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The supercell approach to defects and alloys has circumvented the limitations of those methods that insist on
using artificially high symmetry, yet this step usually comes at the cost of abandoning the language of E versus
�k band dispersion. Here we describe a computational method that maps the energy eigenvalues obtained from
large supercell calculations into an effective band structure (EBS) and recovers an approximate E(�k) for alloys.
Making use of supercells allows one to model a random alloy A1−xBxC by occupying the sites A and B via a
coin-toss procedure, affording many different local environments (polymorphic description) to occur. We present
the formalism and implementation details of the method and apply it to study the evolution of the impurity band
appearing in the dilute GaN:P alloy. We go beyond the perfectly random case, realizing that many alloys may
have nonrandom microstructures, and investigate how their formation is reflected in the EBS. It turns out that the
EBS is extremely sensitive in determining the critical disorder level for which delocalized states start to appear
in the intermediate band. In addition, the EBS allows us to identify the role played by atomic relaxation in the
positioning of the impurity levels.
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I. INTRODUCTION

The formation of configurationally disordered alloys
A1−xBxC from ordered constituent solids AC and BC is
inevitably associated with loss of long-range order and hence
with the automatic loss of the concepts of E versus �k band
structure and its derived quantities such as effective-mass
m∗ = h̄2[∂2E/∂kα∂kβ]−1, band-velocity v�k = h̄−1∂E/∂ �k, and
van Hove singularities. The language used for the description
of disordered alloys has thus naturally shifted to wave-vector-
less, integrated constructs such as total or local density of
states. At the same time, the band structure language of E(�k)
continues to be enormously useful to phenomenologically
describe trends with alloy composition x from the ordered
x = 0.0 and x = 1.0 constituents to disordered structures for
intermediate x. Such descriptions applying heuristically the
language of band theory for alloys include the use of effective-
mass,1,2 van Hove singularities in reflectivity,3 effective band
dispersion measured in angular-resolved photoemission,4 and
magnetotunneling spectroscopy.5

We have developed a computational method that maps the
energy eigenvalues obtained from large supercell calculations
into an effective band structure (EBS).6 The supercell may be
constructed to represent either a perfectly random A1−xBxC
alloy, or a perfectly ordered ABC compound, or any other
intermediate state. The eigensolutions are first obtained by ex-
plicitly diagonalizing the supercell single-particle Schrödinger
equation and then transforming the results to an EBS. In
such a description, each of the Ci atoms located on a
lattice site i = 1, . . . ,nC may have a distinctly different local
environment (depending on the coordination of the atom Ci

by different amounts of A and B atoms) and so the ensuing
EBS would correspond to a polymorphic description of the
alloy, different from simplified descriptions in alloy theory
(e.g., effective medium approximations) where all atoms, at a
fixed composition x, are assumed to have the same potential.

In the present work we go beyond the perfectly random
alloy, realizing that many alloys have nonrandom microstruc-
tures, and ask how is their formation reflected in the effective
alloy band structure. Indeed, a supercell can be readily
constructed in such a way as to include particular realizations
such as total or partial layer ordering, chain formation, and/or
clustering. Focusing on the effective E(�k) is different than
the more conventional alloy descriptions that rely mostly on
density of states. Here we will witness the degree to which
the EBS of a (nonrandom) alloy either maintains or loses the
sharpness akin to perfect solids or gains or loses it with respect
to the completely random system.

To study the manifestation of alloy microstructure on the
EBS we have chosen GaN with small amounts of phosphorus
alloyed into it. Whereas in the complimentary system GaP:N
small amounts of N additions create states that are about
�300 meV below the host crystal conduction band
minimum,7,8 in GaN:P one observes instead deep, localized
midgap levels,9 developing into an “impurity band.”6 Here we
follow the dispersion of such an impurity band, as well as the
effects of atomic aggregation of phosphorus atoms—random
versus clustered—on the EBS.

The impurity band is a generic term denoting a continuous
distribution of single-particle energy levels coming together
from a collection of impurities with increased concentration.10

It is, as such, different from the common energy band of
an ordered crystal in that the wave vector is no longer a
good quantum number.11 Amongst the mechanisms leading
to the formation of an impurity band, the Anderson model12

requires only a certain degree of disorder being present to
produce electron localization. An interesting aspect related
to the Anderson model is the appearance of a mobility edge
upon the formation of the impurity band from a random set
of impurities. This is a demarcation energy that separates
the localized and delocalized states into different regions of
the impurity band. As the impurity atoms become spatially
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FIG. 1. (Color online) Two-dimensional representation of (a) a simple unfolding of bands for a periodic fictitious system ABC and (b)
the analogy with periodic systems when treating an alloy A1−xBxC by effective medium and polymorphic model approaches. The connection
between the two representations of a primitive cell (PC) and a supercell (SC) in (c) direct space and (d) reciprocal space. The PC and SC are
related by a transformation similar to Eq. (1). The corresponding primitive (pbz) and supercell (SBZ) Brillouin zones, their associated wave
vectors �k ( �K) and translation vectors �g ( �G) as well as folding (unfolding) relations are also illustrated. In panel (d), �kC and �KC are wave vectors
equivalent to �k and �K by a symmetry operation C of both pbz and SBZ.

ordered and the degree of disorder diminishes, the width of the
delocalized impurity states region vanishes. We have found
that the impurity band appearing in GaN:P exhibits similar
characteristics to the Anderson model: the center of the band
is an energy interval corresponding to extended states, whereas
below and above it one finds localized levels originating from
P–P pairs and P–P–P triplets of various separations.

The impurity band may have important technological
applications. For example, if it is located in the gap of an
absorber, the impurity band can become the active state in the
intermediate band solar cell (IBSC)13 as shown recently, for
example, in the case of GaAs:N.14 For an IBSC operation,
however, it is of particular importance that the delocalized
impurity band states form at the expense of discrete, localized
levels that would act as nonradiative recombination centers.
We study here, using the EBS technique, precisely this
evolution of the impurity band, comparing the perfectly
random alloy with systems of increased aggregation of P
atoms.

Simple effective medium approaches are not well suited to
study the all-important effect of sublattice relaxation, as they
enforce an artificially high symmetry. In contrast, our method
to determine the alloy EBS takes into account explicitly the
local atomic relaxation within the supercell. We investigate
the effect of neglecting this relaxation step and find that, in the
particular case of GaN:P, it plays the most important role in
positioning the impurity band within the GaN band gap. The
EBS analysis turns out to be also in this case a useful tool for
tracking such manifestations.

The paper is divided into two main parts: we first provide
in Sec. II the formalism underlying the EBS determination,
outlining the basic principles of band unfolding. We then
give in detail all the necessary information on actually
constructing an EBS for an alloy using a plane-wave basis
for the eigenfunctions in Sec. III. The second part of the
paper, Sec. IV, describes the application of the EBS to the
study of the appearance and evolution of the impurity band
in GaN:P. Our results show that an important aspect of the

method is its ability to derive and describe the impurity band
from direct calculations, rather than modeling. As such, the
EBS proves to be a useful tool in making the link between
extensive supercell calculations and a straightforward, ready
interpretation in terms of standard primitive cell band structure.

II. EXTRACTING THE SPECTRAL FUNCTION FROM
SUPERCELL CALCULATIONS

A supercell (SC) is an artificial mathematical construction
obtained by stacking a primitive cell (PC) along one or more
spatial directions. The PC building block of the SC has to be
understood only as lattice (basis vectors and atomic positions)
and not as crystal structure (lattice vectors and atomic basis).
In this context, the SC has long been used in those electronic
structure calculation methods that rely on periodic boundary
conditions.15–17 Since the concept of the SC in terms of
site occupancy is arbitrary, this method affords a flexible
description of absence of order.

Although the SC energy bands are directly accessible from
calculations, in most cases their interpretation is impeded by
their complexity. Restoring an E versus �k picture within a
PC is often more convenient. This restoration is accomplished
using band unfolding techniques.18–22 The idea is illustrated in
Figs. 1(a) and 1(b) for a fictitious two-dimensional (2D) system
ABC. When dealing with the ordered, periodic compound
ABC [Fig. 1(a)], one can use either a SC or a PC to calculate
its electronic structure. The reciprocal space can be described
by wave vectors belonging either to the primitive (�k) or
the supercell ( �K) Brillouin zone. In both cases, dispersion
relations E(�k) or E( �K) can be obtained directly. An unfolding
technique will enable the reconstruction of E(�k) from a directly
calculated E( �K). Such a procedure might prove useful in
performing band-structure analyses when SCs are used in
dealing with impurities or for complex systems with large
unit cells.21

By analogy with the ordered system, one can also treat the
disordered A1−xBxC alloy [Fig. 1(b)] in two ways. Applying
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effective medium theories such as the virtual crystal (VCA)23

or the single-site coherent potential approximation (CPA)24,25

forces a PC periodicity and obtains alloy dispersion relations.
In the CPA case, these are given as “broadened bands” in
terms of Bloch spectral functions.25 Alternatively, the random
system A1−xBxC can be modeled by using large SCs, in which
the atomic sites are occupied by A and B atoms following
a coin-toss or other disorder procedures commensurate with
the composition x. This leads to the natural occurrence of
different local atomic environments around the various atomic
sites, as illustrated by the shaded areas in Fig. 1(b), a generic
construction termed the polymorphic model. The directly
calculated SC eigenstates are then projected on a reference
Hamiltonian defined over the PC. Following an unfolding step,
this will determine an alloy effective band structure (EBS)
E(�k). The constructed EBS will resemble a “broadened band
complex” only inasmuch as such a picture, of a PC-periodic
system, is preserved by the polymorphic model.

The crux of the EBS determination method is represented
by the calculation of the spectral weight of a large number22

of SC eigenvalues and the construction of a spectral func-
tion. Applications of such techniques made use either of
localized18,20,21 or plane-wave bases19,26 and, in most cases,
focused on the spectral decomposition at only a few numbers
of (high-symmetry) points in the Brillouin zone. Combining
the spectral decomposition with a �k-unfolding algorithm,20

we have shown6 that the EBS of alloys can, in practice, be
obtained for any primitive �k vector.

The procedure of extracting the EBS from SC calcula-
tions is versatile and not limited to alloys. While modern
computer capabilities allow SC calculations to be performed
routinely, access to a PC-related, and thus simpler, E(�k)
picture shall provide a useful complementary analysis tool.21

For this reason we give in this section the details needed
for its implementation, making no specific reference to a
particular SC construction and occupation. We focus on the
�k-folding and �K-unfolding, showing that, at any choice of a
SC/PC combination, all the necessary information is elegantly
comprised in the transformation matrix between the two bases.

A. Supercell definition and notations used

One can usually see the SC as a stacking along all or some
of the three spatial directions of the PC of a Bravais lattice.
The PC lattice vectors �ai (i = 1,2,3) make up the building unit
for the SC vectors �Ai . Here and in the following we denote
by small (capital) symbols quantities referring to the PC (SC).
In matrix notation, the two sets of basis vectors are related by
�A = M · �a, or⎛⎜⎝ �A1

�A2

�A3

⎞⎟⎠ =

⎛⎜⎝m11 m12 m13

m21 m22 m23

m31 m32 m33

⎞⎟⎠ ·

⎛⎜⎝ �a1

�a2

�a3

⎞⎟⎠ , mij ∈ Z, (1)

where the only condition imposed on the transformation matrix
M is to be invertible (nonsingular). In the most general case,
M does not need to be diagonal, that is, the SC and PC unit
vectors do not need to be collinear. The elements of M are
integers (mij ∈ Z), which corresponds to the case of a SC
commensurate20 to the PC, the only one considered here. An

example is given in Fig. 1(c) for the fictitious 2D system ABC.
The volumes of the PC and SC unit cells, vPC and VSC , are
related by VSC = vPC · det(M).

An obvious consequence of this dual description of the
direct (real) space by means of a PC and a SC is the existence
of two Brillouin zones in the reciprocal space [Fig. 1(d)]. We
distinguish between the primitive Brillouin zone (pbz) and
the supercell Brillouin zone (SBZ), with the latter having a
smaller volume, VSBZ = vpbz/ det(M). Following the conven-
tion adopted above, we denote by �bi ( �Bi) the respective unit
cell vectors of the pbz (SBZ), constructed in the usual way27:
�bi = (2π/vPC)(�aj × �ak), and �Bi = (2π/VSC)( �Aj × �Ak). A
relation similar to Eq. (1) connects the two reciprocal basis
vectors: ⎛⎜⎝ �B1

�B2

�B3

⎞⎟⎠ = M−1 ·

⎛⎜⎝ �b1

�b2

�b3

⎞⎟⎠ , (2)

emphasizing the requirement of M being invertible and
showing that �Bi ‖ �bi if and only if M is diagonal.

The reciprocal lattice vectors �gn ( �Gn) associated with the
pbz (SBZ),

�gn =
∑

i

pi
�bi, pi ∈ Z, (3a)

�Gn =
∑

i

qi
�Bi, qi ∈ Z, (3b)

will form two infinite sets {�gn} and { �Gn} with the obvious
property [see also Fig. 1(d)] {�gn} ⊂ { �Gn}; in other words, any
�g vector is a �G vector.

B. Folding and unfolding of wave vectors

Folding of states of different wave vectors in supercells
depends only on the geometry and symmetry of the SC and its
underlying PC, through their corresponding Brillouin zones
SBZ and pbz. A wave vector �k (in pbz) is said to fold into
a wave vector �K (in SBZ) [see Fig. 1(d)] if there exists a
reciprocal lattice vector �G0 such that

�K = �k − �G0. (4)

Conversely, a wave vector �K (of the SBZ) unfolds into �ki ∈ pbz
if

�ki = �K + �Gi , i = 1, . . . ,N �K. (5)

Despite their apparent equivalence, Eqs. (4) and (5) have
been intentionally written down explicitly because they sum-
marize the very principle of folding and unfolding of states.
Indeed, the vectors �K and �G0 in Eq. (4) are unique for a given
�k, which means that a given wave vector �k ∈ pbz is mapped
precisely into a single wave vector �K ∈ SBZ (folding). In
contrast, Eq. (5) shows that a given wave vector �K can
be obtained from a number N �K of different (�ki , �Gi) pairs
(unfolding). Not surprisingly,

N �K = det M, (6)

which, as we could see, equals vpbz/VSBZ . This is illustrated in
Fig. 1(d) for the 2D model system ABC. In this case N �K = 2,
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with �K unfolding into �k1 = �K ( �G1 ≡ �0) and �k2 = �k ( �G2 ≡
�G0). Let us also note here that N �K refers to the full Brillouin
zone, not to its irreducible part; that is, some of the �ki ∈ pbz
wave vectors may be related by symmetry operations of the
PC space group.

C. Folding and unfolding of states

Standard electronic structure calculation methods can be
applied to a periodic solid using either a PC or a SC
representation. Because of periodicity in both PC and SC,
�k (PC) and �K (SC) are good quantum numbers. By solving the
associated Schrödinger equation of the electronic system one
can readily obtain both the eigenvectors |�kn〉 and | �Km〉 (where
n and m stand for band indices) and the dispersion relations
E(�k) and E( �K), which are well-defined quantities in both
representations. The zone folding and unfolding geometric re-
lations lead to the property that any SC eigenvector | �Km〉 can
be expressed as a linear combination of PC eigenvectors19,28

|�kin〉 (i = 1, . . . ,N �K ). Commonly termed as folding of the
bulk pbz into the SBZ, this is formally expressed as

| �Km〉 =
N �K∑
i=1

∑
n

F (�ki,n; �K,m) |�kin〉. (7)

The purpose of an unfolding procedure is to recover, from the
SC calculation alone, either (i) the PC eigenvectors |�kin〉 and
their contributions F (�ki,n; �K,m) to the SC eigenstates | �Km〉,
or (ii) as illustrated in Fig. 1(a), the E(�k) picture from the
often complicated E( �K). This last step can be accomplished
by projecting | �Km〉 on all the PC Bloch states |�kin〉 of a fixed
�ki and calculating the spectral weight,18,19

P �Km(�ki) =
∑

n

|〈 �Km|�kin〉|2 . (8)

This quantity represents the probability of finding a set of PC
states |�kin〉 contributing to the SC state | �Km〉, or, equivalently,
the amount of Bloch character �ki preserved in | �Km〉 at the
same energy En = Em.18,19 From P �Km(�ki) one can further
derive a spectral function (SF) of continuous variable E:

A(�ki,E) =
∑
m

P �Km(�ki)δ(Em − E). (9)

In the following section we give examples that illustrate how
the SF A(�ki,E) is used to unfold a SC-calculated E( �K) into a
PC-adapted E(�k).

D. Examples of unfolding

1. The trivial case: Multiple identical primitive cells

The simplest case of unfolding E( �K) into E(�k) is that of a
SC obtained by a spatial repetition of identical PCs, without
changing the symmetry of the lattice [as in the example of
Fig. 1(a)]. By construction, such a SC is not introducing any
additional coupling between the PC states |�kin〉 and thus

P �Km(�ki) = gn(�ki) δ(Em − En), (10)

where gn(�ki) is the (bulk) degeneracy of the PC state |�kin〉 at
En. The SF will then be a set of δ functions of integer amplitude

gn(�ki) at each eigenvalue En(�ki) of the PC Hamiltonian,
which reconstructs exactly the E(�k) provided by a direct PC
calculation [Fig. 1(a)].

2. Superlattices and quantum wells

We recall that, for the purpose of E( �K) unfolding, the PC
building block of the SC is understood only as lattice (basis
vectors and atomic positions). Indeed, all the information
necessary for unfolding is provided by the geometric relation
Eq. (1), with all other ingredients deduced from it. For
example, one can calculate directly, using a SC construction,
the electronic (band) structure E( �K) of a quantum well and/or
a superlattice system An/Bm, where A and B are zinc-blende
III-V materials.29,30 The PC of such a system can be chosen
either as the fcc or simple cubic (sc) Bravais lattice, and a
dispersion relation E(�k) relative to the corresponding Brillouin
zone can be derived. Unlike the trivial situation described
above and illustrated in Fig. 1(a), the symmetry of the SC
is now different from that of the PC. As a result, the bulk
states |�kin〉 may have different representations in the SC and,
in addition to folding, they can also couple one to another,
differently than in the bulk. Even if materials A and B are
ordered compounds, the spectral weights determined from
such a calculation, Eq. (8), may no longer be integer values.
One can obtain, instead, nonzero P �Km(�ki) for different �ki wave
vectors at the same energy Em. Thus the SF analysis will
reveal the identity and the amount of each of the various
|�kin〉 PC eigenstates that couple to form a SC state. As such,
the SF decomposition becomes a useful tool that enables a
band-structure analysis in the Brillouin zone of the underlying
PC. For example, in semiconductor superlattices, one can (i)
determine the origin of a band-gap reduction upon ordering
as the direct result of bulk states repulsion or (ii) identify a
pseudodirect (� point) optical transition as an indirect one (X
or L point), occurring because of the X and/or L points (pbz)
folding into the �̄ point (SBZ).31

3. Alloy systems

We focus in this paper on applying the SC construction
to the electronic structure calculation of substitutionally
disordered alloys. In contrast to effective medium theories,
by building a large SC, as illustrated in Fig. 1(b), one accom-
modates a polymorphic description of the system A1−xBxC,
allowing different local environments to appear inside the
SC. As shown in Fig. 1(b), one can generate a particular
random realization of the fictitious alloy that allows different
local environments [highlighted areas of Fig. 1(b)] to appear
spontaneously around each of the atoms A, B, and C. After
solving for the SC Hamiltonian, one obtains the spectral weight
given by Eq. (8) and, through Eq. (9), the corresponding SF.
In contrast to the SCs of ordered systems, the spectral weights
will no longer be δ functions. In particular, the different local
environments and the inelastic scattering in the alloy will be
reflected in a finite width of A(�k,E) in both arguments �k and E.
With the SF determined for a set of �k vectors and over a wide
range of energies, one can obtain the alloy EBS. Its effective
construction is described in detail in the next section.
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III. CONSTRUCTING THE EFFECTIVE BAND
STRUCTURE OF A RANDOM ALLOY

We describe in this section the actual construction of an
EBS for an alloy, using the specific example of In0.1Ga0.9N, a
system that preserves, to a large extent, a recognizable band
structure (“a weakly perturbed alloy”).6 The necessary steps
for an alloy EBS determination—illustrated in Fig. 2—are the
following:

(A) Choosing the SC to be used in modeling the alloy
system, deciding on a reference PC and a set of wave vectors
{�ki} over which to construct the EBS. As we discuss in more
detail below, this set needs to be extended to include also the
additional PC wave vectors that are equivalent by symmetry
with �ki . We denote this extended set by {�kj };

(B) Decorating the SC, one random realization at a time;
(C) Relaxing the atomic positions so as to minimize the

elastic energy;
(D) Calculating the SC eigenvalues and eigenvectors;
(E) Determining the set {A(�kj ,E)} of SFs for all �kj vectors

of step (A), and calculating an internal average over those
�k vectors that are equivalent by symmetry with �ki , which
provides a subset of averaged, representative SFs {Ā(�ki,E)};
and

(F) Repeating steps (B)–(E) if different random realizations
are used. The statistically averaged SFs at each �ki are collected
into the EBS. This final product (a typical EBS) is shown in
Fig. 2(b) and will serve as a general template for the rest of
the results presented in this paper.

A. Initial settings: The supercell, the reference primitive cell,
and the set of primitive wave vectors

1. Setting up the supercell

When used to model a partially or completely random
substitutional alloy A1−xBxC, the SC needs to be constructed
in such a way that its symmetry corresponds to the macroscopic
(experimental) symmetry of the alloy and, as such, does not
introduce artificial symmetry-enforced coupling of states. On
the other hand, by virtue of Eq. (3b), the larger the SC, the
more different �Gi’s are obtained and thus the number N �K of
primitive �ki vectors for which SFs can be determined from a
single, given �K [see Eq. (5)], depends on the volume of the SC.

However, the actual size of the SC needs to ensure a reasonable
balance between accuracy and computational cost. This aspect
has been discussed by Zhang and Wang,22 who compared two
different approaches: (i) performing a configurational average
over many random realizations of a relatively small sized SC
(hundred or thousand atoms), and (ii) calculating a single-shot
huge SC (up to a quarter million atoms), relying on the ergodic
average over many local environments occurring inside the
very same SC. The authors found that, while in certain cases
the two methods deliver similar results (for example, the
band gap), in those properties related to alloy statistics the
equivalence is strongly dependent on both the chosen system
and its investigated composition. For the alloys presented here,
InxGa1−xN and the diluted GaN:P, we found no significant
qualitative differences in the EBS obtained from thousand-
and few hundred-atom SCs. Detailed calculations have shown,
for both systems, that the statistical spread in eigenvalues due
to composition fluctuations essentially follows an expected√

x(1 − x) dependence,32 over the whole composition range
for InxGa1−xN and within x � 0.1 for GaN1−xPx .

2. Choosing the primitive cell

The next step is to chose a PC that will define the pbz,
its associated �k-space, and will deal as reference for the EBS.
Such a choice of the PC unit vectors �a is not necessarily unique,
since the PC building block of the SC has to be understood
only as a lattice and not as a crystal structure. It is sufficient
that �a is related to �A (SC unit vectors) by a relation equivalent
to Eq. (1), with a nonsingular transformation matrix M . For
example, considering the zinc-blende structure as SC, either
the fcc or the sc Bravais lattices can be used as PCs. For
the purpose of determining an EBS, one further assumes the
existence of a set of “virtual crystal” eigenvectors { |�kn〉}, with
�k ∈ pbz. As shown below, not only is the explicit calculation
of |�kn〉 unnecessary, they do not appear at all in the final
expression of P �Km(�kj ). The only condition |�kn〉 needs to fulfill
is that they form a complete, orthonormal set:

〈 �kn|�kn′〉 = δnn′ . (11)

(a) K=0
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0.1
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0.9

N(b) FIG. 2. (Color online) An example, for the
In0.1Ga0.9N alloy, of how the effective band struc-
ture (EBS) is obtained. (a) Supercell eigenstates
{Em( �KJ ), | �Kjm〉} calculated at various �KJ are
projected and then unfolded on the fcc Brillouin
zone vectors �ki = �KJ + �Gi [Eq. (5)], providing
the spectral functions Ā(�ki,E) [Eq. (16), red
(dark gray)] and the cumulative sums S�ki

(E)
[Eq. (17), blue (black)]; the latter quantity is
used to determine the alloy “bands” positions
and widths [cyan (light gray) shaded areas]. (b)
Results for all �ki vectors (thin vertical lines) are
put together into an E versus �k plot, having along
the abscissa also the spectral function amplitude.
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3. The extended set of primitive and supercell wave vectors

Let us assume that we have decided to construct the alloy
EBS for a set {�ki} of a chosen pbz. We enforce the macroscopic
symmetry of the alloy by averaging the SFs A(�k,E) over
all symmetry-related �k vectors. Indeed, if the system were
periodic, with C one of its symmetry operations, the PC
(SC) wave vectors �k and �kC = C�k ( �K and �KC = C�k) would
be equivalent, as shown in Fig. 1(d). For a random alloy,
however, C is no longer a symmetry operation of the SC,
and we therefore need to take into account explicitly all
of the corresponding �KC = �kC + �G vectors. This procedure
increases the size of the chosen set {�ki}, leading to the extended
sets {�kj } and { �KJ } (J � 1). The latter will provide, for the
given SC and PC, all of the primitive vectors �kj via Eq. (5).

B. Decorating the supercell

We model a substitutional A1−xBxC alloy by occupying
the unrelaxed lattice sites �R 0

nα with atoms of different species
α =A, B, and C commensurate with the composition x.
This occupation procedure needs to be flexible enough so
as to simulate either the completely random or any other
intermediate state possessing short- or long-range order.

C. Relaxing the atomic positions

After decorating the SC with a random realization, we
allow the atoms to relax about their initial positions �R 0

nα so
as to minimize the elastic strain energy in the SC. During
this process, the bonds A–C, A–B, and B–C of an A1−xBxC
alloy will tend towards their “natural” (equilibrium) values
in the corresponding binaries, leading to local relaxation. We
calculate the elastic energy by means of a valence force field
(VFF) functional33,34 in its generalized form.35 Its expression is
given as a sum of three terms, representing the bond stretching,
bond bending, and bond-length/bond-angle interactions. Each
of these terms is described by VFF parameters which are
related to the elastic coefficients of the corresponding bulk
materials.35 The importance of this relaxation step for the
impurity band appearance and positioning is analyzed in detail
in Sec. IV D.

D. Calculating the SC eigenvalues and eigenvectors

At a given random realization, we obtain the SC eigenvalues
and eigenvectors by solving the single-particle equation[

−β

2
∇2 +

∑
n,α

v̂α(�r − �Rnα,εn) + V̂αNL

]
| �Km〉 = Em | �Km〉,

(12)

where vα(�r − �Rnα,εn) is a screened atomic empirical pseu-
dopotential depending on the identity α of the atom and the
local strain tensor ε at its relaxed position �Rnα:

vα(�r,ε) = vα(�r,0)[1 + γαTr(ε)], (13)

with γα a fitting parameter introducing a further dependence
on the identity of the neighbors.36 The other terms entering
Eq. (12) are the nonlocal spin-orbit coupling potential V̂αNL

and a scaling factor β for the kinetic energy.36

Using the pseudopotentials of each atom α and the relaxed
positions �Rnα , we solve the single-particle equation (12) by
making a plane-wave ansatz37 for the eigenvector | �Km〉,

| �Km〉 =
⎡⎣∑

�G
C �Km( �G) ei �G�r

⎤⎦ ei �K�r , �K ∈ SBZ, (14)

where �G are reciprocal lattice vectors in units of the SBZ, as
given by Eq. (3b). The numerical determination of | �Km〉 and
Em is accomplished by diagonalizing the Hamiltonian using
the folded spectrum method.38

We show in Appendix that, adopting a plane-wave expan-
sion for the SC eigenvectors, the spectral weight P �Km(�kj ) of
Eq. (8) is given by

P �Km(�kj ) =
∑

�g
|C �Km(�g + �kj − �K)|2,

=
∑

�g
|C �Km(�g + �Gj )|2, (15)

where we took into account the unfolding relation, Eq. (5). As
anticipated, P �Km(�kj ) does not require the explicit knowledge
and calculation of the projecting Bloch functions |�kn〉. We re-
call here that {�gj } ⊂ { �Gj }. Thus all C �Km(�g + �Gj ) coefficients
in Eq. (15) are well-defined quantities. In addition, as any �g
and �G is obtained according to one of the Eqs. (3a) or (3b),
this shows how P �Km(�kj ) explicitly depends on the choice of
the reference primitive Brillouin zone (pbz) and its relation to
the SBZ.

E. Determining the spectral functions

In order to obtain the SFs, Eq. (12) is solved at each
previously determined �KJ (Sec. III A 3) for thousands of
SC eigenstates {Em( �KJ ), | �Kjm〉}. We then derive the SFs
A(�kj ,E) using Eqs. (9) and (15). In line with the macroscopic
symmetry enforcement procedure, the effective SF Ā(�ki,E) at
a representative point �ki is obtained as the average of SFs of
all nC wave vectors �kC belonging to the same symmetry class
C(�ki) as �ki :

Ā(�ki,E) = 1

nC

∑
�kC∈C(�ki )

A(�kC,E). (16)

F. Constructing the EBS

If more than one random realization is used in calculating
the EBS, the symmetry-averaged SFs Ā(�ki,E) are collected to
give the final symmetry and statistically averaged SF at each
�ki . Such SFs for alloys are thus broadened and structured, ex-
hibiting a finite, �k-dependent bandwidth, a direct consequence
of the polymorphic nature of the adopted description.

The SC eigenvalues calculation and the SF generation are
illustrated for the In0.1Ga0.9N alloy in Fig. 2(a), where the
SC eigenvalues have been obtained for two different SC wave
vectors and the SFs Ā(�ki,E) at selected primitive �ki vectors are
shown in red (dark gray) along the abscissas. A useful quantity
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in the EBS construction and discussion is the cumulative
sum,20

S�ki
(En) =

∫ En

Ā(�ki,E)dE, (17)

depicted in the same panels as Ā(�ki,E) with blue (black) lines.
This cumulative sum is characterized by steps of value g(�ki)
whenever an “alloy band” of degeneracy g(�ki) is crossed,20

and thus allows one to estimate the alloy bands positions and
widths. For the present applications, a �ki-dependent bandwidth
[the cyan (light-gray) shaded areas in Fig. 2(a)] is taken as the
energy range in which Ā(�ki,E) � 10−3 around a band center.
The final step in obtaining the EBS is collecting all of the SFs
and the bandwidths in single E versus �k plots, as those shown
in Fig. 2(b), where the individual �ki vectors are designated by
vertical thin lines to which the corresponding SFs Ā(�ki,E) are
aligned. Thus the abscissa of such a plot simultaneously shows
two variables, the wave vector �k and the spectral function
amplitude at each �ki .

The EBS of In0.1Ga0.9N shown in Fig. 2(b) is a typical
example of a weakly perturbed alloy, exhibiting rather well-
defined, albeit broadened, alloy bands. This broadening is
different for various bands and �k vectors: (i) Sharp, bandlike
peaks in the SFs are obtained only at the center and edges
of the fcc Brillouin zone. (ii) For intermediate �ki vectors, the
Bloch character of the alloy bands is strongly diminished,
especially for the first conduction band (CB1), which reaches
a broadening of �1 eV. This is mainly due to the convexity of
CB1 in both parent binaries.6 Indeed, for �k inside the pbz, there
are more eigenstates of different bulk wave vectors, with closer
eigenvalues, that are folding in the same small energy range
to form the SC (alloy) eigenstates. (iii) In contrast to CB1, the
valence bands and the second conduction band (CB2), have
narrower �k-dependent bandwidths. Note that the calculations
for (In,Ga)N were done without spin-orbit coupling, and, as
such, the heavy hole and light hole bands are not resolved by
the EBS, leading to relatively broader widths of the VB. In
turn, the results we obtained and present in the following for
the strongly perturbed system GaN:P did include the spin-orbit
coupling.

IV. THE EMERGENCE OF AN IMPURITY BAND IN
DILUTED GaN:P AND ITS EVOLUTION WITH

CLUSTERING AND RELAXATION

We are presenting results of an EBS determination method
that have been obtained for the highly mismatched zinc-blende
GaN1−xPx alloy8,39 in the dilute limit, x � 0.05. This system
represents a prototype for a strongly perturbed alloy as
it is characterized by a large natural valence band offset
[�15v(GaP) 1.71 eV above �15v(GaN)] and lattice misfit
(21%).40 Considering the perfectly random case, previous
investigations6,9 have shown that the presence of P atoms leads
to the occurrence of deep, localized midgap levels (t2-like)
that develop into an impurity band (IB).6 We emphasize here
that the term “completely” (or “perfectly”) random refers
only to the occupation of each of the cation/anion sublattices
according to random statistics (which has finite probability for
clusters). In our model the alloys still preserve a short-range

order, in that the anions (cations) do not occupy the cation
(anion) sublattice. We apply the EBS method to study: (i)
the changes in the dispersion of the IB under the effect of
atomic aggregation of P, going beyond the completely random
case; and (ii) how the EBS is reflecting the neglecting of
atomic relaxation caused by the huge lattice mismatch between
GaN and GaP, a step otherwise always accounted for in our
calculations.

A. Calculation of alloy eigenstates

For all our calculations we use a 512-atom cubic SC, the
same size used in the perfectly random case.6 We construct
twelve random realizations at each composition investigated,
performing the statistical average of the determined SFs. As
a reference PC we use the fcc Bravais lattice with the lattice
constant given by the Vegard law. Detailed comparison of
the averaged EBS with one obtained from a 4096-atom SC
showed no significant quantitative and qualitative differences.
In solving the SC Hamiltonian, we use the same unstrained
empirical pseudopotentials corresponding to GaN and GaP—
vα(�r,0) in Eq. (13)—as used by Mattila et al.9,41 including
spin-orbit coupling.

B. Impurity states in strongly perturbed alloys

While the appearance of an IB in GaN:P has been
demonstrated previously for the perfectly random case,6

we shall contrast here the EBS of the completely random
systems with some in which partial or total clustering of the
substitutional impurity is imposed. Indeed, the single impurity
levels will merge together to form the IB upon increasing
concentration,10,11 but a critical degree of impurity disorder
is required for delocalized states to appear in the center of
the IB. In the perfectly random GaN:P system we have found
that the IB is characterized by a central area of high density of
delocalized states and a series of isolated peaks, corresponding
to localized states originating from P–P pairs and P–P–P
triplets, above and below it.6 While in a disordered alloy such
distributions appear randomly with a given probability, one
can imagine, for example, the formation of clumps of P atoms
that will manifest as tiny quantum dots, giving rise to discrete,
strongly localized levels, removing the continuous dispersion
of energy levels specific to an IB. Between the limit of a total
clustering and that of complete randomness, characterized by
an Anderson-like IB, a transition is expected to occur. We can
follow this transition by means of the alloy EBS, calculated by
modeling different degrees of phosphorus aggregation.

Figure 3 gives results of our calculations for GaN0.98P0.02,
and Fig. 4 for GaN0.95P0.05. The leftmost panel of these figures
shows the EBS of the completely random system, where the
energy zero is the GaN valence band maximum (VBM). The
formation of an IB with increasing P composition can be
readily recognized in these figures.

It also becomes apparent that, in the perfectly random case,
the IB exhibits the main characteristics of an Anderson-like
impurity band: (i) the maximum in each Ā(�k,E) appears at the
energy center of the IB, with its center of gravity being pinned
in energy and varying very little with P composition; (ii) above
and below the center of the IB one observes discrete levels that
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FIG. 3. (Color online) Effect of clustering
on EBS for GaN0.98P0.02 derived from a 512-
atom SC. This contains, at the P composition
of 0.02, five P atoms in the SC. Leftmost
panel: The perfectly random alloy shows the
Anderson-like impurity band. Rightmost: All of
the five P atoms are grouped in a cluster, leading
to discrete levels. In between these extrema we
have systems consisting of an nc-atom P cluster
kept fixed while the rest of the P atoms, 5 − nc,
were placed randomly in the SC (taking 12
different realizations). We note the formation
of the impurity band with the decreasing size,
from right to left, of the P cluster. The dashed
horizontal lines mark the position of the GaN
VBM and CBM.

have been identified as stemming from various P–P pairs;6 (iii)
Ā(�,E), the SF at the pbz center, is the dominant component,
followed by a fast decay for the wave vectors near the zone
edge. The increase of P content xP leads to a rapid widening
of the IB, which extends over �1 eV already at xP = 0.02.
Simultaneously, this increase also leads to a disintegration of
the valence band (VB). Indeed, even at the low composition
x = 0.02, the VB exhibits widespread �k-resolved SFs, with a
broadening of the EBS in both �k and E. This effect is much less
pronounced in the conduction band (CB), which preserves a
weakly perturbed alloy character even at higher P composition.

C. Appearance of discrete levels for clusters

We model the aggregation of phosphorus atoms by con-
structing spherical clusters of different sizes inside the SC. For
the 512-atom cubic SC, there is a number nmax = [x × 256]
of anion positions that P can occupy at a P content x in

GaN1−xPx . This number also represents the maximum size
of a P cluster we can build in the SC ([. . .] denoting the
integer part). We define a cluster of size nc � nmax as the
smallest volume, in the center of the SC, occupied by the nc

P atoms distributed exclusively on anion sites. The nmax − nc

atoms left after setting up the cluster are distributed randomly
over the rest of the SC; this way, the system we model can
be seen as a disordered Ga(N,P) alloy of nominal random
composition (nmax − nc)/256 with an nc-sized P cluster in it.
Also, for these P-aggregated systems a number of 12 different
realizations were calculated and averaged (except, of course,
for nc = nmax) to give the alloy EBS. In contrast to the perfectly
random situation, however, the various realizations have the
cluster region identical.

In the rightmost panel of Figs. 3 and 4 is shown the EBS
for the systems with a cluster of maximum size nc = nmax,
for GaN0.98P0.02 (nmax = 5) and GaN0.95P0.05 (nmax = 13),
respectively, at the corresponding composition. Although we

Effect of clustering in GaN0.95P0.05
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FIG. 4. (Color online) Same as Fig. 3
but for GaN0.95P0.05. The SC contains at the
P composition of 0.05 13 P atoms. Leftmost
panel: The perfectly random alloy shows the
Anderson-like impurity band. Rightmost: All of
the 13 P atoms are grouped in a cluster, leading
to discrete levels.
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have performed calculations for all possible nc values between
the two limits—total randomness (nc = 1) and complete
clustering (nc = nmax)—we show only two illustrative cases,
in which the P clusters are of intermediate size 1 < nc � nmax.
Here we should note that, when modeling a disordered A1−xBx

system within a SC approach the composition x takes on only
discrete values, rather than being a continuous variable.

The general trend to be observed when moving from perfect
disorder (nc = 1) to complete clustering (nc = nmax) is the
fragmentation of the IB from a relatively compact band, with
a high DOS area in its center, to a collection of discrete levels,
akin those of a tiny quantum dot. The VB and CB, on the other
hand, show nearly no modification upon clustering, neither in
structure, nor in broadening.

The two compositions x = 0.02 and x = 0.05 exhibit
a quite different behavior. In the low composition range
(x = 0.02) the isolated high-energy peaks (at � 1.2−1.4 eV)
in the EBS originate from localized P-dimer and P-trimer
states. Upon clustering, nc = 2 and nc = 3, a satellite feature
develops in this high-energy region, separated from the rest
of the IB. The IB survivor remains relatively well defined,
centered around E = 0.7 eV. Details of the EBS, showing
only Ā(�,E) (the dominant component at the pbz center), are
plotted in Fig. 5. In this figure the evolution from a rather
compact IB (disordered system) to the collection of single
localized levels (5-atom cluster) is even easier to follow. The
width of the delocalized region of the IB (as long as present,
for nc � 3) does not change significantly from about 0.45 eV,
its value for the completely random case.

For the higher composition, x = 0.05, even a high degree
of clustering is not sufficient to destroy the delocalized region
of the IB, as can be seen for the system with nc = 8 shown
in Fig. 4. This is not surprising, since the nominal random P
composition outside the cluster region is slightly above 0.02,
which would correspond to the previous (low-composition)
totally random case. In fact, based on a detailed analysis
for all the 1 � nc � nmax possible cluster sizes (not shown),
we could determine that values above 1% for the nominal
host randomness are sufficient to ensure the appearance of
delocalized states in the IB.

D. Effect of atomic displacements on the EBS

In order to investigate the effect of internal relaxation
on the EBS, we do an additional eigenvalues/SF calculation
immediately after setting up the SC, without relaxing the
atomic positions, that is, skipping step (C) in the EBS
construction (Sec. III). This set of results will be denoted
as “unrelaxed” in the following and will be compared with
the EBS obtained following the standard procedure, including
relaxation (denoted “relaxed”). We discuss in the following the
relaxation effect for completely random GaN:P comparing a
single realization (with and without relaxation), having found
similar changes for all configurations considered.

It was recognized quite early that, in the case of an
isoelectronic impurity, the deep levels occurring in the gap
of the host are caused by an attractive potential induced by
the local relaxation around the impurity.7 Using a similar
polymorphic model, Kent and Zunger8 have shown that this
is indeed the case for the nitrogen impurity level in GaP. This
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FIG. 5. (Color online) Detailed representation of the spectral
function Ā(�,E) at the � point in the energy range of the impurity
band for the systems of Fig. 3.

level, appearing about 300 meV below the GaP CBM when
proper relaxation is taken into account, is resonant with the host
CB as soon as relaxation is ignored. The relaxation around the
impurity is the main cause for the P impurity levels appearing
deep in the gap of the GaN host.6 This is demonstrated in
Fig. 6 for various P compositions x, by comparing side by side
the EBS of single realizations before and after the internal
relaxation.

We observe that, regardless of x, the impurity level (band,
for higher x) completely disappears from the gap in the
unrelaxed systems. In addition, the GaP hole states are pushed
very far below the GaN VBM and thus the valence alloy bands
of the unrelaxed GaN:P are narrower than in the relaxed case.
The CB, however, suffers a large broadening when relaxation
is ignored. This broadening is particularly strong in the vicinity
of the X point, where the lowest GaP electron states are pushed
down and, as a result of folding, mix with the GaN CB states.

These modifications in the relative positioning of the
various states are easy to understand considering the two
effects occurring as a result of P substituting for N. First, there
is a difference in the electronegativity of the two anions, which
is described by the atomic pseudopotentials. Second, the Ga–P
bonds formed around the P impurity are subjected to a huge

085201-9



VOICU POPESCU AND ALEX ZUNGER PHYSICAL REVIEW B 85, 085201 (2012)

~~~~

ΔX

-0.5

0.0

0.5

1.0

1.5

2.0

E
ne

rg
y 

(e
V

)

relaxed

4.0

5.0

6.0

7.0

~~ ~~

Γ Δ X

unrelaxed

(a) GaN
0.996

P
0.004

x10

~~~~

ΔX

relaxed

~~ ~~

Γ Δ X

unrelaxed

(b) GaN
0.98

P
0.02

x10

~~~~

ΔX

relaxed

~~ ~~

Γ Δ X

~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~

x10

~~~~~~~~ ~~~~~~~~~~~~~ ~~~~

x10

~~~~~~~~ ~~~~~~~~~~~~~

unrelaxed

(c) GaN
0.95

P
0.05

x10

FIG. 6. (Color online) Effect of VFF relaxation on the EBS of GaN:P for different P compositions (x = 0.004, 0.02, 0.05) (from left to
right) and a fixed random realization. When the relaxation is neglected (the panels labeled “unrelaxed”) the impurity band disappears from the
gap.

compression when accommodating the much smaller (21%)
GaN lattice constant. The model calculations remove the
inherent relaxation step that would naturally occur. The two-
anion electronegativity difference alone, although significantly
changing the EBS of the GaN:P as compared to GaN, is
not sufficiently strong to position the P levels deep into the
gap. Indeed, taking the GaN VBM (�15v) as reference energy,
the natural band edges are, respectively, �1c(GaN) = 3.2 eV,
�15v(GaP) = 1.7 eV, and X1c(GaP) = 4.1 eV. With the atomic
displacements properly taken into account, both Ga–N and
Ga–P bonds will tend towards their “natural” lengths and,
as a consequence, the corresponding levels will not change
too much, resulting in a VB and a CB of the GaN:P alloy
being almost exclusively formed by the nearly unstrained GaN
bands. If relaxation is ignored, however, Ga–N bonds are
practically the same (and so are the respective band edges),
but the Ga–P suffer a large contraction. It is this pressure
that lowers dramatically the GaP valence and conduction band
states, bringing them in resonance with the GaN bands with
which they couple, forming wide alloy bands. The former
impurity band (originating from the GaP �15v level) is now
completely buried into the alloy VB. Such a dramatic effect
is, of course, an artefact of any calculation which ignores
relaxation in highly mismatched systems.

V. CONCLUSIONS

We have presented to a great level of detail a method that
maps the energy eigenvalues obtained from large supercell
calculations into an effective band structure (EBS) and is
able to recover an approximate E(�k) for alloys. The method
has been applied to study the evolution of the impurity band
appearing in the dilute GaN:P alloy, going beyond the perfectly
random case by allowing phosphorus aggregation to occur. We
found that the EBS is sensitive enough to determine the critical
disorder level for which delocalized states start to appear in

the intermediate band and established that this happens, for
GaN:P in the zinc-blende structure, at around 1% phosphorus
composition. We have also investigated the role played by
the local atomic relaxation in the positioning of the impurity
levels and found that the omission of this step leads to the
disappearance of these levels from the band gap of the GaN:P
alloy. We suggest that the EBS has significant merits to become
a link between modern, expensive supercell calculations and
a rather simple interpretation of their results in terms of an
easily recognizable band structure.
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APPENDIX: DERIVATION OF THE SPECTRAL WEIGHT
IN A PLANE-WAVE BASIS

This Appendix provides a plane-wave expression for the
spectral weight [Eq. (8)],

P �Km(�k0) =
∑

n

|〈 �Km|�k0n〉|2

=
∑

n

〈 �Km|�k0n〉〈�k0n| �Km〉, (A1)

quantifying the amount of a fixed Bloch character �k0 preserved
in the SC eigenvector | �Km〉, given, in the present case,
by a plane-wave expansion [Eq. (14)]. We follow very
general guidelines that should help in establishing analogous
expressions for the spectral weight, regardless of the basis
functions used to represent the SC eigenvectors.
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We assume the PC eigenvectors |�k0n〉 to be of an analogous
form

|�k0n〉 = u�k0n
(�r) ei�k0�r

=
⎡⎣∑

�g
B�k0n

(�g) ei �g�r

⎤⎦ ei�k0�r �k ∈ pbz, (A2)

and satisfying the orthogonality condition [Eq. (11)]. We
note that the distinction between the two mappings, SBZ
and pbz, of the reciprocal space is directly reflected in the
two different summations over �G and �g in Eqs. (14) and
(A2). From Eq. (11), using the ansatz (A2) one obtains the
following:

δnn′ = 〈 �k0n|�k0n
′〉

=
∑
�g,�g

B∗
�k0n

(�g) B�k0n′ (�g )
∫

d3r ei(�g −�g)�r

=
∑

�g
B∗

�k0n
(�g) B�k0n′ (�g),

or ∑
�g

B∗
�k0n

(�g) B�k0n′ (�g) = δnn′ . (A3)

One can look upon the expansion coefficients B�k0n
(�g) as

elements of a matrix B̃, with B̃n�g = B�k0n
(�g). In addition,

completeness of the basis set { |�k0,n〉} implies that the number
of PC (bulk) states n and that of the plane-waves ei �g�r is equal,
that is, dim{n} = dim{�g}. Thus the matrix B̃ is quadratic and
Eq. (A3) can be put into matrix form:

B̃
† · B̃ = 1l,

where 1l is the unit matrix. Obviously,

B̃ · B̃ † = 1l

also holds, which is equivalent to

∑
n

B∗
�k0n

(�g) B�k0n
(�g′) = δ�g,�g′ . (A4)

Recalling that any �g vector is simultaneously a �G vector
({�gi} ⊂ { �Gi}) one can show that any given �G0 can be expressed
as �G0 = �g0 + �k [see also Fig. 1(b)]. Applying this mapping,
the SC eigenvector | �Km〉 [Eq. (14)] may be written as

| �Km〉 =
⎡⎣∑

�G
C �Km( �G) ei �G�r

⎤⎦ ei �K�r

=
⎡⎣∑

�g

∑
�k

C �Km(�g + �k) ei(�g+�k)�r

⎤⎦ ei �K�r

=
⎡⎣∑

�k
ei�k�r ∑

�g
C �Km(�g + �k)ei �g�r

⎤⎦ ei �K�r . (A5)

We use Eqs. (A2) and (A5) to get

〈 �k0n| �Km〉 =
∑

�k

∑
�g,�g

B∗
�k0n

(�g) C �Km(�g′ + �k)

×
∫

d3r ei(�g′−�g)�r ei( �K−�k0+�k)�r .

Because �K , �k0, and �k are all inside the pbz, the integral of the
last equation satisfies∫

d3r ei(�g′−�g)�r ei( �K−�k0+�k)�r = δ�g,�g′δ�k,�k0− �K,

and thus

〈�k0n| �Km〉 =
∑

�g
B∗

�k0n
(�g) C �Km(�g + �k0 − �K). (A6)

Analogously,

〈 �Km|�k0n〉 =
∑

�g
B�k0n

(�g) C∗
�Km

(�g + �k0 − �K). (A7)

Inserting the last two equations in Eq. (A1) and making use of
Eq. (A4), one arrives at

P �Km(�k0) =
∑
�g,�g

C �Km(�g + �k0 − �K) C∗
�Km

(�g′ + �k0 − �K)δ�g,�g′

=
∑

�g
|C �Km(�g + �k0 − �K)|2, (A8)

which is exactly the sought result [Eq. (15)], giving the spectral
weight of the pbz wave vector �k0 in the SC eigenvector | �Km〉
as a quantity that can be obtained directly from a SC calculation
alone.

*Current address: Faculty of Physics, University of Duisburg-Essen,
Duisburg, Germany; voicu.popescu@uni-due.de

†alex.zunger@gmail.com
1W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz,
D. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82,
1221 (1999).

2F. Masia, G. Pettinari, A. Polimeni, M. Felici, A. Miriametro,
M. Capizzi, A. Lindsay, S. B. Healy, E. P. O’Reilly, A. Cristofoli
et al., Phys. Rev. B 73, 073201 (2006).

3A. G. Thompson, M. Cardona, K. L. Shaklee, and J. C. Woolley,
Phys. Rev. 146, 601 (1966).

4J. Hwang, C. K. Shih, P. Pianetta, G. D. Kubiak, R. H. Stulen,
L. R. Dawson, Y.-C. Pao, and J. J. S. Harris, Appl. Phys. Lett. 52,
308 (1988).
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