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The crossing points of the first-principles nonlocal screened atomic pseudopotentials of
the elements were shown previously to constitute a sensitive anisotropic atomic-size scale.
This scale allows systematization of the crystal structure of as many as 565 binary corn-

pounds [A. Zunger, Phys. Rev. I3 22, 5839 (1980)]. In this paper we apply the same coor-

dinates for systematizing the trends in the solid solubilities in the divalent solvents Be,
Mg, Zn, Cd, Hg, and in the semiconductor solvents Si and Ge (192 data points), as well

as the location of the ion-implantation sites in Be and Si (60 data points). We find that
these nonempirical and atomic coordinates produce a systematization of the data that
overall is equal to or better than that produced by the empirical coordinates of Miedema

and Darken-Gurry which are derived from properties of the condensed phases. Further-

more, it is found that the orbital-radii coordinates which incorporate directly the effects
of only the s and p atomic orbitals are capable of predicting the solubility trends and ion-

implantation sites even for the (nonmagnetic) transition atom impurities.

I. INTRODUCTION

No element can be totally' purified. Impurities
are always present. In a semiconductor such as sil-

icon, the presence of an impurity may enhance
(e.g. , phosphorus) or degrade (e.g., a transition ele-

ment) its technological property. In the case of
metals, impurities may alter mechanical properties
such as elasticity and ductility. Whether a given
impurity is substitutional, interstitial, or at all solu-
ble in a host is a question of considerable interest
in fields as varied as metallurgy and modern semi-
conductor technology.

Many attempts have been made so far to answer
this question. For metals, Hume-Rothery rules'
and Darken-Gurry plots have been popular for
decades. Recently, Chelikowsky applied the
Miedema parameters to the study of solid solubili-
ties in divalent metal hosts. Alonso and Simozar
modified this scheme for the study of solubility in
Fe and Co. These schemes are empirical. It
would be of great interest to study such trends us-

ing parameters derived from a first-principles
quantum-mechanical calculation. Such a scheme,
if successful, would constitute a bridge between the
largely abstract field of quantum mechanics and the
highly applied field of semiconductor technology.

Recently first-principles atomic nonlocal pseudo-
potential calculations were carried out for 70 ele-

ments of the Periodic Table. From the crossing
points of these nonlocal pseudopotentials, orbital
radii were constructed and applied by one of us to
predict the structural characteristics of 565 binary
alloys. In this paper we demonstrate that the
same orbital radii yields a graphical prediction of
solid solubilities in Be, Mg, Zn, Cd, Hg, Si, and

Ge, as well as the sites of ions implanted in Be and
Si with an accuracy comparable to (or better than)
the empirical coordinates.

II. SOLID SOLUBILITY

A. Data and its trends

The success or failure of various phenomenologi-
cal models predicting solubilities depends to a large
extent on the rather arbitrary definition of the crit-
ical solute concentration X, above which the solute
is said to be "soluble". In general, the larger the
chosen X„the easier it is to find a model predict-
ing successfully which elements will be soluble in a
given host. The classical approach to solubilities

by Darken and Gurry and Waber et al. defines

X,=5—15 at. %; Alonso and Simozar have used
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X~ =1 at. %, while Chelikowsky has used X, =0.5
at. %. To provide a finer distinction and at the
same time impose a more stringent test on the
model, we use X,=0.01 at. %. Furthermore, the
success of various solubility models also depends
critically on the temperature T, at which X,( T, ) is
measured. Early models ' often used data with T,
at or above the solute melting temperature; Alonso
and Simozar chose T, near the solute melting
point, whereas Chelikowsky used T,=300 K. We
follow the latter choice because it constitutes in
most cases a more severe test of the model. The
experimental data for solubilities above or below

X,=0.01 at %.and T,=300 K was taken from
Refs. 5 and 9—11. A typical set of data is shown
in Fig. 1 for Si." While a complete theory of solid
solubility should explain the entire curves X,(T, )

for all hosts and solutes, we will attempt here to
merely describe phenomenological models that
predict which elements will be soluble or insoluble
in a given host to the extent X, at a temperature
T, . Figure 1 clearly demonstrates the need to
specify X, and T, : While for T, =1100'C and

X,=15 at. % none of the elements included in Fig.
1 is soluble in Si, for X,=1 at. %, As and B are
soluble and for X, =0.01 at. % P, Sn, Sb, Ga, Li,
and Al are soluble as well. The pronounced curva-
tures of the solubility lines in Fig. 1 also suggest
the importance of specifying T, .

A typical set of data, collected from published
phase diagrams " is shown in Table I for the
hosts Be, Mg, Zn, Cd, Hg, Si, and Ge and for im-

purities belonging to the first five rows of the
Periodic Table. The plus and minus signs in the
solubility matrix S(H,I) denote (H=host,
I=impurity or solute), respectively, soluble and in-
soluble impurities to the extent X,=0.01 at. % at
room temperature (or the closest available tempera-
ture, as indicated). Inspection of this data suggests
immediately a number of striking regularities.
These include: (i) All noble metals Cu, Ag, and
Au are soluble in a1l the divalent hosts but insolu-
ble in silicon and germanium. (ii}The III' ele-
ments Al, Ga, In, and Tl, are soluble in all of the
heavy divalent hosts Mg, Zn, Cd, and Hg (with the
exception of Tl in Zn data which seems irregular)
as well as in silicon. (iii) The alkali elements Li,
Na, K, Rb, and Cs are all soluble in mercury but
insoluble in magnesium (with the exception of Li),
although Mg and Hg have nearly identical atomic
radii (3.34 and 3.35 a.u. , respectively). (iv) Silicon
and germanium are insoluble in all of the divalent
hosts, whereas the larger Sn atom is mostly soluble
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FIG. 1. Experimental solid solubilities in silicon (Ref.
11).

in these hosts. [In Ref. 5, Ge was indicated to be
soluble in Cd, violating the trend indicated here.
We find, however (Ref. 10, p. 311), that Ge is in
fact insoluble in Cd.] (v) For the solutes measured
in these hosts, Be is best able to dissolve transition
atoms (60%), whereas in Zn, Cd, and Hg, about
10% of the soluble elements are transition atoms.

In the ion-implantation data, one similarly finds
intriguing features: large ions such as Pb, K, Rb,
and Cs (atomic radii of 3.6, 4.86, 5.2, and 5.6 a.u. ,
respectively) often take substitutional sites in Si
(atomic radius of 3.2 a.u.). Similarly, for many of
the interstitial implants (e.g., I and Xe in Be), one
finds that the sum of the implant and host atomic
radii far exceeds the crystallographic touching-
sphere bond distance. Clearly, the simplistic
view of packing of "hard touching spheres" often
used in crystallography does not hold for (meta-
stable} implantation.

The phenomenological models introduced below
will not explain all of these regularities. They do,
however, go a long way in systematizing most of
the trends apparent in Table I. We describe in Sec.
II 8 the various phenomenological models attempt-
ing to organize the solubility matrix S(H,I).
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TABLE I. Experimental solubilities in Be, Mg, Zn, Cd, Mg, and Si (Refs. 5 and 9—11), and the lattice location of
ion-implanted impurities in Be (Ref. 23) and Si (Ref. 24). The signs + and —denote soluble and insoluble elements,
respectively. The solubilities are taken from data at (or extrapolated to) room temperature T,=300 K for all solvents,

except Si and Ge for which the data is measured at T, =1250 and 900 K, respectively. For ion-implanted sites: S, sub-

stitutional; 0, octahedral; T, tetrahedral; I, interstitial; R„random; D, defect association.

Impurity Be
Host

Mg Zn Cd Hg Si
Host

Impurity Be Mg Zn Cd Hg Si

Li
Na
K
Rb
Cs

CU

Ag
Au

Be
Mg
Ca
Sr

.Ba

Zn
Cd
Hg

B
Al
Ga
In
Tl

C
Si
Ge
Sn
Pb

0
S
Se
Te

0
S +
S +
S +

0

S
T
0

S,R
I +
0
T
0

0

0

I,R+
+ I
+
+ R
+ R

+
+
+ S,I—

+ I
+ I

S,I

S
+ +
+ S I+
+ S,I—

S,I

N
P
As
Sb
Bi

Sc
Y
La

T1
Zl
Hf

V
Nb
Ta

Cr
Mo
W

Mn
Tc
Re

Fe
Ru
Os

Co
Rh
Ir

Ni
Pd
pt

0
0
0—

+
T
T

R +
S
S,D+
S
S

I
Xe
Ne

0
0
I

R,S

Totals 23 38 29 22 37 24 19

B. Phenomenology of solid solubility

A number of phenomenological models have
previously been attempted for predicting whether
given elements will be soluble (to an extent X, at
temperature T, ) in various host crystals. Largely,

these models are diagrammatic in nature. They are
often based on the definition of dual coordinate
systems R ~(I,H) and R2(I,H), which defines two
scales by which some chosen physical characteris-
tics of the impurity (I) and host (H) are measured.
One then attempts to find in the R ~(I,H) vs
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R2(I,H) plane for a given host crystal two non-

overlapping and internally connected domains
corresponding to soluble and insoluble impurities.
A successful choice of the scales R &(I,H) and

Rq(I, H) results in a small number of misplaced
solutes (i.e., soluble element residing in the domain
of insoluble elements or vice versa) and can hence
be used as both a systematizing and a predictive
tool.

%e note that in solid-state physics and chemis-
try there are numerous classical phenomenological
models attempting to systematize predictively some
observed physical property S,b, (A,B) of binary AB
systems in terms of general linear dual coordinate
systems R&(A,B) and R2(A, B). One model is, for
example, the Mooser-Pearson' model for classify-
ing the crystal structure of the stoichiometric octet
AB compounds in terms of the atomic electronega-
tivity and the principal valence quantum number
for elements A and B. Similarly, the empirical
pseudopotential method' permits one to express
the optical band gap of binary AB semiconductors
in terms of the atomic pseudopotential form fac-
tors of atoms A and B. Miedema's scheme for
predicting the signs of the heats of formation AIIf
of binary AB alloys attempts the organization of
the matrix S,b, (A,B):~f(A,B) in terms of the
chemical potential (related to the elemental solid
work function) and the Wigner-Seitz cell boundary
charge density of the pure solid element. A
quantum-mechanical dual coordinate scale is pro-
vided by the Phillips —Van Vechten optical dielec-
tric electronegativity' in terms of the homopolar
and ionic band gaps. In the orbital radii (OR)
scale' the different crystal structures of all binary
AB crystals have been systematized through the
coefficients

R i (A,B)=R (A,B)=
i

r" r,"
i
+ i

r r, i— —

R2 (A, B)=R~(A,B)=
~
(rp+r,") (rp+rg ) ~—

where r,' and r& are the crossing points for the
screened atomic pseudopotentials for angular mo-
mental l =0 and l =1, respectively, of atom i. ' '

One often encounters in structural chemistry and
solid-state physics, single (rather than dual) scales.
Such are the scales of orbital promotion energy'
and the valence electron concentration per atom'
used to systematize some classes of crystal struc-
tures. It is clear, however, from the available solid

and (2)

solubility data (see cf. Table I) that no such simple
single scale can successfully delineate soluble from
insoluble elements. For example, considering Mg
(see Table I) as a host, one finds small but insolu-
ble elements such as Be (atomic radius of 2.35 a.u. ,
ionic radius of 0.57 a.u. , compared to the values
for Mg of 3.34 and 1.23 a.u. , respectively) and
large but soluble elements such as Ca and Sr
(atomic radii of 4.2 and 4.49 a.u. , ionic radii of
1.73 and 2.08 a.u. , respectively). One similarly
finds electronegative but insoluble elements (Be
with a Pauling electronegativity of 1.5 compared
with 1.2 for Mg) as well as electropositive but solu-
ble elements (Ca and Sr with an electronegativity
of 1.0). Clearly, the impurity size or electronega-
tivity, considered separately, cannot in general del-

ineate solid solubilities. Similarly, one might have
hoped to delineate soluble from insoluble impuri-
ties according to whether the impurity atomic po-
tential is attractive or repulsive with respect to that
of the host (i.e, donorlike versus acceptorlike char-
acter). Using the first-principles atomic pseudopo-
tentials' as a guide, one finds, however, that Si,
Co, Fe, W, As, Ge, and Sb are attractive impurities
in Mg, yet they are insoluble, whereas Li, Ca, and
Sr are repulsive impurities but soluble. The heat
of formation of the binary HI compound is like-
wise an insufficient coordinate to delineate soluble
from insoluble elements: One often finds insoluble
impurities I that form stable binary compounds
with the host H (i.e., negative heat of formation).
Few such examples are HgMn (B2); HgTi (Llo);
CdBa (B2); ZnNi, ZnTi, ZnY, and ZnZr (all B2);
ZnLi (B32); and ZnPd and ZnPt (I.lo). (The first
symbol refers to the host while the second refers to
the impurity that is insoluble in that host, and in
parentheses, the crystallographic symbol identifies
the crystal structure of the HI compound. ) In con-
trast to these unsuccessful single solubility coordi-
nates, dual scales can, however, effect a reasonable
separation of soluble from insoluble impurities.

Dual scales can be divided into two categories:
those that are invariant with respect to the identity
of the host crystals, and those that are not. In the
first category (referred to as "host invariant
scales" ) we find two models —the Darken-Gurry
and Chelikowsky models. The Darken-Gurry
(DG) scale attempts to separate soluble from inso-
luble elements using

R DG(I) R cN12
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where RI ' represents the 12-coordinated
Goldschmidt radii, and Xl is the electronegativity
of the impurity atom I. Similarly, Chelikowsky
(C} has recently provided a separation of solid
solubilities using

R c(I) «1/3

and (3)

R2 (I}=pl,

where $1 and nl*' are Miedema's parameters for
the impurity elements.

Underlying the Darken-Gurry scheme are the
empirical Hume-Rothery' rules, which state that
solid solubilities are encouraged by a small differ-
ence in atomic sizes between the solute and solvent
[i.e., ~

R
& (I)—R

&
(H)

~ ] and a sufficiently large
(but not too large) electronegativity difference [i.e.,

~
Rq (I)—R2 (H)

~
]. The first factor minimizes

the elastic strain attendant upon introducing an

impurity into the host, while the second factor
enhances the electrostatic stabilization of the sys-
tem through charge transfer. Underlying the
Chelikowsky scheme is the Miedema model for
compound heats of formation. This model suc-
cessfully predicts the sign of the heat of formation

~f(H, I) of the binary 50%-50% alloys in terms
of a destabilizing factor [R & (I)—R

& (H)] measur-

ing the energy spent to overcome the mismatch in
the signer-Seitz cell boundary charge density, and
a stabilizing factor [R 2 (I)—R 2 (H) ] measuring
the energy released upon electron transfer. Since
elemental work functions correlate well with atom-
ic electronegativities, the DG and C schemes share
the coordinates R2 ~Rq. Both models use em-

pirical quantities defined from the properties of the
condensed phases (R

&

',nl*'~, PI ) or related
molecules (XI ). These coordinates are isotropic.

In both the DG and C schemes, the relative lo-
cations of the solute elements in the R

~
vs R2 plot

are independent of the identity of the host, simply
because the scales R ~ and R2 are host independent.
(Clearly, addition of linear host-dependent con-
stants to these scales does not change the relative
orientation of the various points on the plot. ) In
this sense, such schemes differ from all other host-
dependent dual scales (which depend on both A

and B). The latter scales are host-dependent either
because of the use of nonlinear functional forms
R (A,B) or due to the lack of a unique element (i.e.,
host) in such plots. In host-invariant schemes such
as the DG and C, it is then essential to introduce
some host-dependent degrees of freedom to specify

to which solvent the plot pertains. A predictive
prescription like this is essential to these models as
is the choice of the scales R&(I) and Rz(I) them-
selves.

Such a prescription was provided by Darken and
Gurry for their scale in Eq. (2); an ellipse or
square which is centered at the coordinates of the
host atom R t (H) and R2 (H) and has one axis
of + 1-5% of the host atomic radius RH

' and
another axis of +0.4 of the host's electronegativity
XH is predicted to include in it only IR & (I),
R 2 (I) ] values of soluble impurities. Waber
et al. and Chelikowsky have extensively analyzed
the success of the DG scheme and found that it
has an overall predictive value of about 80%. The
host-invariant Chelikowsky scheme is illustrated
graphically in Fig. 2. Plotted are the RI (I) and

R& (I) values [Eq. (3)] of numerous impurity atoms
Chelikowsky noted that most soluble impurities

tend to cluster in elliptical domains, shown in Fig.
2 for the hosts Hg (ellipse labeled I), Cd (curve 2),
and Zn (curve 3}. However, in this scheme there is
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FIG. 2. A Chelikowsky R
& (I) vs R2 (I) plot for solu-

bilities [Eq. (3)]. All impurity atoms I are denoted by
circles enclosing their chemical symbol. The hosts are

Hg, Cd, and Zn; their coordinates are indicated by the
large full triangles and their chemical symbols identified

by the broken lines. The three ellipses enclose the re-

gion of predicted solubility [to a level of X,=0.5 at. %,
T,=300'C (Ref. 5)] for (l) Hg, (2) Cd, and (3) Zn. Note
that the coordinates of the hosts (solid triangles) bear no
obvious relationship to their home ellipses.
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no systematic method that specifies the host-
dependent ellipse (i.e., its origin and two radii and
the angle they make with the coordinate system).
The ellipses are in fact drawn to include in them as

many known soluble impurities as possible. It is
seen, for example, that the coordinates R

~ (H) and

R2 (H) corresponding to the solvent atom (denoted
in Fig. 2 as large triangles and identified with
dashed lines) bear no obvious relation to their
home ellipses: They are clustered at the center of
the R

~
vs R2 plane. Using this procedure, howev-

er, it was possible to provide a diagrammatic
separation of soluble from insoluble impurities,
which has a considerably higher degree of success
than the Darken-Gurry scale.

Such difficulties encountered with host-invariant
procedures can be avoided by schemes using host-
dependent coordinates. In such scales the relative
positions of various impurities is different for dif-
fererit hosts. Although in such methods one still
needs to divide the R

~ (I,H) vs R 2(I,H) plane into
soluble and insoluble domains, the algorithm need
not be explicitly host dependent: it may be, for in-

stance, a minimum-error prescription. Such a
scheme was recently provided by Alonso and Simo.
zar (AS), who used

R (I)=R

(4)

R2 (I,H)=QR i (I,H) PR2 (I,H) —d(I, H) . —

Here, R
& (I,H) and R2 (I,H) are the Miedema

coordinates where P and Q are constants for cer-
tain groups of elements and d (I,H) is another con-
stant which differs from zero only if either I or H
is a polyvalent element with p electrons. Rl js
the %igner-Seitz radius of element I in its stable
crystal structure, related to the observed unit-cell
volume per atom 0, by R =(3Q, /4')'~ [note
that Rl is different from the 12-coordinated ra-
dius used by Darken and Gurry in Eq. (2); the
quantitative differences between these radii can be
as large as 10%]. The coordinate R2 (I,H) is
equal in the Miedema model to the heat of forma-
tion of the 50%-50% binary compound HI (posi-
tive or negative).

Underlying the Alonso-Simozar model is the
contention that since the Chelikowsky model [Eq.
(3}]constitutes an improvement over the Darken-
Gurry model [Eq. (2}]but lacks an independent
ion-size coordinate (because nl* is imperfectly

correlated with the inverse atomic volume 0,), a
combination of the two models might provide a
still better separation of solid solubilities. Indeed,
when applied to the hosts Fe and Co, it was found
that for the critical solubility X, =1 at. % and a T,
below the solute melting point the model works
better than the Chelikowsky model: The only er-
rors the model makes, for instance, for Fe as a
host are for I=Sn, Sb, As, Ge, and Si (experimen-
tally they are soluble but they appear in the insolu-
ble domain of the R

~ vs R2 plot) and for B (ex-
perimentally insoluble but appears in the soluble
domain of the plot). If, however, the values of
Rr for As, Si, and Ge are reduced (by 3%, 10%
and 9%, respectively) to correspond to metallic
phases rather than to the stable covalent crystal
phases, the only errors made by the model are
those for Sb, Sn, and B. Boron is a marginal ex-
ception. This is a very high success rate and con-
stitutes a considerable improvement over the Cheli-
kowsky model [errors made for Sn, Sb, 8, Ag, Ga,
Ta, Nb, and Ti). However, examination of Alonso
and Simozar's data points for Fe and Co reveals
that a single coordinate R

~ (I) is sufficient to pro-
vide a separation between soluble and insoluble ele-
ments identical to that obtained with their dual
scale."

Common to all of the successful phenomenologi-
cal solubility dual coordinate models [i.e., Eqs.
(2)—(4)] are the facts that (i) the elemental coordi-
nates are derived from data on condensed phases
(e.g., Rl ',Rl,gl, nl*' ), not the properties of
the individual atoms, (ii) the coordinates are empir-
ical and largely derived from experiment indirectly;
hence, their microscopic significance is often un-

clear, and (iii) the coordinates are isotropic; i.e.,
they do not involve directional forces. In Sec. III
we examine the predicted solubility diagrams using
the i-dependent ("nonlocal") crossing points of the
ab initio atomic pseudopotentials [Eq. (1)]. These
are (i) atomic (rather than solid-state) coordinates,
(ii) nonempirical, and (iii) anisotropic. The orbital
radii scale is explicitly host dependent, unlike the
scales in Eqs. (2) and (3). We attempt here to es-

tablish a separation between soluble and insoluble
elements (Sec. III) as well as to predict the location
of ion-implanted species (Sec. VI) using a
minimum of two coordinates; the addition of a
third coordinate may improve the separation.
Our conclusion on the importance of this anisotro-

py for determining the correct site symmetry in
condensed phases supports a similar conclusion by
Machlin and Whang drawn from the study of the
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A15 phases. It also supports the recent findings of
Burdett et al. ' who showed that by using the
present r, and rz coordinates alone, it was possible
to predict with 98%%uo accuracy the distribution of
normal and inverted spinels (AB2X4) over a data
base of 172 crystals. In contrast, the pure d-
orbital-based crystal-field approach was found ' to
be far less successful in predicting site preferences
for spinels.

and Ge based on the data of Table I. The total of
192 data points are distributed among the hosts Be,
Mg, Zn, Cd, Hg, Si, and Ge as follows: 23, 38, 29,
22, 37, 24, and 19, respectively. In the case of di-

Ba

2.0 aCa
III. THE ORBITAL RADII APPROACH

TO SOLID SOLUBILITIES

The orbital radii jr,",r~, rd") of an element A

measure the effective core size of an atom as sam-
pled by valence electrons of angular momentum s,
p, and d, respectively. As such, they depend only
weakly on the chemical environment (i.e., are
transferrable), they are anisotropic, and they do not
invoke a picture of touching hard spheres. They
are derived entirely nonempirically for each ele-
ment (the only input being the atomic number) by
mapping the all-electron, local density, single-
particle equation into a pseudopotential representa-
tion. ' ' Inherent in this mapping are the re-
quirements that such pseudopotentials, when used
in variational calculations, accurately reproduce the
atomic valence orbital energies, and the valence
wave functions in the chemically relevant "tail" re-
gion, and that they be transferrable from one
chemical environment to the other. The orbital ra-
dii (r,",rz, rd"

]( are the crossing points of these 1-

dependent screened atomic pseudopotentials; as
such they provide the "fingerprint" of the valence
electron properties of the atom encoded into the
core. They have been successfully used to systema-
tize the observed crystal structures of 565 binary
AB compounds. (See Refs. 16 and 17 for details. }
A complete table of [r„r~,rd ) for 70 elements is
included in Ref. 8, Table I. These values are used
unchanged in this work.

We will consider the divalent hosts Be, Mg, Zn,
Cd, and Hg studied by Chelikowsky, as well as
the four-valent covalent Si and Ge hosts. The di-
valent hosts produce a symmetric solubility matrix
S(H,I) =S(I,H); i.e., Mg, Zn, Cd, and Hg are all
mutually soluble, whereas Be is insoluble in these
hosts and Mg, Zn, Cd, and Hg are insoluble in Be.
This parallels the property of the orbital-radii
coordinates R (I,H)=R (H, I) and R (I,H)
=R (H,I).

Figures 3(a) and 4 —9 present orbital-radii solu-

bility maps for the hosts Be, Mg, Zn, Cd, Hg, Si,
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FIG. 3. Solubility (a) and ion-implantation (b) orbital-
radii maps for Be. The solubility data is taken at (or ex-
trapolated to) room temperature T, =300 K {Refs. 5, 9,
and 10). In Fig. 3(b), Cs falls outside the frame of the
figure. It belongs correctly to the octahedral domain.
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2.0

SOLUBILITY IN Mg
Oibital Radii
Coordinates

Solubility p 0.01%
4 Solubility K0.01%

a,

Cs

valent hosts Mg (Fig. 4) and Zn (Fig. 5), for which
the present model indicates, respectively, the

highest (90% reliability) and lowest (76% reliabili-

ty) degrees of success, we also present for com-
parison the corresponding plots using the Cheli-
kowsky coordinates of Eq. (3). For each plot we
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FIG. 5. Solubility map for Zn (a) using the present
orbital-radii coordinates [Eq. {l)],and (b) using
Miedema's parameters in the Chelikomsky coordinates
[Eq. (3)]. The data is taken at (or extrapolated to )

T, =300 K (Refs. 5, 9, and 10).
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FIG. 6. Orbital-radii solubility map for Cd. The

data is taken at (or extrapolated to) T, =300 K (Refs. 5,
9, and 10).

have sketched simple elliptical domains which in-

clude the most so1uble impurities. The overall rate
of "success" of the orbital-radii coordinates [Eq.
(1)] over this data base of 192 data points is simi-
lar to that obtained by the empirical Miedema
scale: 84%, compared with 82% using Miedema's
parameters [Eq. (3)]. Given the fact that the
present orbital-radii coordinates are, however, de-
rived from first-principles and exclusively from
free-atom properties (as contrasted with Miedema's
parameters which are experimental and derived
from data on the condensed phase), this rate of
success is indeed remarkable.

Overall, the major chemical trends in the data of
Table I discussed in Sec. II A are reproduced rather
well. The notable features of the present results
are the following.

(1) Whereas for the nonmagnetic transition-ele-
ment impurities (e.g., Sc, Y, La, Ti, Zr, V, Nb,
Mo, W, Mn, Pd, and Pt) the present OR coordi-
nates are very successful (over 90% reliability), the
magnetic impurities Fe, Co, and Ni are systemati-
cally predicted to be soluble in almost all of the

heavier divalent hosts Mg, Cd, Zn, and Hg, in con-
trast with experimental results. ' " This is the
only systematic error made by the present scheme
and indicates that an explicit d-electron coordinate
(i.e., r~ in Ref. 8) may be needed for these three
elements. Miedema's parameters, on the other
hand, make no error for the magnetic impurities
but have only a rather small degree of reliability
for the solubility of the other transition elements in
the divalent hosts (70%).

(2) For the nontransition atom impurities, the
rate of success of the OR coordinates is nearly uni-

form throughout all columns of the Periodic Table:
It ranges from 80% to 95% reliability for columns
IA —VA and IIB, but is only 78% for column IB.
The Miedema coordinates are significantly more
successful for the simple metals in columns
IA —IIIA (85%%uo —100%}than they are for the
nonmetals of columns IVA —VA (-70%) or the
post-transition-series metals of columns IB—IIB
(60%—70%%uo).

(3) With the exceptions of Ag and Au in Hg,
there is no overlap between the errors made by the
OR coordinates and the Chelikowsky coordinates.
This near independence strongly suggests that two
schemes can be fruitfully combined.

(4) Comparing the metallic hosts with the co-
valent Si and Ge hosts, one finds that the rate of
success of the OR coordinates is 80% for the
former but 96% for the latter. In contrast, the
Miedema parameters are comparable in predictabil-

ity for the metallic hosts (82% overall reliability)
but has a considerably lower predictive power
(72% reliability) for the covalent hosts like Si and
Ge. The higher reliability of the Miedema scheme
for metals has been recognized by Chelikowsky.

(5) For the divalent host crystals, the OR scheme
has the highest rate of success for Mg (errors: Hf,
W, Fe, and Co out of a total of 38 impurities).
The Miedema parameters [Fig. 4(b)], however,
show many more misplaced impurities for Mg (Sc,
Cu, Au, Pb, Bi, Sr, Ti, Zr, Mn, Pu, and Pd). The
Darken-Gurry parameters [Fig. 4(c)] produce yet
even more misplaced impurities for this host (er-

rors: Cu, Ag, Au, Tl, Pb, Bi, Sn, Ti, Hf, Na, Sr,
Hg, and Mn). The lowest success rate for the OR
coordinates occurs for the host Zn (errors: Au, Pb,
Bi, Tl, Fe, Co, and Ni, out of 29 impurities). The
Miedema parameters lead to a similar number of
errors for this host (Mg, Hg, Sn, In, Cr, and Mn).
Notice, however, that in the work of Chelikowsky
the original Miedema parameters have been modi-
fied for a few elements by & 5%,' using the unmo-



916 VIJAY A. SINGH AND ALEX ZUNGER 25

2.0

SOLUB
Orbital

SolujSOIU

1.5

Sb

0.5

0.0
0.25

Mo
AujNi

Ti ~ jll jTj
Mn —Cd

y Ag
OaCr

0.5
I

0.75
I

1.0

R~ {a.u.}
FIG. 7 Orbital-radii solubility map for Hg. The data is taken at (or extrapolated to} T, =300 K (Refs. 5, 9, and 10).

dified parameters, one finds that Al and Cd are
also misplaced in Zn.

(6) It is significant that the present OR scheme
is not host invariant. Whereas the R (H,I) coordi-
nate is host invariant (the relative location of vari-
ous impurity atoms on this axis does not depend
on the identity of the host), the R~(H, I) coordi-
nate is not. If one replaces this coordinate by the
host-invariant coordinate R =(rz+r, ) (rz +r, ), —
(i.e., no absolute-value signs) then for the impuri-
ties with (rz+r, ) & (rz +r, ) (e.g., Be in Hg) the
R value will be negative. This leads to a poorer
separation of the soluble impurities from the inso-
luble impurities.

IV. AN ORBITAL-RADII APPROACH
TO IMPURITY LATTICE LOCATIONS

IN ION-IMPLANTED HOSTS

Ion implantation is a metastable situation. It is
therefore not clear if schemes such as those of

Miedema, ' orbital-radii, or Darken-Gurry,
which are based on equilibrium parameters would

provide successful separations. Sood et al. ap-
plied the Darken-Gurry scheme to the ion-
implantation problem. They used a more relaxed
criterion than the Burne-Rothery rules' to obtain
separation between substitutional and nonsubstitu-
tional implanted impurities. Kaufmann et al.
used the Miedema parameters for the Be host.
The low mass of Be makes it ideal for the applica-
tion of equilibrium-based schemes to metastable si-
tuations; one can study the metallurgy without in-

terference from ballistic effects. We have applied
the OR scale to classify the site location of im-

plants in Be and Si [Figs. 3(b) and 10, respective-

ly]. The reliability of the various schemes in
correctly predicting the implant location is sum-
marized in Tables II and III. The OR coordinates
appear to be better than the Chelikowsky and
Darken-Gurry coordinates.
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FIG. 8. Solubility map for Si (a) using the orbital-
radii coordinates and (b) using Miedema coordinates
[with corrections of Chelikowsky (Ref. 5)]. The data is
taken at temperature T, =950'C (Ref. 11).

Figure 3(b) displays the OR plot for Be implan-
tation. The separation of the substitutional,
tetrahedral, and octahedral domains is distinct.
Although not shown in the figure, Cs falls into the
octahedral domain [outside the frame of Fig. 3(b)],
in agreement with the experimental findings. Au
and Pt are the exceptions in the substitutional case.
For the tetrahedral case, In and Cd are the two ex-
ceptions. For the octahedral situation, Hg is the
only exception. In a recent paper, Kaufmann
et al. suggest that Hg occupies a "displaced octa-
hedral" site and not strictly an octahedral site,

I I

1.0 1.5 20
Electron Density n"~~S3 (a.u. )

FIG. 9. Solubility map for Ge (a) using the orbital-
radii coordinates and (b) using Miedema coordinates
[with Chelikowsky's corrections (Ref. 5)]. The data is
taken at temperature T, =6000C (Ref. 11).

2.0

Scheme
Substitutional Tetrahedral Octahedral

(%) (%) (%)

Orbital radii
Miedema
Darken-Gurry

85
85
85

75 92
69 80

Does not distinguish

TABLE II. Reliability of various phenomenological
coordinates in predicting the location of ion-implanted
impurities in Be. The total number of implants is 34.
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TABLE III. Reliability of various phenomenological
coordinates in predicting the location of ion-implanted
impurities in Si. The total number of implants is 26.

Scheme
Substitutional

(%)
Nonsubstitutional

(%)

Orbital radii
Miedema
Darken-Gurry'
Darken-Gurry

100
83

100
22

100
75
29
50

'Sood's criteria.
"Burne-Rothery criteria.

A comparison reveals that OR affects a slightly
better separation than Miedema scales. Experi-
mentally, Al is a "definite interstitial" component,
OR predicts an octahedral interstitial site, while
the Miedema scale gives it a substitutional site.
For Si, OR predicts an octahedral site, while the
Miedema scale places it substitutionally. Both the
solubility data [Fig. 3(a)] and the fact that Ge is
octahedral support the OR prediction in this
matter. A similar case can be made for boron:
ion-implantation results oscillate between a substi-
tutional site and a random site. The OR predic-
tion on the substitutional-octahedral divide is more
satisfactory than the strongly substitutional site
predicted by the Miedema scale. That the Miede-
ma scheme predicts Li to be nonsubstitutional in
conflict with experiments has been attributed to
ballistic effects. The OR plot depicts Li to be
substitutional. Examination of Fig. 3(b) reveals
that there is a lack of data points near the Li re-

gion. One could redraw the contours such that Li
occupies a special position outside the substitution-
al, tetrahedral, and octahedral domains. The OR
prediction for Ne (octahedral interstitial) agrees
with experimental results (unspecified interstitial);
however, the Miedema parameters cannot be de-
fined for the inert gas atoms. Tables II and III
rate the relative accuracy of the three schemes for
experimentally monitored, implanted impurities.
Table IV lists the predictions for Be based on the
OR and Miedema scales.

For the technologically more interesting case of
Si, Corbett unsuccessfully tried to affect a
separation using the Hume-Rothery rules. We
have examined the situation in detail. Figure 10
depicts the Darken-Gurry, Miedema, and OR plots
for Si. For the Darken-Gurry plot [Fig. 10(c)] we
have used both the Hume-Rothery rules and Sood's

TABLE IV. Predictions for the locations of ions im-
planted in Be using the Miedema and OR coordinates.
The notation is 0, octahedral; T, tetrahedral; and S,
substitutional. Note the different predictions for Si and
Mg.

Element Orbital radii Miedema

Rb
K
Sr
Ca
Na
C
N
La
Y
Mg
Sc
Zr
Nb
Si
Mn
Tc
Ir
Rn

0
0
0
0
0
0
0
T

S

T
T
0
S
S
S
S

0
0
0

0-T
0

0-S
0
T
T
T
T
T
T
S
S
S
S
S

relaxed criterion. Table V gives the experimental
data as well as the predictions of different
schemes. Table III rates the relative accuracy of
the various schemes. The notable features of the
results for implantation in Si are the following.

(1) No element is misplaced by the OR coordi-
nates [Fig. 10(a)], whereas the Miedema coordi-
nates [Fig. 10(b)] place Hg, Tl, Ga, and Cd as sub-

stitutional implants and B as a nonsubstitutional
implant, in conflict with the data. The Darken-
Gurry coordinates [Fig. (10c)] produce yet a larger
number of errors (Au, Zn, Cd, Hg, Ga, Tl, and Zr).

(2) We find that in general, solubility of an im-

purity to a level of X,=0.01 at. % at low tempera-
tures is a sufficient condition for it to be substitu-
tional in ion implantation. If one considers the
solubility data (Fig. 1), one finds that Li, As, and
Ga are exceptions to this rule if the solubility is
measured at —1000 C. However, when measured
at lower temperatures" only As and Ga seem to
violate this rule. This illustrates the significance of
considering low-temperature solubility data, when
possible, as well as a low-threshold value of X, (cf.
discussion in Sec. II A). It is gratifying to note
that both the OR and the Miedema parameters are
often capable of identifying such unusual cases of
soluble but interstitial impurities: As is correctly
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predicted by these approaches to be soluble but in-

terstitial, while Li is predicted to be insoluble and
interstitial, in agreement with the low-temperature
solubility data (but not at 1000'C) and ion implan-
tation data. For Ga, however, the Miedema coor-
dinates, unlike the OR coordinates and experiment,
predict it to be substitutional.

(3) Solubility is not a necessary condition for
substitutionality: In, Te, and Bi are insoluble but
substitutional. Te is predicted to be soluble and
substitutional, in contrast with the data showing
Te to be insoluble (and substitutional). The rather
old solubility data for Te may need to be reexam-
ined to verify this point. Similarly, for Be as a
host, one finds insoluble but substitutional elements
such as Zn, 8, and Os. In this case, however, only
the OR coordinates correctly predict Zn and 8 to
be insoluble and substitutional, whereas the Miede-
ma coordinates predict these elements to be soluble
and substitutional. The Miedema coordinates simi-

larly predict Si and Os to be soluble (marginally
for Os), while the OR coordinates correctly predict
Si and Os to be insoluble. As suggested by Cheli-

kowsky, these systematic errors, characteristic of
the Miedema scale, may be related to the signifi-
cance of the directional forces that are absent from
the isotropic Miedema coordinates. The oc-
currence of insoluble but substitutional implants is
also known for Cu as a host (Ru, Ta, Mo, and Bi
are substitutional but insoluble. ).

(4) Comparing the location of the ion implanted
in Si with equilibrium data available from diffu-
sion samples (cf. Table V) sheds some light on a
few of the uncertain cases: Implantation data indi-

cate that Li is either interstitial or random,
whereas EPR experiments on equilibrated sam-

ples and calculations suggest it to be in a
tetrahedral interstitial site, in agreement with our
prediction. Similarly, for Au the channeling exper-
iments could not clearly identify Au as substitu-

tional or interstitial, while equilibrium data indi-

cates that it is certainly not substitutional, in

agreement with our predictions; 8 is another
case. Some more examples are given in Table V.
Co and Fe are also in the tetrahedral interstitial po-
sition.

FIG. 10. Ion-implantation map for Si (a) using the
present-orbital radii coordinates, (b) using the Miedema
parameters, (c) using the Darken-Gurry coordinates with

Hume-Rothery criteria (broken line) and Sood s criteria
(dot-dashed line).

V. SUMMARY

The orbital-radii coordinates, derived nonempiri-
cally from a pseudopotential description of free
atoms, provide a systematization of the solubility
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TABLE V. Experimental (Ref. 24) data and various predictions for the ion-implantation site in Si. The symbols are
I, interstitial; S, substitutional; R, random; TI, tetrahedral interstitial. %henever experiment or theory shows a border-
line case, both neighboring configurations are indicated. For comparison, we also show the solubility data (Ref. 11) at
950'C.

Impurity

Site: ion
implantation

(Ref. 24)

Experimental
Site: equilibrium

data
(Refs. 25 —28)

Solubility
(Ref. 11)

OR
Eq. (1)

Miedema
Eq. (3)

Predictions

Darken-Gurry [Eq. (2)]
DG criteria Sood's criteria

Li
Na
Rb
Cs
Au

Zn
Cd
Hg

8
Ga
In
Tl

Sn
Pb

N
P
As
Sb

Bi
Se
Te
Xe

Zr
Hf
Co
Fe

I,R
I
R
R

S,I

S,I
I
S
I
S
S

R
S

S,I
S

S
S
S

R,S

I
I

I near T
I near T

Ib

I near S' S
I
S
I

I
I
R
R
I

I-S
S
S

I
S
S
S

I
I
I
I
S

S
I
S

I
S

I-S
I

S
S
I

I
I
S
S

I
I
I
I
S

S
S
S

S
S
S
S

S
S

S
S
S

S
S
S

S
S
S
S

'References 27 and 28.
Reference 29.

'Reference 30.
Reference 31.

data (hosts Be, Mg, Zn, Cd, Hg, Si, and Ge) and
the locations of ion-implantation sites (hosts Be
and Si) which is equal to or better than that given

by the Miedema and Darken-Gurry coordinates de-
rived empirically from data on condensed phases.
Furthermore, the use of s and p coordinates alone
(Eq. (i)J is sufficient to produce a correct systemati
zation euen for the (nonmagnetic) d orbital-
transition-atom in impurities. This supports the

conclusions of Refs. 8 and 21.
We believe that the choice X,=0.01 at. % (Figs.

3 —9) constitutes a stringent test. A better choice
may be to plot concentric contours of decreasing
solid solubility instead of committing oneself to an
absolute choice. Theoretical vvork predicting the
elliptical boundaries would also be very useful.

The fact that the OR approach is nonempirical
gives the scheme another advantage. OR coordi-
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nates can be defined for any element, including
group VIA (O,S,Se,Te,Po), group VIIA
(F,C1,Br,I,At), and group VIIIA (Ne, Ar, Kr,Xe,Rn)
elements. Miedema coordinates do not exist for
these elements. Corbett has pointed out the im-
portance of considering charged states in the study
of Si implantation. OR coordinates can be calcu-
lated for elements in various charged and orbital
states. This is not the case with the empirical
Miedema and DG scales.
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