2O3 −0.79 −1.07 −1.01
V2O3 −2.30 −2.66 −2.52 NiS −0.39 −0.50 −0.42
V2O5 −2.27 −2.28 −2.30 Ni3S2 −0.40 −0.52 −0.42
VN −0.99 −0.93 −1.12 NiSe −0.30 −0.34 −0.31
CrO2 −1.92 −2.03 −2.06 Ni3P −0.56 −0.48 −0.54
Cr2O3 −1.99 −2.36 −2.36 CuO −0.61 −0.81 −0.82
CrS −0.54 −0.95 −0.81 Cu2O −0.42 −0.62 −0.58
CrN −0.43 −0.54 −0.65 CuS −0.23 −0.34 −0.28
MnO −1.34 −2.03 −2.00 Cu2S −0.11 −0.30 −0.28
Mn2O3 −1.66 −2.00 −1.99 CuSe −0.14 −0.19 −0.21
MnS −0.58 −1.14 −1.11 Cu2Se +0.04 −0.18 −0.21
MnS2 −0.47 −0.78 −0.72 Cu3N +0.28 +0.18 +0.19
FeO −0.91 −1.32 −1.41 Cu3P −0.14 −0.08 −0.17
Fe2O3 −1.32 −1.74 −1.71
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{δμFERE
i } to the GGA + U total energies of pure elements

in their conventional reference phases are more general and
should be the same for equivalent implementations of the
GGA + U method (e.g., within the PAW formalism). As
shown in Fig. 3 the magnitudes of δμFERE

i are typically in
the 0–0.6 eV range as already found by Lany9 for a set
of 14 main group elements. However, there are cases such
as Au, Zr, Hf, where the corrections are larger and amount

to ∼0.7–1.2 eV. Using the values tabulated in Fig. 3 the
experimental enthalpies of formation of the compounds that
belong to the fitting set are reproduced with MAE = 0.054
eV/atom (rms = 0.070 eV/atom). When translated to kJ/mol,
which are the standard units used in chemistry, MAE ∼
5.21 × N kJ/mol, where N stands for the number of atoms
in one formula unit. Therefore the expected error of the FERE
method for a binary compound having, for example 3 atoms

TABLE II. Comparison of �Hf values (in eV/atom) from experiment and calculated using the FERE method for 252 binary compounds
used for fitting. Experimental data are from compilations of Refs. 10 and 11. Compounds for which the deviation of �HFERE

f from experiment
is more than double the MAE = 0.054 eV/atom are shown in bold letters (20 compounds). For GeO2, we consider both hexagonal (h) and
tetragonal (t) phase. Conversion factor to kJ/mol is ∼96.5 × N , where N stands for the number of atoms per compound formula unit.

Compound �H FERE
f �H

exp
f Compound �H FERE

f �H
exp
f Compound �H FERE

f �H
exp
f Compound �H FERE

f �H
exp
f

Ag2O −0.15 −0.11 Co3S4 −0.53 −0.53 HgS −0.28 −0.30 MgCl2 −2.19 −2.21
Ag2O2 −0.10 −0.06 CrF4 −2.56 −2.58 HgSe −0.27 −0.24 MgF2 −3.86 −3.88
Ag2S −0.12 −0.11 CrN −0.54 −0.65 HgTe −0.20 −0.22 MgO −3.15 −3.11
Ag2Se −0.08 −0.15 CrO2 −2.03 −2.07 InAs −0.25 −0.31 MgS −1.78 −1.79
AlAs −0.65 −0.61 CrS −0.95 −0.81 InN −0.03 −0.10 MgSe −1.49 −1.52
AlCl3 −1.85 −1.82 Cr2O3 −2.37 −2.36 InP −0.31 −0.39 MgTe −1.10 −1.08
AlF3 −3.86 −3.90 CuF2 −1.86 −1.88 InS −0.78 −0.70 Mg3As2 −0.80 −0.91
AlN −1.68 −1.61 CuO −0.81 −0.82 InSb −0.24 −0.16 Mg3Bi2 −0.40 −0.32
AlP −0.86 −0.85 CuS −0.34 −0.28 InSe −0.70 −0.62 Mg3N2 −1.06 −0.96
Al2O3 −3.46 −3.47 CuSe −0.19 −0.21 InTe −0.44 −0.50 Mg3P2 −0.92 −0.96
Al2S3 −1.42 −1.50 Cu2O −0.62 −0.58 In2O3 −1.92 −1.92 Mg3Sb2 −0.64 −0.49
Al2Se3 −1.09 −1.18 Cu2S −0.30 −0.28 In2S3 −0.80 −0.74 MnO −2.03 −2.00
Al2Te3 −0.66 −0.68 Cu2Sb −0.00 −0.04 In2Se3 −0.64 −0.67 MnS −1.14 −1.11
AuCl −0.14 −0.18 Cu2Se −0.18 −0.21 In2Te3 −0.33 −0.41 MnS2 −0.78 −0.72
AuCl3 −0.29 −0.30 Cu2Te −0.06 0.07 IrO2 −0.99 −0.95 MnSb −0.15 −0.26
AuF3 −1.02 −0.94 Cu3N 0.18 0.19 IrS2 −0.52 −0.48 Mn2O3 −2.00 −1.99
BaO −2.85 −2.86 Cu3P −0.08 −0.17 Ir2S3 −0.43 −0.49 NaCl −2.04 −2.13
BaO2 −2.15 −2.19 Cu3Sb 0.03 −0.02 KCl −2.22 −2.26 NaF −2.94 −2.97
BaS −2.41 −2.38 FeF2 −2.56 −2.46 KF −2.96 −2.94 NaSb −0.37 −0.33
BeO −3.05 −3.14 FeO −1.32 −1.41 KSb −0.50 −0.43 NaTe3 −0.37 −0.35
BeS −1.30 −1.21 FeS −0.61 −0.52 KSb2 −0.25 −0.37 Na2O −1.44 −1.43
Be3N2 −1.22 −1.22 FeSe −0.24 −0.39 K2O −1.29 −1.25 Na2O2 −1.29 −1.32
CaCl2 −2.67 −2.75 Fe2O3 −1.74 −1.71 K2O2 −1.30 −1.28 Na2S −1.28 −1.26
CaF2 −4.19 −4.21 Fe3O4 −1.71 −1.66 K2S −1.30 −1.31 Na2S2 −1.02 −1.03
CaO −3.28 −3.29 GaAs −0.48 −0.37 K2S2 −1.15 −1.12 Na2Se −1.22 −1.18
CaS −2.41 −2.45 GaCl3 −1.43 −1.36 K2Se −1.28 −1.36 Na2Se2 −0.92 −0.97
Ca3N2 −0.95 −0.91 GaF3 −2.90 −3.01 K3As −0.45 −0.48 Na3As −0.50 −0.53
Ca3P2 −1.26 −1.22 GaN −0.72 −0.81 K3Bi −0.52 −0.60 Na3Bi −0.48 −0.46
CdCl2 −1.35 −1.35 GaP −0.63 −0.53 K3Sb −0.56 −0.47 Na3Sb −0.58 −0.53
CdF2 −2.43 −2.42 GaS −1.05 −1.09 K5Sb4 −0.53 −0.44 NbN −1.17 −1.22
CdO −1.33 −1.34 GaSb −0.40 −0.22 LaCl3 −2.74 −2.78 NbO2 −2.79 −2.75
CdS −0.88 −0.78 GaSe −0.89 −0.83 LaN −1.43 −1.57 Nb2O5 −2.84 −2.81
CdSb −0.13 −0.07 Ga2O3 −2.26 −2.26 LaS −2.42 −2.36 NiF2 −2.25 −2.25
CdSe −0.77 −0.75 Ga2S3 −1.00 −1.07 La2O3 −3.77 −3.72 NiO −1.26 −1.24
CdTe −0.57 −0.48 Ga2Se3 −0.80 −0.85 La2S3 −2.48 −2.51 NiS −0.51 −0.43
Cd3As2 −0.15 −0.08 GeO2(h) −1.86 −1.90 La2Te3 −1.74 −1.63 NiSb −0.27 −0.34
Cd3N2 0.41 0.33 GeO2(t) −1.92 −2.00 LiCl −2.05 −2.12 NiSe −0.34 −0.31
Cd3P2 −0.17 −0.24 GeS −0.54 −0.39 LiF −3.17 −3.19 NiTe −0.22 −0.28
CoF2 −2.29 −2.39 GeS2 −0.58 −0.66 Li2O −2.07 −2.07 Ni2O3 −1.07 −1.01
CoF3 −2.15 −2.10 GeSe −0.42 −0.48 Li2O2 −1.63 −1.64 Ni2Te3 −0.21 −0.30
CoO −1.34 −1.23 Ge3N4 −0.14 −0.09 Li2S −1.55 −1.52 Ni3P −0.48 −0.54
CoS −0.43 −0.43 HfN −1.90 −1.91 Li2Se −1.41 −1.45 Ni3S2 −0.52 −0.42
CoSb3 0.01 −0.17 HfO2 −3.96 −3.95 Li3Bi −0.64 −0.60 PdCl2 −0.65 −0.69
CoSe −0.26 −0.32 HgCl2 −0.80 −0.77 Li3N −0.51 −0.43 PdO −0.58 −0.44
Co3O4 −1.41 −1.32 HgO −0.47 −0.47 Li3Sb −0.78 −0.83 PdS −0.37 −0.39
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TABLE II. (Continued.)

Compound �H FERE
f �H

exp
f Compound �H FERE

f �H
exp
f Compound �H FERE

f �H
exp
f Compound �H FERE

f �H
exp
f

PdS2 −0.32 −0.28 Rh2S3 −0.48 −0.54 Sr2Bi −1.00 −1.08 YCl3 −2.65 −2.59
Pd4S −0.07 −0.14 ScAs −1.39 −1.39 Sr2Sb −1.15 −1.11 YF3 −4.45 −4.45
PtO −0.37 −0.37 ScCl3 −2.44 −2.40 TaN −1.25 −1.30 Y2O3 −3.92 −3.95
PtO2 −0.57 −0.57 ScF3 −4.26 −4.22 TaS2 −1.29 −1.22 ZnCl2 −1.43 −1.43
PtS −0.41 −0.42 Sc2O3 −3.88 −3.94 TiAs −0.70 −0.78 ZnF2 −2.57 −2.64
PtS2 −0.34 −0.38 SiO2 −3.06 −3.13 TiCl4 −1.78 −1.70 ZnO −1.78 −1.81
Pt3O4 −0.45 −0.40 SiS2 −0.91 −0.88 TiN −1.58 −1.58 ZnP2 −0.23 −0.21
RbCl −2.20 −2.26 SiSe2 −0.55 −0.61 TiO2 −3.24 −3.26 ZnS −1.09 −1.07
RbF −2.90 −2.89 Si3N4 −1.18 −1.10 TiS −1.46 −1.41 ZnSb −0.15 −0.08
RbSb −0.49 −0.52 SnO −1.51 −1.48 TiS2 −1.44 −1.41 ZnSe −0.89 −0.85
RbSb2 −0.25 −0.35 SnO2 −1.86 −1.97 Ti2O3 −3.14 −3.15 ZnTe −0.62 −0.61
Rb2O −1.17 −1.17 SnS −0.61 −0.57 VF4 −3.03 −2.91 Zn3As2 −0.21 −0.28
Rb2O2 −1.24 −1.22 SnS2 −0.53 −0.53 VN −0.93 −1.13 Zn3N2 −0.07 −0.05
Rb2S −1.24 −1.25 SnSe −0.52 −0.47 VO −2.24 −2.24 Zn3P2 −0.35 −0.33
Rb3Sb −0.54 −0.45 SnSe2 −0.37 −0.43 VO2 −2.55 −2.47 ZrN −1.91 −1.89
RhCl3 −0.83 −0.78 SrO −3.11 −3.07 V2O3 −2.67 −2.53 ZrO2 −3.81 −3.80
RhO2 −0.84 −0.85 SrO2 −2.19 −2.19 V2O5 −2.28 −2.29 ZrS2 −1.93 −1.96
Rh2O3 −0.87 −0.84 SrS −2.47 −2.45 YAs −1.67 −1.68 Mn3O4 −2.08 −2.05

per formula unit amounts to ∼15 kJ/mol. Table II lists the
FERE enthalpies of formation for our set of binary compounds
together with the experimental values. There is a relatively
small fraction of binary compounds belonging to the fitting
set, 20 out of 252 (shown in bold), for which the remaining
FERE error exceeds two times the MAE value. These errors
are not very large and are all in 0.1–0.2 eV/atom range.
For some of these larger errors, there is a relatively simple
physical explanation. In seven out these 20 compounds, the
anion is either Sb or As. Both elements appear in the fitting
set in different oxidation states and the errors are due to
U = 0 eV value as already discussed. Similarly, Sn for which
also U = 0 eV appears in 2+ and 4+ oxidation states and
a somewhat larger 0.110 eV/atom error appears for SnO2.
For the other 12 cases, we suggest possible experimental
reconsideration of their �Hf . Again, these errors are not
exceedingly large compared to those of pure GGA or GGA +
U , but it is certainly possible that one inaccurate experimental
value drives the fit and affects the rest of the results (e.g. in the
case of vanadium). However, as already mentioned, most of
these errors fall in the ∼0.1 eV/atom range leading to a rather
good overall performance of the FERE method. Comparison
of the performance of the FERE method with GGA on a
subset of binary pnictides and chalcogenides containing 3d

transition metals is shown graphically in Fig. 1 and numerically
in Table I.

The work from Ref. 7 (mixing GGA and GGA+U ) relies on
the previous work of Wang et al.13 and assumes the following:
(i) it uses the value of the oxygen energy (in our language
μ0

O) that has been fitted by Wang et al. to reproduce measured
enthalpies of formation of six main-group metal oxides (CaO,
Li2O, MgO, Al2O3, SiO2, and Na2O) using pure GGA total
energies for metals, (ii) the fitted μ0

O is then employed in fitting
the element dependent Hubbard U parameters for transition
metals to reproduce measured enthalpies of chemical reactions
in which given transition metal M changes its oxidation
state MOx + y−x

2 O2 → MOy . In order to calculate �Hf , the

GGA + U energy is taken for compounds with localized
orbitals, but the GGA energy for delocalized orbitals in the
metallic phase. In order to make the latter compatible with
the GGA + U energy, a correction based on experimental
data is applied to the GGA energy. In essence, the main
difference between both methods is that in Jain et al. fit only
the energies of the O2 molecule and of the transition metals,
whereas we fit all elemental energies, including main group
metals. A secondary difference is that the approach of Jain
et al., as implemented in practice, uses an element-dependent
U , whereas we find as a result of our calculations that a
uniform U value (except for Ag and Cu) is sufficient in the
FERE approach to correct DFT errors relative to experimental
formation enthalpies of ∼250 binary compounds. While the
two approaches are obviously closely related, we think that
our approach is both simpler and more consistent.

V. DISCUSSION

A. The value of the Hubbard U

Values for the Hubbard U parameter that we use require
a more detailed discussion. Initially, we allowed the Hubbard
U parameters to depend on the chemical identity of transition
metals and we treated them as fitting parameters to yield the
correct crossing points between different stoichiometries of
TM oxides, i.e., the O chemical potential at which the stable
phase changes (see Fig. 2). Except for Cu and Ag, we obtained
values for U between 2.5 and 3.5 eV for all TM. Since the
variation of U of ±0.5 eV resulting from the fit lies within the
range that could result from the uncertainty of the experimental
data, we used a constant value of U = 3.0 eV for all TM, except
for Cu and Ag for which we use U = 5 eV. For the compounds
of the group IIb elements Zn, Cd, and Hg as well as for all
main group elements, we use GGA without DFT + U .

Fixing the U values is beneficial as it allows to de-
velop a scheme that can be applied to different families of
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semiconducting and insulating compounds, not only to oxides
or other chalcogenides separately, but to oxides, other chalco-
genides, pnictides, and halides at the same time. Of course, the
fixed U values (3 and 5 eV), in conjuction with fitted {δμFERE},
are good for thermochemistry, and are not meant for band-gap
predictions.

The fact that this “thermochemical” U to a good approxima-
tion “does not recognize” differences in the types of chemical
compounds and in chemical identities of elements deserves a
closer look into the foundations of GGA and GGA + U , which
is beyond the scope of this paper. However, it would be very
interesting to analyze our findings in terms of results of more
accurate theoretical approaches such as quantum Monte Carlo
for example.

B. Finite temperature effects

Equations (3)–(5) are formulated in the T → 0 limit.
However, for the experimental enthalpies of formation [see Eq.
(3)], we use values, compiled in Refs. 10,11, that correspond
to standard conditions, meaning T = 298 K and p = 1 atm.
Therefore �H

exp
f contain contributions coming, in the case of

ordered compounds, from enthalpy of the vibrational motion.
Reason for taking standard �H

exp
f lays in the availability of

the data compared to much more scarce �H
exp
f values reported

(extrapolated) at T = 0 K. As noted by Lany9 the error that
is introduced is typically smaller than 0.03 eV/atom, which is
less than the MAE of our FERE approach and therefore its con-
tribution is of no significance in the context of this work. On the
other hand, the enthalpy of the zero-point motion, which could
contribute significantly (∼0.1 eV/atom) to the incomplete
error cancellation in Eq. (2) if the first row diatomic molecules
are involved, is automatically taken care of by our fitting pro-
cedure [see Eq. (3)] and is included in the fitted μFERE

i values.
Another important finite temperature effect that could be of

importance for ternary and multinary crystalline compounds
is the possibility of atomic disorder. For example, in A2BX4

(X = O, S, Se, ...) spinels it is known that the A and B
cations are, to some extent, disordered over the tetrahedral
and octahedral lattice sites due to the similar ionic size.
It has been shown recently that, for spinel oxides, the
ground state structures as well as the disordering effects
can be described rather accurately using a simple point-ion
electrostatic model.22,23 In Ref. 23, it is shown that the disorder
contribution to the energy of these systems amount to ∼0.03
eV/atom or less at temperatures that are of the order of 1000 K.
Therefore, at 298 K, these effects can be completely neglected.

C. Influence of spin-orbit coupling

The fact that in our study we include relatively heavy
elements such as Sb, Bi, Te, ..., requires a closer look into
the effect of the SO coupling on the calculated total energies
and on the error cancellation that we systematically improve
by introducing the FERE energies of elements. The SO
interaction is often considered as purely atomic effect and
as already noted all purely atomic contributions to the total
energy of the compound or the elemental phases appearing in
Eq. (2) should cancel. We show that to a good approximation
this statement is true.

Namely, by introducing the SO coupling, Eq. (3) can be
written in the following way:

�Hf

(
An1 Bn2 . . .

) = EGGA+U
tot

(
An1 Bn2 . . .

) + �ESO

−
∑

i

ni

(
μFERE

i + δμSO
i

)
, (6)

with �ESO and δμSO
i representing the contributions from the

SO coupling to the compound total energy and μFERE
i values,

respectively. The equation (6) can be rewritten in the following
way:

�Hf

(
An1 Bn2 . . .

) = �H FERE
f

(
An1 Bn2 . . .

)

+
(

�ESO −
∑

i

ni δμ
SO
i

)
, (7)

where the second term on the right-hand side of the equation
represents the total SO contribution to the �H FERE

f that is
constructed using the already described procedure without
the explicit inclusion of the SO interaction term in the GGA
+ U Hamiltonian. One could repeat the whole procedure
of solving the least-square problem of Eq. (3) on a set of
binary compounds now with the SO interaction included in the
Hamiltonian in order to compute the SO contribution defined
in Eq. (7). We followed somewhat different, but equivalent
approach and fitted directly the δμSO

i values to reproduce
directly computed �ESO. Afterwards these fitted elemental
contributions are compared with the the real SO contributions
calculated directly for the elemental conventional reference
phases. This has been done for the set of 21 elements and 61
binary compounds that are shown in Table III. What we find is
that the fitted δμSO

i agree very well with the directly calculated
values. By taking the differences between the two columns
of Table III, we find that the average absolute value of the
parentheses on the right-hand side of Eq. (7) amounts to 0.025
eV/atom. Within the accuracy of the FERE approach (MAE =
0.054 eV/atom), the SO contribution can be neglected to
a good approximation. This proves that the SO coupling is
indeed an atomic quantity which, to a good approximation,
does not contribute appreciably to the total energy differences
and can be neglected when computing compound �Hf .

D. FERE validation

The FERE method has been validated against a set of
measured enthalpies of formation for 55 ternary compounds.
Results of this predictivity test are shown in Fig. 4 and in
Table IV. The calculated MAE = 0.048 eV/atom is slightly
lower than the value obtained for the fitting set of 252 binary
compounds. All but two computed ternary �Hf values fall
inside the 0.1 eV/atom range (double the MAE). This result
implies a good predictive power of the FERE approach when
applied to ternary compounds and there is no reason to
believe it would not perform as good to any other multinary
compound. The two “outliers” are Be2SiO4 and CrMgO4 and
we suggest that �Hf of these two compounds should be
revisited experimentally. The interesting fact is that the FERE
method captures accurately also the enthalpies of formation
of the ternaries that contain two different transition metals
[such as Fe2NiO4, Fe2CoO4, Mn(VO3)2,...] despite using one
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TABLE III. Results of our analysis of the influence of spin-orbit coupling on the compound enthalpies of formation. Values (in eV) of the
two terms appearing on the right-hand side of Eq. (7), the explicitly calculated SO contribution to the compound total energy �ESO and the
same contribution expressed as the sum

∑
i ni δμ

SO
i of the fitted purely atomic contributions. The analysis has been performed on 61 binary

compounds formed out of 21 elements listed in the at the beginning of the table. For pure elements, the numbers denote the values of the SO
contribution calculated directly for their conventional reference phases and the fitted SO contributions.

Compound �ESO
∑

i ni δμ
SO
i Compound �ESO

∑
i ni δμ

SO
i Compound �ESO

∑
i ni δμ

SO
i

Ba −0.20 −0.21 PtBi −0.53 −0.60 SnO2 −0.01 −0.01
La −0.30 −0.30 PtTe −0.23 −0.25 SnO −0.02 −0.02
Hf −0.70 −0.70 PtTe2 −0.20 −0.20 PbTe −0.27 −0.30
Ta −0.73 −0.74 Hg2Sn −0.20 −0.19 PbO2 −0.09 −0.15
Ir −0.42 −0.42 Hg2Pb −0.36 −0.34 PbO −0.19 −0.24
Pt −0.42 −0.40 AuSn −0.18 −0.19 Li3Sb −0.01 −0.01
Au −0.31 −0.32 IrO2 −0.18 −0.13 Na3Sb −0.02 −0.02
Hg −0.22 −0.26 PtO2 −0.18 −0.12 Li2Te −0.03 −0.03
Sn −0.06 −0.05 PtO −0.23 −0.19 Na2Te −0.03 −0.03
Pb −0.56 −0.50 HgO −0.13 −0.12 Mg3Bi2 −0.32 −0.32
Sb −0.07 −0.06 Mg2Sn −0.02 −0.02 MgTe −0.04 −0.05
Bi −0.84 −0.79 Mg2Pb −0.20 −0.17 AlSn −0.03 −0.03
Te −0.11 −0.10 AlSb −0.03 −0.03 IrN2 −0.13 −0.13
Li 0.00 0.01 Na3Bi −0.20 −0.20 TaN −0.35 −0.36
Na 0.00 0.00 BeTe −0.04 −0.05 HfN −0.34 −0.34
Be 0.00 0.00 BaBi3 −0.71 −0.65 LaN −0.15 −0.14
Mg 0.00 −0.01 BaSb2 −0.12 −0.11 Ba2N −0.14 −0.14
Al 0.00 0.00 BaSn2 −0.11 −0.11 AuSb3 −0.12 −0.13
N 0.00 0.02 BaO −0.10 −0.10 SnF4 −0.01 0.01
O 0.00 0.02 BaTe −0.15 −0.16 PbF4 −0.07 −0.08
F 0.00 0.02 Ta3Sb −0.60 −0.57 BiF3 −0.10 −0.18
HgTe −0.20 −0.18 Ta3Sn −0.58 −0.57 Li3Bi −0.19 −0.19
IrSn2 −0.16 −0.17 HfTe2 −0.30 −0.30 Bi2O3 −0.21 −0.31
IrPb −0.45 −0.46 HfSn −0.38 −0.38 Sn3N4 −0.02 −0.01
IrSb −0.21 −0.24 LaBi −0.55 −0.55 AuF3 −0.11 −0.06
IrTe2 −0.22 −0.20 LaSb −0.18 −0.18 AuSb2 −0.16 −0.15
PtSn −0.21 −0.23 SnSb −0.06 −0.06
PtPb −0.42 −0.45 SnTe −0.07 −0.08

single value of the Hubbard U parameter for both. Moreover,
the need for the FERE corrections becomes more apparent
after comparing FERE performance with that of the GGA +
U calculations (same U values that are used throughout this
work) MAE of which is 0.29 eV/atom when applied to the
same set of ternary compounds (MAE of pure GGA is above
0.4 eV/atom).

VI. APPLICATIONS

A. Thermodynamic stability of solid compounds

As already noted in the introduction, the FERE approach,
by providing accurate compound enthalpies of formation,
allows for studying compound thermodynamic stability with
respect to decomposition into the competing phases. We
illustrate this type of application of the FERE method using
well characterized, earth abundant mineral Mn2SiO4 as an
example. To determine the stability of a compound under the
thermodynamic equilibrium conditions it is necessary to know
the enthalpies of all possible decomposition reactions. If there
exists a range of chemical potentials of pure elements within
which all these enthalpies have positive values then within
this range the studied compound is stable. Mathematically,

this means that a following set of inequalities needs to be
fulfiled:

2 �μMn + �μSi + 4 �μO = �Hf (Mn2SiO4),

�μI � 0 (I = Mn,Si,O), (8)

ni �μMn + mi �μSi + qi �μO � �Hf

(
Mnni

Simi
Oqi

)
,

i = 1, . . . ,Z,

where �μI = μi − μFERE
i is a deviation of the actual ele-

mental chemical potential from its elemental-phase reference
and Z is the total number of competing phases having
�Hf (Mnni

Simi
Oqi

) enthalpies of formation. The first of
the inequalities (which is in fact equality) represents the
thermodynamic equilibrium condition between the compound
and its elemental constituents and sets the allowed ranges
of �μI values. This condition, together with the �μI � 0
requirements, can be represented as the triangle in the three-
dimensional �μI space. Projection of this triangle on the
(�μMn,�μSi) plane is shown in Fig. 5(a). The third line
of Eq.(8) represents the set of conditions that need to be
satisfied in order that it is energetically more favorable the pure
elemental substances to form instead of any of the competing
phases. These conditions are represented as straight lines in
Fig. 5(a), each corresponding to a single competing phase.
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TABLE IV. Comparison (validation) of �Hf values (in eV/atom) from experiment (see Refs. 10 and 11) and computed using the FERE
method for 55 ternary compounds. Conversion factor to kJ/mol is ∼96.5 × N , where N stands for the number of atoms per compound formula
unit. For CaSiO3, we consider both wollastonite (w) and pseudowollastonite (p) structure and for Al2SiO5, the three structures appearing in
ICSD20,21 database: andalusite (a), kyanite (k), and silimanite (s), were included in our study.

Compound �H FERE
f �H

exp
f Compound �H FERE

f �H
exp
f Compound �H FERE

f �H
exp
f Compound �H FERE

f �H
exp
f

Al2SiO5(a) −3.36 −3.30 FeCuO2 −1.38 −1.30 Mg2SiO4 −3.22 −3.17 Sr2SiO4 −3.41 −3.35
Al2SiO5(k) −3.31 −3.29 Fe2CuO4 −1.43 −1.43 Al2MgO4 −3.41 −3.40 SrSiO3 −3.39 −3.33
Al2SiO5(s) −3.36 −3.30 Fe2NiO4 −1.60 −1.60 Fe2MgO4 −2.11 −2.11 Al2SrO4 −3.44 −3.47
ZnSiO3 −2.61 −2.52 Fe2CoO4 −1.69 −1.59 CrMgO4 −2.32 −2.17 SrTiO3 −3.47 −3.42
Zn2SiO4 −2.42 −2.35 MnSiO3 −2.74 −2.68 Cr2MgO4 −2.64 −2.65 Sr2TiO4 −3.39 −3.36
Al2ZnO4 −3.06 −3.02 Mn2SiO4 −2.56 −2.53 V2MgO6 −2.54 −2.53 BaSiO3 −3.37 −3.27
Al2CuO4 −2.68 −2.66 Fe2MnO4 −1.82 −1.87 V2Mg2O7 −2.67 −2.70 BaSi2O5 −3.30 −3.21
Al2NiO4 −2.84 −2.82 Cr2FeO4 −2.14 −2.19 MgTiO3 −3.26 −3.24 BaGeO3 −2.57 −2.60
Co2SiO4 −2.19 −2.10 MnV2O6 −2.30 −2.23 MgTi2O5 −3.25 −3.25 Al2BaO4 −3.44 −3.46
FeSiO3 −2.50 −2.47 ZnTiO3 −2.70 −2.63 Mg2TiO4 −3.21 −3.21 BaCrO4 −2.50 −2.42
Fe2SiO4 −2.19 −2.23 Zn2TiO4 −2.44 −2.38 CaSiO3(w) −3.39 −3.31 BaTiO3 −3.44 −3.35
Al2FeO4 −2.95 −2.93 Be2SiO4 −3.18 −3.06 CaSiO3(p) −3.38 −3.29 Ba2TiO4 −3.19 −3.18
Fe2ZnO4 −1.73 −1.73 Al2BeO4 −3.41 −3.34 Al2CaO4 −3.44 −3.44 Al2ZnS4 −1.43 −1.36
Fe2CdO4 −1.58 −1.59 MgSiO3 −3.21 −3.14 CaTiO3 −3.44 −3.40

We compute �Hf (Mn2SiO4) = −2.56 eV/atom for the
olivine Mn2SiO4 which is good agreement with experi-
mental value −2.53 eV/atom (see Table IV). In addition
to the competing binary and ternary compounds listed in
Tables II and IV (MnO, Mn2O3, Mn3O4, MnSiO3), we
compute �Hf (MnO2) = −2.47 eV/atom, �Hf (Mn4SiO7) =
−2.18 eV/atom, and �Hf (Mn5Si3O12) = −2.51 eV/atom.
These compounds are reported in the ICSD,20,21 but their
enthalpies of formation, to our knowledge, have not been
measured. After solving the set of inequalities of Eq. (8) taking
into account all reported (in ICSD) competing phases we find
ranges of �μI within which Mn2SiO4 is thermodynamically
stable. Projection of this region on the (�μMn,�μSi) is shown
as the green region in Fig. 5(a) (in the upper right corner).
In terms of oxygen chemical potential, the green region
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FIG. 5. (Color online) (a) Projection of the allowed ranges
of chemical potentials onto (�μMn,�μSi) plane with the green
polygon defined by Eq. (8) representing the region of thermodynamic
stability for Mn2SiO4. (b) Stability region from (a) displayed on a
oxygen partial pressure versus temperature plot. Experimental growth
conditions reported in Ref. 25 are also shown.

extends between −4.07 eV < �μO < −3.16 eV. Using the
ideal-gas equation of state (pV = nRT ) under the assumption
of neglecting vibrational degrees of freedom, one could derive
the dependence of �μO on temperature and oxygen partial
pressure as explained in Ref. 24. Then the green area from
Fig. 5(a) can be represented on a pO2 versus T plot as
done in Fig. 5(b). In Ref. 25, the authors report the growth
conditions for the artificial Mn2SiO4, temperature of ∼1600 K
and oxygen partial pressure pO2 = 10−10 atm. These values
are also shown on Fig. 5(b) and are in very good agreement
with our predictions.

B. Li-ion battery voltages

We applied our FERE approach also on the problem
of predicting accurate Li-ion battery voltages. We tested
the predictions against measured average Li intercalation
potentials (voltages) for the set of three cathode materials
LiCoO2, LiNiO2, and LiMnPO4. The last compound contains
PO4 group in which P appears as a cation and for which we
argued that the FERE method should not work. The average
Li intercalation potential 〈V 〉 is proportional to the enthalpy
of a reaction Lix1X → Lix2X + (x1 − x2)Li, when a material
LixX is delithiated from x1 to x2. The equation for the average
Li intercalation potential4 is

〈V 〉 = −[E(Lix2 X) − E(Lix1 X) − (x2 − x1)μ(Li)]

(x2 − x1)e
, (9)

where E stands for the compound total energies and μ for
the total energy of the elemental Li. We find 〈V 〉(LiCoO2) =
4.06 V, 〈V 〉(LiNiO2) = 3.71 V, and 〈V 〉(LiMnPO4) = 3.95 V,
which compares well with experimental results of 4.1,26 3.9,27

and 4.1 V28 with the average error of 0.13 V similar to the
typical experimental error of ∼0.1 V. In these three cases,
the performance of the FERE approach is similar to the
results obtained within pure GGA + U method.4 Reason for
this is that the only pure elemental phase appearing in the
equation is elemental Li. We obtained δμFERE(Li) = 0.21 eV
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which corresponds to fixed U = 3 eV for all transition metals
appearing in Eq. (9). The same accuracy can be achieved by
using the element dependent U values31 together with pure
GGA value for μ(Li) as shown in Ref. 4. On the other hand, the
following Li intercalation reaction requires a special treatment
as noted in Ref. 7:

LiFeF3 + 2Li → Fe + 3LiF (10)

for which measured electrochemical voltage, half of the
enthalpy of the reaction, amounts to 2.5 V. The difficulty
here is that there are two pure elemental phases appearing
in the reaction Li and Fe. Namely, the pure GGA voltage is
calculated to be 2.91 V29 whereas the GGA + U predicts
3.46 V,7 values that differ considerably from the measured
one. In Ref. 7, the value of 2.60 V is calculated by applying the
already discussed mixed GGA and GGA + U scheme. After
applying our FERE method, we compute the electrochemical
voltage for the reaction of Eq. (10) of 2.46 V, which is in a
very good agreement with experiments and as accurate as the
mixed GGA/GGA + U scheme.

VII. CONCLUSIONS

In conclusion, we developed a systematic computational
scheme based on fitted elemental-phase reference energies
for accurate calculation of compound enthalpies of formation.
The FERE elemental energies {μFERE

i } we obtain by solving
the least-square problem of Eq. (3) that involves experimental
enthalpies of formation. In this way, we obtain μFERE

i for 50

different chemical elements covering the earth most abundant
portion of the periodic table. These values are applicable as
long as the role of chemical elements as cations or anions
is the same as in compounds that belong to the fitting set
of 252 binary compounds (groups I-IV cations and V-VII
anions) and the GGA + U implementation is equivalent to that
used here. The {μFERE

i } values lead to the MAE = 0.054 and
0.048 eV/atom when computing enthalpies of formation of the
compounds that belong to the fitting set and 55 other ternary
compounds, respectively. The main advantage of our approach
is in its generality as it applies to different classes of semi-
conducting and insulating compounds (chalcogenides, halides,
pnictides) and in its simplicity. Moreover, it is computationally
equivalent to the cost of the simple GGA calculations.
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APPENDIX: ABSOLUTE FERE ENERGIES

TABLE V. The μFERE
i values (in eV), i.e., the total energies of pure elemental substances in their conventional reference phase. In addition,

we also show for each element the pseudopotential label (PP) as well as the difference δμFERE
i = μFERE

i − μGGA+U .

element PP μGGA+U μFERE δμFERE element PP μGGA+U μFERE δμFERE

Ag Ag −0.71 −0.83 −0.12 Mn Mn −6.97 −7.00 −0.03
Al Al −3.74 −3.02 0.72 N N −8.31 −8.51 −0.20
As As −4.65 −5.06 −0.41 Na Na pv −1.23 −1.06 0.17
Au Au −0.97 −2.23 −1.26 Nb Nb pv −7.04 −6.69 0.36
Ba Ba sv −1.93 −1.39 0.53 Ni Ni −3.65 −3.57 0.08
Be Be −3.75 −3.40 0.35 O O s/O −4.99/−4.96 −4.76/−4.73 0.23
Bi Bi d −4.06 −4.39 −0.33 P P −4.96 −5.64 −0.68
Ca Ca pv −1.93 −1.64 0.29 Pd Pd −2.84 −3.12 −0.27
Cd Cd −0.91 −0.56 0.35 Pt Pt −3.52 −3.95 −0.43
Cl Cl −1.79 −1.63 0.16 Rb Rb sv −0.96 −0.68 0.29
Co Co −4.65 −4.75 −0.10 Rh Rh −4.23 −4.76 −0.53
Cr Cr pv −7.29 −7.22 0.07 S S −4.06 −4.00 0.06
Cu Cu −2.03 −1.97 0.05 Sb Sb −4.12 −4.29 −0.16
F F −1.86 −1.70 0.15 Sc Sc sv −5.12 −4.63 0.49
Fe Fe − 6.00 −6.15 −0.15 Se Se −3.48 −3.55 −0.07
Ga Ga d −3.03 −2.37 0.66 Si Si −5.42 −4.99 0.43
Ge Ge d −4.29 −4.14 0.15 Sn Sn d −3.97 −3.79 0.18
Hf Hf pv −8.12 −7.40 0.72 Sr Sr sv −1.68 −1.17 0.51
Hg Hg −0.29 −0.12 0.17 Ta Ta pv −9.22 −8.82 0.40
In In d −2.72 −2.31 0.41 Te Te −3.14 −3.25 −0.11
Ir Ir −5.77 −5.96 −0.19 Ti Ti pv −5.57 −5.52 0.05
K K sv −1.08 −0.80 0.28 V V pv −5.97 −6.42 −0.45
La La −3.86 −3.66 0.20 Y Y sv −5.48 −4.81 0.66
Li Li sv −1.86 −1.65 0.21 Zn Zn −1.27 −0.84 0.43
Mg Mg −1.54 −0.99 0.55 Zr Zr sv −6.60 −5.87 0.72
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