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Abstract. We present an algorithm for learning the function that maps a material structure to
its value on some property, given the value of this function on several structures. We pose this problem
as one of learning (regressing) a function of many variables from scattered data. Each structure is
first converted to a weighted set of points by a process that removes irrelevant translations and
rotations but otherwise retains full information about the structure. Then, incorporating a weighted
average for each structure, we construct the multivariate regression function as a sum of separable
functions, following the paradigm of separated representations. The algorithm can treat all finite
and periodic structures within a common framework, and in particular does not require all structures
to lie on a common lattice. We show how the algorithm simplifies when the structures do lie on a
common lattice, and we present numerical results for that case.
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1. Introduction. Consider some physical property, such as the energy of a given
atomic structure or any other property of this structure, which we will denote ρ. This
property differs for different material structures σ, and thus there is some function g
with ρ = g(σ). A numerical method for computing the value of ρ produces a function
g̃, which gives some approximation g̃(σ) ≈ g(σ) for a specific σ. A great deal of effort
has gone into developing such numerical methods, and they are now sufficiently accu-
rate for some properties on some classes of structures. As these methods advance, one
can image the day when the approximation g̃(σ) ≈ g(σ) will be sufficiently accurate
for any given σ. In this work, we assume that such a sufficiently accurate method is
available.

Evaluating g̃(σ) will still be rather expensive, however, and so g̃ must be used
sparingly. For example, if one wants to search among a large number of structures
for the σ that minimizes ρ, then one can only compute g̃(σ) for relatively few of
them. Each time one applies the method to a structure, one generates a data point
(σ, g̃(σ)) ≈ (σ, g(σ)) and so gains some information about g. This information is
universal and eternal, so one could collect all such data points from the scientific
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community into a single database. One can hope that, given enough such data, one
can use it to approximate g̃(σ) for σ not in the database without computing g̃(σ)
directly. If this approximation is sufficiently accurate and can be computed much
faster than computing g̃(σ), then one gains the ability to check ρ on a much larger
number of structures. This ability can lead to, for example, optimized materials.

Here we present a framework and algorithm to learn (i.e., regress) g from such
data. The foundation is a well-defined way to convert a structure into a weighted set
of points in high (formally infinite) dimensions. This conversion has three important
characteristics. First, it allows all finite and periodic structures to be considered to-
gether, without restrictions such as lying on a common lattice. Second, two structures
σ1 and σ2 are converted to the same set of points if and only if σ1 can be obtained as
a rotation and translation of σ2. Third, the resulting set of points can be used within
certain multivariate regression algorithms. In this work we adapt the multivariate re-
gression algorithm in [3] to this setting, and we approximate g as a sum of separable
functions.

1.1. Formulation of the problem. A structure σ is an unordered set of atoms
a, with each atom given by a pair a = (t, r), where t is a species type (e.g., t = Mo)
and r is a location in three-dimensional space (e.g., r = (x, y, z) = (1, 0, 3.4)). This set
can be infinite, and the only certain constraint is that no two atoms occupy the same
location. In our main development we consider structures σ that can be specified by
a finite set of atoms σ̃ and a periodicity rule. This periodicity rule is usually three
linearly independent vectors that specify how to tile the theee-dimensional space with
the atoms in σ̃. We allow structures with fewer than three vectors, and thus we
can have structures that are finite in some directions and periodic in others, or are
simply finite. In principle one can allow amorphous structures as well by replacing
the algorithm in section 2.1 with a statistical version, but we will not develop that
idea.

The property that we are interested in is a function on the set of all structures.
We assume that some numerical method has been used to compute its value on some
structures, thus giving us a data set from which to learn. We denote this data by

(1.1) D = {(σj , ρj)}Nj=1 ,

where ρj is the property of interest. The goal is to approximate this property function,
i.e., construct a function f so that f(σj) ≈ ρj and f(σ) is a good prediction for the
property for other σ.

Two structures are equivalent if one can be mapped to the other by a translation
and/or rotation. We assume that the property of interest is consistent, meaning
that equivalent structures have the same value. We require the function f that we
construct to be consistent. (One could incorporate reflections as well if desired.)

Remark 1.1. The structure σ as described above contains the actual positions
of the atoms, and ρ is the property value of σ. Instead, one could have σ be the
positions of the atoms before some physical relaxation, while ρ is the property after
this relaxation. We use such a strategy in section 4, where σ nominally lies on a
specific lattice.

1.2. Representation using sums of separable functions. We will construct
a function of the form

(1.2) f([a1, a2, . . . ]) =
r∑

l=1

sl

∞∏
i=1

f l
i (ai) ,
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whose domain is the set of ordered lists of atoms. We call r the separation rank,
following [4, 5]. The functions f l

i and normalization coefficients sl are both to be
determined, as is the paradigm for separated representations [4, 5]. This paradigm
is in contrast with tensor product bases, where the functions f l

i are predetermined,
and only the coefficients sl are to be determined. In [3] a method was presented to
construct such functions to solve regression or machine learning problems in high di-
mensions. In that method the functions f l

i and coefficients sl are determined by trying
to minimize the least-squares error with the data, possibly subject to regularization.

To remove the infinite list/product over i, we note that there is no rule that we
must use all input variables. Indeed, a great many physical properties are determined
mostly by the local environment around each atom [1]. As such, we select d variables,
where d is chosen a posteriori to maximize the predictive ability of our method (as in
Tables 4.3 and 4.5). For notational convenience we choose to use the first d atoms in
each list. We thus have

(1.3) f([a1, a2, . . . ]) := f([a1, a2, . . . , ad]) =
r∑

l=1

sl

d∏
i=1

f l
i (ai) .

To enforce the consistency condition, we will define an operator C that converts
such a function f on the set of ordered lists of atoms to a consistent function Cf
on the set of structures. We then fit Cf to the data, instead of f itself, and use Cf
to obtain predictions as well. This operator allows us to enforce consistency while
working on the more tractable set of functions with ordered inputs. A similar idea
was used in [5, 6] to incorporate the antisymmetry condition in quantum mechanics.

1.3. Summary of the remainder of the paper. In section 2 we develop the
consistency operator C. In section 3 we adapt the algorithm from [3] to include C. In
section 4 we specialize the method to the simpler case of Mo and Ta on a body-centered
cubic (BCC) lattice in order to give a concrete example including numerical results.

1.4. Prior work. The general idea of using data to obtain an approximation
for g is not new. For structures consisting of few (usually two) atom types on a
fixed crystal lattice, the cluster expansion method has been used extensively (see,
e.g., [9, 8, 1]). For example, in [9] it was used to describe the energy of formation
of Mo1−xTax alloys on a BCC lattice, where g̃(σ) is obtained from accurate first-
principles calculations within the framework of density functional theory. (We will
consider this particular system and property within our method in section 4.) An
explicit averaging over the lattice symmetry group is used to ensure that structures
that are rotations or translations of one another produce the same prediction. The
cluster expansions then provide a regression method for this averaged data. The
weakness of the cluster expansion method is that it can only handle structures on a
fixed lattice.

For structures with fixed atom types but general positions, methods have been
developed based on neural networks [2, 7, 11]. The first step is to convert the structure
into small number of coordinates, such as inter-atom distances and angles. These
coordinates attempt to capture the physically relevant parameters that describe the
structure. A neural network is then used to perform the regression with respect to
these coordinates. The weaknesses of this approach are that the atom types are fixed
and the conversion to a few coordinates is not done in a rotation- and translation-
invariant way. Essentially, the approach is appropriate for testing perturbations of a
given structure, but not for learning a wide variety of structures.
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1.5. Alternative regression methods. Many classical regressionmethods (see,
e.g., [12, 10]) do not make sense when the input data are structures. Several methods,
such as kernel methods and support-vector machines, rely on a notion of distance be-
tween data points, which in our context means distance between structures. We can
find no satisfactory definition for ‖σ1−σ2‖, and thus we believe such methods cannot
be used. Similarly, linear models rely on the notion of inner product, but we can find
no satisfactory definition for the inner product of two structures, or of a structure
with some sort of dual element.

Other classical methods can be used to replace the function representation (1.3)
and thus can be used within our framework with C. The method must be able to
accept an ordered list of atoms as input and have internal parameters that can be
varied to obtain a (consistent) regression function. In particular, any method based
on fitting with a combination of functions of single atoms should be compatible with
our approach. This includes the additive model

(1.4) f([a1, a2, . . . , ad]) =

d∑
i=1

fi(ai)

and neural networks.

1.6. Flaws and future work. We consider the work presented here as only
the beginning of the development of this method. Some aspects have not yet been
developed, and others are not satisfactory in their current form.

1. As noted in section 1.5, another regression method could be used in place of
(1.3). It is unknown if some other regression method would be better for this
application.

2. The conversion method, as described in section 2, includes decisions based
on which atom is closest to another. If we move an atom continuously, the
closest atom can change suddenly, which could lead to a discontinuity in our
prediction. A version of the conversion method where near-ties are dealt with
smoothly seems possible but has not yet been developed.

3. If the data g̃(σ) has uncertainty, it could be given as a probability distribution,
and the “vector-valued” version of [3] could be used to give the prediction
as a probability distribution. Similarly, one may be able to use probability
distributions for the positions of atoms in a structure. These ideas have not
yet been developed.

4. As noted in Remark 2.6, a conversion method for amorphous materials seems
possible but has not yet been developed.

5. In section 3.6 we discuss the choices for the functions of a single atom, but
we have not actually tried any of them.

6. The numerical results in section 4.5 are for structures lying on a fixed lattice.
In this problem, our numerical results for a fixed lattice are not competitive
with existing methods based on cluster expansions. Note, however, that the
fixed-lattice problem is not the most interesting application for our method.

7. The numerical results in section 4.5 show good approximation power and good
prediction on average but poor prediction for the worst case. The cause of
this behavior, and the related issue of how to sample the set of all structures,
requires further study.

2. Consistency. In this section we develop a definition and method to compute
the consistency operator C. We do not directly construct C or Cf , but instead produce
a method to compute Cf(σ) for any σ. The basis of the method is an algorithm for
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Fig. 2.1. Two equivalent “toy” structures. The lines connecting the atoms are for visual
reference only.
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Fig. 2.2. The weighted views of the structure(s) in Figure 2.1. Each row gives a view.

converting a structure to a set of weighted points. We call these points “views” since
they give the perspective that an atom in the structure would have of the entire
structure. The weights represent the relative frequencies of the views. For illustrative
purposes, in Figure 2.1 we give two equivalent “toy” structures, both of which map
to the set of weighted views given in Figure 2.2.

Definition 2.1 (view). A view is an ordered list of atoms [a1, a2, . . . ] whose
coordinates rj = (xj , yj , zj) satisfy the following orientation conditions

1. r1 = (0, 0, 0);
2. x2 > 0, y2 = 0, and z2 = 0; and
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3. for the smallest i such that yi �= 0, we have yi > 0 and zi = 0;
and satisfy the distance-ordering condition that either

1. ‖ri‖ < ‖ri+1‖ or
2. ‖ri‖ = ‖ri+1‖ and either

(a) xi > xi+1 or
(b) xi = xi+1 and either

i. yi > yi+1 or
ii. yi = yi+1 and zi > zi+1.

Definition 2.2 (relative coordinate system). A relative coordinate system, de-
noted (oxyz), is specified in a global coordinate system by the vector o that specifies the
origin and the orthonormal set of column vectors {x,y, z} that gives the x-, y-, and
z-axes. To preserve orientation we require z = x× y, where × is the cross product.

Definition 2.3 (view of a structure). We say that a view v is a view of a struc-
ture σ if there exists a relative coordinate system (oxyz) such that, after expressing
all of the atoms in σ in (oxyz), v lists those atoms exactly.

2.1. Algorithm for constructing all views of a structure. We now present
an algorithm for constructing all views of a given structure σ and accounting for their
relative frequencies. The inputs of this algorithm are

• the finite set of atoms σ̃ that, together with the periodicity rule, specifies σ;
and

• a function with arguments a1 and [a1, . . . , aj ] that returns the atom(s) in σ
that are nearest to a1, excluding [a1, . . . , aj].

(In implementations, the function in the second argument depends statically on σ̃ and
the periodicity rule to define σ.) The output is a finite set

(2.1) Vσ = {(w, v)}
with w positive numbers such that

∑
w = 1, and v views of σ. The algorithm works

by growing an empty view recursively into a valid view of σ. When there is more than
one possibility for the next atom in the view, the view splits and divides its weight.

We initialize with the set

(2.2) {(1, ?, [])} ,
whose single element has weight 1, undefined coordinate system, and an empty atom
list. This element (1, ?, []) looks at the finite set of atoms σ̃ and notes the number of
these atoms n = |σ̃|. It then splits itself into n elements, so that

(2.3) (1, ?, []) �→ {(
1/n, (o?)k, [a

k
1 ]
)}n

k=1
,

where {ak1}nk=1 = σ̃ and (o?)k indicates the coordinate system with origin at o = rk1 ,
but which does not yet have axes defined.

For each k we now have an element of the form (w, (o?), [a1]), which next tries to
complete itself by defining its coordinate system and the remainder of its list. To do
so it finds the atom(s) in σ that are closest to o, i.e., minimizes ‖o− ri‖, excluding
a1 itself. If there is only one closest atom a2, then

(2.4) (w, (o?), [a1]) �→ (w, (ox?), [a1, a2]) ,

where (ox?) indicates that the x-axis is now determined as x = (r2 − o)/‖r2 − o‖.
If there are n atoms {ak2}nk=1 tied for closest, then (w, (o?), [a1]) splits itself into n

D
ow

nl
oa

de
d 

07
/1

4/
15

 to
 1

28
.1

38
.6

5.
11

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LEARNING TO PREDICT PHYSICAL PROPERTIES 3387

elements by

(2.5) (w, (o?), [a1]) �→
{
(w/n, (ox?)k, [a1, a

k
2 ])

}n

k=1
.

For each k we now have an element of the form (w, (ox?), [a1, a2]), which next
tries to complete itself. It finds the atom(s) in σ that are closest to o, excluding
a1 and a2. If there are ties, then from these it chooses the atom(s) with greatest
x-coordinate in the system (ox?), or, equivalently, that are closest to a2. If there is
now only one atom a3, then

(2.6) (w, (ox?), [a1, a2]) �→ (w, (oxyz), [a1, a2, a3]) ,

where (oxyz) indicates that the y-axis is now determined by the projection of the
direction r3 − o orthogonal to x, and from this the z-axis is determined by the hand-
edness of the coordinate system via z = x×y. If there are n atoms {ak3}nk=1 still tied
for closest, then

(2.7) (w, (ox?), [a1, a2]) �→
{
(w/n, (oxyz)k, [a1, a2, a

k
3 ])

}n

k=1
.

Once the coordinate system is defined, the rule for selecting the next atom in the
list is as follows: closest to the origin, with ties broken by the largest x-coordinate,
with remaining ties broken by the largest y-coordinate, and remaining ties broken
by the largest z-coordinate. The splitting of elements due to ties is finished once
the coordinate system is fixed, since a full coordinate system allows us to break all
ties. The coordinate system (oxyz) is determined at the smallest j for which the set
of points {r1, r2, . . . , rj} is not colinear and is fixed thereafter. There is an initial
splitting (2.3) to determine a1, a possible split due to ties at a2, and a possible split
due to ties at aj , but no intermediate splits since a tie would contradict colinearity.
Thus an element can split at most three times in its history, and the set of views is
finite.

Finally, each element (w, (oxyz), [a1, a2, . . . ]) expresses the atoms in its list in the
local coordinate system (oxyz), and then discards that system to become of the form
(w, v), with v a view. Then we check whether any of the views are now identical, in
which case we combine the elements and add their weights. Such duplicates can be
caused by an inefficient choice of σ̃ or by additional (e.g., rotational) symmetries in
σ. These final elements become the set Vσ.

In practice the algorithm terminates when the views reach length d or include all
atoms of a finite σ. (If finite structures of different lengths are to be compared, null
arguments can be used to fill all views to length d.) For an example of this algorithm
applied to a particular structure, see section 4.3.

Proposition 2.4. Vσ contains all views of σ exactly once and no extra views.
Proof. Since the views in Vσ were constructed from σ, they must all be views of σ.

Since we combined duplicate views, each occurs only once. Since σ̃ tiles σ, all views
of σ can be generated starting from σ̃. Since we allowed all choices for generating
the lists of atoms consistent with the definition of a view, we must have generated all
views.

Proposition 2.5. The weight w associated to a view v in Vσ is independent of
the way σ was specified via σ̃ and the periodicity vectors.

Proof. Since σ̃ was used only in the first splitting (2.3), and the periodicity vectors
are not explicitly used at all, we need only account for the effect of (2.3) on w. The
idea of the argument is that a choice of σ̃ that is, e.g., two unit cells, will result
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in twice as many elements with half the weight after the splitting (2.3), but these
duplicates will be recombined in the final step. Consider the maximal translation
group G of σ and some σ̃1 that produces σ under G. For some other σ̃, take the
group H generated by its periodicity vectors. The group H is a normal subgroup of
G and has a quotient group G̃ = G/H with some number of elements n. Choosing a
representative in G for each element in G̃, we can map an atom a ∈ σ̃1 to n distinct
elements in σ. By the definition of a quotient group, these elements are equivalent
under H to n distinct elements of σ̃. Since composing G̃ with H generates all atoms
in σ with no duplication, all elements of σ̃ can be generated this way. Thus σ̃ has an
n-fold redundancy, which is removed when the views are consolidated.

Remark 2.6. If one could obtain a meaningful set of weighted views for an
amorphous material through some statistical method, then one could apply the rest
of our method to those as well.

2.2. The consistency operator.
Definition 2.7 (consistency operator). For any function f on the set of ordered

lists of atoms and finite or periodic structure σ, we define

(2.8) Cf(σ) =
∑

(w,v)∈Vσ

wf(v) ,

where Vσ is the set of weighted views constructed above.
Proposition 2.8. Cf(σ) is consistent.
Proof. By definition, views of a structure are independent of the global coordinate

system in which σ sits, and thus Cf(σ) is invariant under rotations and translations
of σ.

3. The algorithm. We now describe how to fit Cf to the data D, with f of the
form (1.3). The algorithm is based closely on the work in [3] but now includes the
consistency operator C.

3.1. Data-driven inner product, with consistency. Given a finite collection
of data D from (1.1) we define a pseudo–inner product

(3.1) 〈f, p〉D =
1

N

N∑
j=1

Cf(σj)Cp(σj) .

This is not a true inner product since for some choices of nonzero f we could have
‖f‖2D = 〈f, f〉D = 0 depending on the σ in the data set. This definition allows us to
take inner products with the data as well,

(3.2) 〈D, f〉D = 〈{(σj , ρj)}Nj=1, f〉D =
1

N

N∑
j=1

ρjCf(σj) ,

and thus treat the data as some unknown function. The least-squares error with
respect to this inner product is

(3.3) ‖D − f‖2D =
1

N

N∑
j=1

(ρj − Cf(σj))
2
.
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For each σj in D, in section 2 we defined Vσj and used it to construct Cf(σj) via
(2.8). Using (2.8), the least-squares error (3.3) can be written
(3.4)

1

N

N∑
j=1

⎛
⎝ρj −

∑
v∈Vσj

wj
vf([a

jv
1 , . . . ])

⎞
⎠

2

=
1

N

N∑
j=1

⎛
⎝ρj −

∑
v∈Vσj

wj
v

r∑
l=1

sl

d∏
i=1

f l
i (a

jv
i )

⎞
⎠

2

.

We will attempt to minimize this error.

3.2. Collapse to one-dimensional subproblems. We now assume that an
initial f of the form (1.3) is given. We fix the components for all values of i but one,
and so collapse to a one-dimensional (i.e., one-atom) problem. For ease of exposition
we describe the case i = 1, and so fix f l

i for i > 1. For all j = 1, . . . , N and l = 1, . . . , r
we define the partial products

(3.5) pv,lj = sl

d∏
i=2

f l
i (a

jv
i )

for all v ∈ Vσj . The least-squares error (3.3), as expanded out in (3.4), now collapses
to

(3.6)
1

N

N∑
j=1

⎛
⎝ρj −

∑
v∈Vσj

wj
v

r∑
l=1

pv,lj f l
1(a

jv
i )

⎞
⎠

2

.

To minimize (3.6) we must solve a one-dimensional least-squares problem for the r
functions f l

1.

3.3. One-dimensional linear least-squares. To represent the functions f l
1,

we choose M linearly independent functions {φm}Mm=1, so we can express f l
1 =∑M

m=1 c
l
mφm, where the clm are real coefficients. We will discuss this choice in sec-

tion 3.6. Expressed in terms of these coefficients, the error (3.6) becomes

(3.7)
1

N

N∑
j=1

⎛
⎝ρj −

∑
v∈Vσj

wj
v

r∑
l=1

pv,lj

M∑
m=1

clmφm(ajvi )

⎞
⎠

2

.

The coefficients clm are the free parameters with respect to which we minimize (3.7).
Taking the gradient of (3.7) with respect to the clm and setting it equal to zero

produces the usual linear normal equations

(3.8) Az = b .

The matrix A has entries defined by

(3.9) A(m, l;m′, l′) =
1

N

N∑
j=1

⎛
⎝ ∑

v∈Vσj

wj
vp

v,l
j φm(ajvi )

⎞
⎠

⎛
⎝ ∑

v∈Vσj

wj
vp

v,l′
j φm′(ajvi )

⎞
⎠ ,

with the combined index (m, l) acting as the row index and the combined index (m′, l′)
acting as the column index. The vector b has entries defined by

(3.10) b(m, l) =
1

N

N∑
j=1

ρj
∑

v∈Vσj

wj
vp

v,l
j φm(ajvi ) ,
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with the combined index (m, l) acting as the row index. Solving the linear system (3.8)
using, e.g., the conjugate gradient method, yields a vector z. Setting clm = z(m, l)
then minimizes (3.7).

3.4. Iterative improvement. Since we can solve the one-dimensional subprob-
lems, we can iteratively solve such problems to reduce the error (3.4). One strategy for
ordering the iteration is to loop through the directions i = 1, . . . , d. This alternating
least-squares (ALS) approach is well known and was used in [3]. One then repeats
this process and monitors the change in error to detect convergence. It is certainly
possible to hit local minima, in which case one would need to restart with a different
guess or increase r. Even when we approach the true minimum, we have no reason
to expect any better than linear convergence.

3.5. Computational cost. The computational cost of this procedure depends
on several parameters:

• r—the separation rank in (1.3).
• d—the number of variables used in (1.3).
• NCd—the number of data points, inflated by their number of views of length
d. This number is bounded by the total number of views

(3.11) NC =

N∑
j=1

|Vσj | ,

but we consolidate views of a structure that are identical when truncated to
d sites.

• M—the number of functions {φm}Mm=1 in section 3.3.
• Mf—the cost to evaluate a single f l

i (ai).
• K—the number of ALS iterations used in section 3.4.
• S—the number of conjugate gradient iterations needed to solve the system
(3.8). In theory this could be as large as rM , but after a few ALS iterations
we should have a very good starting guess, so S should become quite small.

The cost for computing all of the pv,lj in (3.5) is O(rdNCdMf). When we switch

directions during the ALS, we do not need to recompute pv,lj from scratch but can
update it instead. For example, when switching from direction 1 to direction 2, we
would multiply pv,lj by f l

1(a
jv
1 )/f l

2(a
jv
2 ). Our incremental cost for computing all pv,lj is

thus O(rNCdMf ). Given the pv,lj , to compute all entries inA (3.9) costs O(r2M2NCd),
and to compute all entries in b (3.10) costs O(rMNCd). The cost for solving the
normal equations (3.8) using conjugate gradient is O(r2M2S). Assuming Mf < rM2,
our combined cost is thus

(3.12) O (
Kdr2M2(NCd + S)

)
.

3.6. The single-atom function. In section 3.3 we deferred the issue of choosing
the basis {φm}Mm=1 to use for the single-atom functions f l

i . The input a is an atom,
consisting of a species t and location r in the local coordinate system. The species
variable t is discrete, so we can span in that variable using the orthonormal basis
of unit normal vectors {en}Tn=1, where T is the number of species considered. For
each value of t, f l

i (t, r) can be an independent function of r. The spanning set could

depend on t, but for simplicity we assume that it does not, and is given by {φ̃m}M̃m=1.
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The function is then given by

(3.13) f l
i ((t, r)) =

T∑
n=1

M̃∑
m=1

cnmen(t)φ̃m(r) .

The coefficients cnm depend on i and l, and in principle M̃ and {φ̃m}M̃m=1 could as
well. In terms of our formulation in section 3.3, we have mapped the index m to the
tuple (n,m) and the number of elements M to TM̃ .

The representation (3.13) still leaves quite a lot of freedom, from which we have
little basis to decide. We instead sketch a few considerations and suggest likely can-
didates to try. When i = 1 we notice that we always have r1 = (0, 0, 0), so we should
choose f l

1 to be constant in r. When i = 2, we have r2 = (x, 0, 0) with x > 0, so f l
2

should only depend on x in space. When i = 3, we have r3 = (x, y, 0) with y ≥ 0,
so f l

3 should depend only on x and y in space. For i > 3, ri depends on all three

coordinates. The likely candidates for {φ̃m}M̃m=1 are low-degree spaces of spherical
harmonics. For large i, we expect ai to have a simpler interaction with a1, so we can
perhaps decrease the degree of the representation.

3.7. Avoiding overfitting. A regression algorithm is supposed to both fit the
available data and provide useful predictions for other inputs. Overfitting is when
the regression method improves the fitting error (often by a small amount) at the
expense of degradation of the predictive value (often by a large amount). As an
extreme example of overfitting in one dimension, one could use the function

(3.14) f(x) =

N∑
j=1

ρj exp(−c(x− xj)
2)

to represent the data {(xj , ρj)}j. In the limit c → ∞, this function would match the
given data exactly but predict 0 for other values of x.

There are two standard approaches for avoiding overfitting. In parametric meth-
ods, f is constrained to be of a certain form, with only a few free parameters to
determine. If the model for f is correct, then this approach will work very well, but
if the model is incorrect, then it may not be able to fit the data sufficiently well. In
nonparametric methods, f is chosen from a much wider class of functions, with some
mechanism encouraging the choice of a nice (smooth) function. The wider class of
functions allows the method to fit the data well, while the “regularization” mechanism
attempts to prevent overfitting. If these two interests can be balanced in the method,
then it can indeed both fit the data and provide useful predictions. The amount of
regularization is parametrized by some λ > 0, which in general must be determined
empirically. One common strategy is to split the data into two parts. Using the first
part, generally 2/3 of the data, one runs the algorithm using several different values
of λ. One then tests the resulting regression functions on the remaining 1/3 of the
data to determine which value of λ performed best. Using this value of λ, one then
runs the algorithm again using all of the data.

With respect to r, we recommend a parametric approach, i.e., keep r small. For
the one-directional functions f l

i (a) we recommend a nonparametric approach. The
basic approach is to penalize by the square of the L2 norm of the gradient. (The ap-
proach described here is an improvement over that in [3].) For each l, we formally have

(3.15) λ

∫ T∑
t=1

(∇(t,r)f
l
1((t, r))

)2
dr .
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Substituting the form (3.13) in for f l
1, our penalty becomes

(3.16) λ

∫ T∑
t=1

⎛
⎝∇(t,r)

T∑
n=1

M̃∑
m=1

cnmen(t)φ̃m(r)

⎞
⎠

2

dr .

Differentiating with respect to cpq yields

2λ

T∑
n=1

M̃∑
m=1

cnm

∫ T∑
t=1

[(
∇(t,r)en(t)φ̃m(r)

)
·
(
∇(t,r)ep(t)φ̃q(r)

)]
dr .(3.17)

Splitting off the discrete part of the gradient, we have

2λ

T∑
n=1

M̃∑
m=1

cnm

[
T∑

t=1

∇ten(t)∇tep(t)

∫
φ̃m(r)φ̃q(r)dr + δnp

∫
∇rφ̃m(r) · ∇rφ̃q(r)dr

]
,

(3.18)

where δnp is the Kronecker delta. We define

(3.19) ∇tv(t) = μ

(
v(t) − 1

T

T∑
k=1

v(k)

)

for some positive scalar μ that determines the weight that this discrete gradient is
given relative to the continuous gradient. As with λ, the parameter μ must usually
be determined empirically. We then have

2λ

T∑
n=1

M̃∑
m=1

cnm

[
μ

(
δnp − 1

T

)∫
φ̃m(r)φ̃q(r)dr + δnp

∫
∇rφ̃m(r) · ∇rφ̃q(r)dr

]
.

(3.20)

To minimize (3.7) + (3.15), the matrix in the normal equations (3.8) is modified by
adding a matrix to the diagonal (l = l′) blocks. In (3.9) we defined A using a single
m index to index the basis, but now we use the double index nm. In terms of this
index, we add the matrix with (nm, n′m′) entry given by

(3.21) 2λ

[
μ

(
δnn′ − 1

T

)∫
φ̃m(r)φ̃m′ (r)dr + δnn′

∫
∇rφ̃m(r) · ∇rφ̃m′(r)dr

]
.

In the limit λ → ∞ this additional matrix forces f l
1 to be constant.

4. Example: Mo and Ta on a BCC lattice. In this section we consider a
simpler version of our general problem. This example will allow us to clarify several
concepts by giving concrete realizations. It will also allow us to present numerical
experiments with real data.

4.1. The BCC lattice and its symmetry group. The BCC lattice is repre-
sented as an infinite number of sites in three dimensions with all coordinates either
even or odd, i.e., with locations

(4.1) {(2i, 2j, 2k)}i,j,k ∪ {(2i+ 1, 2j + 1, 2k + 1)}i,j,k for all i, j, k ∈ Z.

D
ow

nl
oa

de
d 

07
/1

4/
15

 to
 1

28
.1

38
.6

5.
11

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LEARNING TO PREDICT PHYSICAL PROPERTIES 3393

In the BCC lattice all sites are equivalent, so the symmetry group includes translations
of any site to another. We can account for these translations by considering the site
that is translated to the origin. The remaining rotational group for the BCC lattice
contains 24 elements. Normally these are counted by noting the six possible directions
to which the x-axis can be rotated and then the four possible directions to which the
y-axis can be rotated once the x-axis is fixed. An alternative way of counting is to
note the eight possible locations to which (1, 1, 1) can be rotated and then the three
possible locations to which (−1, 1, 1) can be rotated once (1, 1, 1) is fixed. Specifically,
(1, 1, 1) can be rotated to the locations

{(1, 1, 1), (−1, 1, 1)(1,−1, 1), (1, 1,−1), (−1,−1, 1),

(−1, 1,−1), (1,−1,−1), (−1,−1,−1)} .(4.2)

If, e.g., (1, 1, 1) is left fixed at (1, 1, 1), then (−1, 1, 1) can be rotated to the locations

(4.3) {(−1, 1, 1), (1,−1, 1), (1, 1,−1)}.
In section 4.3 we show how to construct all of the views of a structure on a BCC

lattice. This construction will illustrate how the consistency operator captures the
lattice symmetries. It is the alternative way of counting above that will appear and
account for the 8× 3 = 6× 4 = 24 elements in the rotation group of the BCC lattice.

4.2. Structures composed of Mo and Ta. We consider structures consisting
of Molybdenum (Mo) and Tantalum (Ta). In constructing f we take the atoms to
be located on the BCC lattice, even if the physical property that we are fitting is
computed after strain relaxation. We assume that all structures are periodic, but we
do not assume that they have the same period or periods that are multiples of each
other.

One such structure σ is given by the atoms

(4.4) σ̃ = {(Mo, (0, 0, 0)), (Mo, (1, 1, 1)), (Ta, (0, 0, 2)), (Ta, (1, 1, 3))}
and the periodicity defined by the vectors

(4.5) {(2, 0, 0), (0, 2, 0), (0, 0, 4)}.
From this we may determine the atom type at any location. For example, there will
be an atom of Mo at any site having the form

(4.6) (1, 1, 1) + i(2, 0, 0) + j(0, 2, 0) + k(0, 0, 4) for any i, j, k ∈ Z

since (1, 1, 1) contains Mo.

4.3. Construction of all weighted views. In this section we describe how to
construct the set Vσ using the algorithm in section 2.1 for the structure σ specified
by (4.4) and (4.5).

Since there are n = 4 elements in σ̃, our first splitting (2.3) yields

{ (1/4, ((0, 0, 0)?), [(Mo, (0, 0, 0))]) , (1/4, ((1, 1, 1)?), [(Mo, (1, 1, 1))]) ,

(1/4, ((0, 0, 2)?), [(Ta, (0, 0, 2))]) , (1/4, ((1, 1, 3)?), [(Ta, (1, 1, 3))])} .(4.7)

Our initial splitting (4.7) accounts for the translational symmetry in the BCC lattice
for our given structure, since taking any other atom to the origin would result in a
duplicate.
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For this example, we choose to follow the first element in (4.7), so we now fix the
origin at o = (0, 0, 0) and the first list element a1 = (Mo, (0, 0, 0)). The closest atoms
to the origin in σ are

{(Mo, (1, 1, 1)), (Mo, (−1, 1, 1)), (Mo, (1,−1, 1)), (Ta, (1, 1,−1)),

(Mo, (−1,−1, 1)), (Ta, (−1, 1,−1)), (Ta, (1,−1,−1)), (Ta, (−1,−1,−1))}.(4.8)

Our second splitting (2.5) thus yields

{(1/32,(o(1/
√
3, 1/

√
3, 1/

√
3)?), [a1, (Mo, (1, 1, 1))]),

(1/32,(o(−1/
√
3, 1/

√
3, 1/

√
3)?), [a1, (Mo, (−1, 1, 1))]),

(1/32,(o(1/
√
3,−1/

√
3, 1/

√
3)?), [a1, (Mo, (1,−1, 1))]),

(1/32,(o(1/
√
3, 1/

√
3,−1/

√
3)?), [a1, (Ta, (1, 1,−1))]),

(1/32,(o(−1/
√
3,−1/

√
3, 1/

√
3)?), [a1, (Mo, (−1,−1, 1))]),

(1/32,(o(−1/
√
3, 1/

√
3,−1/

√
3)?), [a1, (Ta, (−1, 1,−1))]),

(1/32,(o(1/
√
3,−1/

√
3,−1/

√
3)?), [a1, (Ta, (1,−1,−1))]),

(1/32,(o(−1/
√
3,−1/

√
3,−1/

√
3)?), [a1, (Ta, (−1,−1,−1))])},

(4.9)

where we indicate the x-axis by the unit vector in its direction. The locations that
appear in (4.9) are the eight possible locations to which (1, 1, 1) could be rotated, as
given in (4.2). Thus we can see a portion of the rotation group of the BCC lattice.

We now choose to follow the first element in (4.9) and so can fix the x-axis
x = (1/

√
3, 1/

√
3, 1/

√
3) and the second atom a2 = (Mo, (1, 1, 1)). The closest atoms

to the origin are

{(Mo, (−1, 1, 1)), (Mo, (1,−1, 1)), (Ta, (1, 1,−1)), (Mo, (−1,−1, 1)),

(Ta, (−1, 1,−1)), (Ta, (1,−1,−1)), (Ta, (−1,−1,−1))}.(4.10)

To break the tie, we find the largest x-coordinate along the x-axis (1/
√
3, 1/

√
3, 1/

√
3),

and find that

(4.11) {(Mo, (−1, 1, 1)), (Mo, (1,−1, 1)), (Ta, (1, 1,−1))}

are still tied, with x-coordinates of 1/
√
3. Our third splitting (2.7) thus yields

{(1/96,(ox(−2/
√
6, 1/

√
6, 1/

√
6)(0,−1/

√
2, 1/

√
2)), [a1, a2, (Mo, (−1, 1, 1))]),

(1/96,(ox(1/
√
6,−2/

√
6, 1/

√
6)(−1/

√
2, 0, 1/

√
2)), [a1, a2, (Mo, (1,−1, 1))]),

(1/96,(ox(1/
√
6, 1/

√
6,−2/

√
6)(−1/

√
2, 1/

√
2, 0)), [a1, a2, (Ta, (1, 1,−1))])}.

(4.12)

To compute the y-axis we orthogonalized to the x-axis, so for (−1, 1, 1) for example,
we compute

(r3 − r1)−
〈
(r3 − r1),

r2 − r1
‖r2 − r1‖

〉
r2 − r1

‖r2 − r1‖
= (−1, 1, 1)−

〈
(−1, 1, 1), (1/

√
3, 1/

√
3, 1/

√
3)
〉
(1/

√
3, 1/

√
3, 1/

√
3)

= (−1, 1, 1)− (1/3, 1/3, 1/3) = (−4/3, 2/3, 2/3) ,

(4.13)D
ow

nl
oa

de
d 

07
/1

4/
15

 to
 1

28
.1

38
.6

5.
11

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LEARNING TO PREDICT PHYSICAL PROPERTIES 3395

and then normalize by
√
3/8 to obtain y = (−2/

√
6, 1/

√
6, 1/

√
6). To compute the

z-axis we use the x- and y-axes and the handedness rule, so by using the cross product
we obtain
(4.14)

z = x×y =

∣∣∣∣∣∣
i j k

1/
√
3 1/

√
3 1/

√
3

−2/
√
6 1/

√
6 1/

√
6

∣∣∣∣∣∣ = 0i−(1/
√
2)j+(1/

√
2)k = (0,−1/

√
2, 1/

√
2).

The locations that appear in (4.12) are the three possible locations to which (−1, 1, 1)
could be rotated, as given in (4.3). Thus we see the second portion of the rotation
group of the BCC lattice, and we have accounted for all 24 rotations.

We now choose to follow the first element. We fix the y-axis y = (−2/
√
6, 1/

√
6,

1/
√
6), the z-axis z = (0,−1/

√
2, 1/

√
2), and the third atom a3 = (Mo, (−1, 1, 1)).

The closest atoms to the origin are

{(Mo, (1,−1, 1)),(Ta, (1, 1,−1)), (Mo, (−1,−1, 1)),

(Ta, (−1, 1,−1)),(Ta, (1,−1,−1)), (Ta, (−1,−1,−1))},(4.15)

and of these, the largest x-coordinates are 1/
√
3, held by

(4.16) {(Mo, (1,−1, 1)), (Ta, (1, 1,−1))}.

With respect to y these atoms both have coordinate −2/
√
6 and so remain tied. With

respect to z, however, (Mo, (1,−1, 1)) has the larger coordinate of
√
2. Our fourth

step is thus

(4.17) (1/96, (oxyz), [a1, a2, a3]) �→ (1/96, (oxyz), [a1, a2, a3, (Mo, (1,−1, 1))]) .

At this point we continue the process to define the list, and we have no more
splitting. Due to the symmetries in this example, the weight tells us that we have
96 total elements, which is 24, the size of the rotation group of the lattice, times 4,
the size of the specification σ̃ in (4.4). In each element the locations of the atoms are
then expressed in the relative coordinate systems. Finally, any duplicate views are
consolidated, and we obtain Vσ.

4.4. The single-atom functions and avoiding overfitting. Since geometri-
cally all views of a structure on a BCC lattice are the same, for any fixed i the ai
from all views have the same ri. Thus the functions f l

i should depend only on the
species type and can be considered as vectors of length T , where T is the number of
species considered.

The method to reduce overfitting from section 3.7 also simplifies considerably.
The entries (3.21) in the matrix added to the diagonal blocks of A become

(4.18) 2λμ

(
δnn′ − 1

T

)
,

and we can set μ = 1. For our current example of Mo and Ta we have T = 2, so the
matrix is

(4.19) λ

[
1/2 −1/2
−1/2 1/2

]
.
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4.5. Numerical results. In this section we present numerical results from us-
ing our method on one data set. We caution the reader, however, that very little
can be extrapolated from a single test such as this. It is not known, and is proba-
bly unknowable, how well this data set captures the true property function. If, for
example, the structures are all very similar, then we may learn and predict well on
this data set, but would do poorly on some dissimilar structure. On the other hand,
if the structures contain independent information, then learning on some subset may
not allow good predictions on the remaining structures, and so we may confuse poor
performance of the method with inadequate data.

The data set consists of N = 57 structures on a BCC lattice, with atom types
in {Mo,Ta}; it was produced for and used in [9]. The structures are given in the
format in the example (4.4), (4.5). The largest structure has 16 sites and the longest
periodicity vector is (1, 1, 6). The distribution of structure sizes is [(1, 2), (2, 2),
(3, 6), (4, 14), (5, 8), (7, 8), (8, 4), (9, 2), (10, 1), (12, 1), (13, 1), (14, 1), (16, 7)],
in the format (size, count). The dependent variable ρ is the formation enthalpy, from
which the long-range elastic interactions have been removed as in [9]. The formation
enthalpy is the energy released when forming (or the energy required to form) a single
compound containing both Mo and Ta starting from the pure compounds containing
only Mo and only Ta. As a result, the structure of all Mo and the structure of all
Ta have ρ = 0. The resulting ρj lie in the range [−204.8, 0.0] and are given with one
digit after the decimal. They have mean

(4.20) ρ =
1

N

N∑
j=1

ρj = −119.16 .

The “null” predictor for ρj is simply the mean ρ. This predictor gives a mean squared
error (MSE) of

(4.21) MSE0 =
1

N

N∑
j=1

(ρj − ρ)2 = 2377.53 ,

and a maximum error

(4.22) MAX0 = max |ρj − ρ| = 119.16 .

To assess the error in our approximation f , we can measure

absolute MSE =
1

N

N∑
j=1

(ρj − Cf(σj))
2 ,(4.23)

relative MSE =
1

MSE0

1

N

N∑
j=1

(ρj − Cf(σj))
2 ,(4.24)

absolute maximum error = max
j

|ρj − Cf(σj)| , and(4.25)

relative maximum error =
1

MAX0
max

j
|ρj − Cf(σj)| .(4.26)

Since the data is given with one digit after the decimal, the smallest the absolute
maximum error in the data could be expected to be on average is 0.05, which would
give a relative maximum error of 4.2e-4. We can roughly calibrate the maximum error
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Table 4.1

Comparison table for different ways of measuring error. We give the approximate data error
and then a selection of values.

Absolute max error 0.05 0.01 0.1 0.5 1.0 5.0 10
Relative max error 4.2e-4 8.4e-5 8.4e-4 4.2e-3 8.4e-3 4.2e-2 8.4e-2

− log10(relative max error) 3.38 4.08 3.08 2.38 2.08 1.38 1.08

Absolute MSE 8.3e-4 3.3e-5 3.3e-3 8.3e-2 3.3e-1 8.3e+0 3.3e+1
Relative MSE 3.5e-7 1.4e-8 1.4e-6 3.5e-5 1.4e-4 3.5e-3 1.4e-2

− log10(relative MSE) 6.46 7.85 5.85 4.46 3.85 2.46 1.85

m and MSE s if we assume the error is uniformly distributed between ±m. We would
then have s =

∫m

−m
x2dx/(2m) = m2/3, and so absolute MSE 8.3e-4 and relative MSE

3.5e-7. These errors act as a baseline for our fitting errors, but the actual error in the
data is likely higher. Since we are generally only interested in the order of magnitude
of our errors, in the tables we will display − log10 of the relative errors, which roughly
gives the number of correct digits. To aid the reader in mentally comparing these var-
ious errors, in Table 4.1 we give the equivalent numbers using the various measures.

We select some number of atoms d to use in our views. For each structure σj we
generate Vσj and associate to it the property value ρj . We can then evaluate

(4.27) Cf(σj) =
∑

(w,v)∈Vσj

w

r∑
l=1

sl

d∏
i=1

f l
i (r

v
i ) .

Recall from section 3.5 that NCd is the total number of views when truncated to d
sites. We can compare this data quantity with the number of free parameters in our
model (1.3). Each f l

i has M parameters, but the normalization ‖f l
i‖ = 1 means that

only M−1 are free. The scalar sl adds another free parameter, so the total number of
free parameters in (1.3) is r(d(M − 1)+ 1). Since here we have M = 2, this simplifies
to r(d+1). We remark that since the free parameters interact nonlinearly, the number
of actual degrees of freedom may be less than the number of free parameters.

We first test the approximation power of the method and report the results in
Table 4.2. Since we are not testing predictive power, we turn off regularization by
setting λ = 0. We present d = 2 and then the values of d that add the next complete
shell of atoms. For each d we first report NCd and the maximum (radial) distance
‖rd‖ in such a view, both in absolute units and relative to the diagonal length

√
3 and

side length 2 of the BCC unit cube. Then, for each r = 1, . . . , 7 we report the number
of free parameters and two measures of the fitting error. Since we are measuring only
the approximation power of the method, we allow ourselves 10 tries using different
random starting guesses and choose the result with the smallest MSE. As expected,
the errors generally decrease with increasing r and d. There is a large improvement in
performance as r changes from 2 to 3 at larger d, as well as a large improvement as d
changes from 27 to 51 at larger r. By the lower right of Table 4.2 the approximation
is more precise than the data itself.

We next test the predictive power of the method by training on a portion of
the data and testing on the remaining data, and we report the results in Table 4.3.
A table of this sort can be used to empirically determine appropriate d and r for
a given problem. Since we have only N = 57 data points, we choose to train on
N − 1 = 56 points and test on the remaining point. To reduce the influence of the
random starting guess for f , we train five times with different f , select the one that
performs best on the training data, and use that for testing. We obtain an MSE for
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Table 4.2

Results on the approximation power of the method.

d 2 9 15 27 51 59 65 89 113
# shells 1 2 3 4 5 6 7 8
NCd 181 779 1172 1365 1568 1568 1605 1605 1638
‖rd‖ 1.73 1.73 2.00 2.83 3.32 3.46 4.00 4.36 4.47

‖rd‖/
√
3 1.00 1.00 1.15 1.63 1.91 2.00 2.31 2.52 2.58

r ‖rd‖/2 0.87 0.87 1.00 1.41 1.66 1.73 2.00 2.18 2.24
1 # parameters 3 10 16 28 52 60 66 90 114

− log10(rel. MSE) 1.2 1.5 2.0 2.3 2.3 2.7 2.1 2.3 2.1
− log10(rel. max) 0.6 0.6 0.8 1.1 1.2 1.2 0.8 1.0 0.8

2 # parameters 6 20 32 56 104 120 132 180 228
− log10(rel. MSE) 1.2 1.9 2.7 3.0 3.5 3.8 3.6 4.2 4.0
− log10(rel. max) 0.6 0.9 1.4 1.3 1.7 1.7 1.5 1.9 1.7

3 # parameters 9 30 48 84 156 180 198 270 342
− log10(rel. MSE) 1.2 2.0 2.9 3.5 5.3 4.8 6.8 8.8 10.9
− log10(rel. max) 0.6 0.9 1.5 1.7 2.5 2.0 3.1 4.2 5.2

4 # parameters 12 40 64 112 208 240 264 360 456
− log10(rel. MSE) 1.2 2.0 3.0 3.9 8.2 8.2 12.2 12.2 12.5
− log10(rel. max) 0.6 0.9 1.4 1.7 3.7 3.7 6.0 5.9 6.0

5 # parameters 15 50 80 140 260 300 330 450 570
− log10(rel. MSE) 1.2 2.0 3.3 3.9 9.9 11.3 13.1 13.0 13.0
− log10(rel. max) 0.6 0.9 1.5 1.7 4.5 5.4 6.5 6.3 6.3

6 # parameters 18 60 96 168 312 360 396 540 684
− log10(rel. MSE) 1.2 2.0 3.3 3.9 11.4 12.3 13.4 13.3 13.3
− log10(rel. max) 0.6 0.9 1.5 1.7 5.4 5.9 6.6 6.5 6.5

7 # parameters 21 70 112 196 364 420 462 630 798
− log10(rel. MSE) 1.2 2.0 3.3 3.9 11.9 12.9 13.5 13.5 13.4
− log10(rel. max) 0.6 0.9 1.5 1.7 5.6 6.2 6.6 6.4 6.6

the training data and another for the testing data, both of which we divide by MSE0

from (4.21), which uses the full data set. Similarly, we obtain maximum errors, which
we divide by MAX0 from (4.22). We perform this test for all 57 possibilities for the
test point, and thus obtain the full leave-one-out cross-validation result possible for
this data set. We then compute the mean, standard deviation, median, interquartile
range, and maximum. We report the results for the cases d = 51, r = 1, . . . , 5, and
λ = 0, 10, 100, and 1000. For λ = 0 we see that the training error decreases with
r, whereas the testing error remains large, especially when we consider the maximum
over the 57 trials. The training errors were expected to increase as λ is increased, and
do so. The testing errors were expected to decrease with λ initially, but eventually
increase when λ is too large. We see this behavior for the r = 1, 2, 3 cases, whereas
for r = 4, 5 the error may still be decreasing.

4.5.1. Assessment. For applications, the most important test of the method
is its ability to predict. In the results in Table 4.3 the mean and median statistics
for the testing error are much better than the maximum statistic. The predictions
for some structures are unacceptably large. For comparison, we applied the cluster
expansion method of [9] to our data set and obtained the cross-validation results
on the left side of Table 4.4. At this level of the maximum statistic our method is
not competitive with existing methods based on cluster expansions. This assessment
should be tempered by the fact that the cluster expansion methods require a fixed
lattice, whereas our methods do not.

At present, we cannot adequately explain why some structures are poorly pre-
dicted, but we can suggest some possibilities. First, it may be that some specific struc-
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Table 4.3

Analysis of the leave-one-out cross-validation results for d = 51. We give the mean (with
standard deviation), median (with interquartile range), and maximum of the relative MSE and
relative maximum errors. We display − log10 of the value, which gives the number of correct digits.

r Error Stat
λ = 0

Train Test
λ = 10.0

Train Test
λ = 100.0

Train Test
λ = 1000.0
Train Test

1 MSE mean
med
max

MAX mean
med
max

2.3(2.6) 1.0(0.6)
2.3(2.7) 1.8(1.0)
1.8 −0.2
1.1(1.4) 1.1(1.0)
1.1(1.5) 1.3(0.9)
0.7 0.3

2.2(2.5) 1.1(0.6)
2.3(2.4) 1.8(1.4)
1.8 −0.2
1.0(1.3) 1.1(1.1)
1.0(1.2) 1.3(1.2)
0.6 0.3

2.1(2.4) 1.1(0.7)
2.2(2.6) 1.8(1.4)
1.7 −0.0
1.0(1.3) 1.1(1.1)
1.1(1.5) 1.3(1.3)
0.5 0.4

0.7(1.8) 0.5(0.3)
0.7(1.9) 0.9(0.4)
0.7 −0.5
0.2(1.6) 0.7(0.8)
0.2(1.4) 0.9(0.7)
0.2 0.1

2 MSE mean
med
max

MAX mean
med
max

3.4(3.8) 0.6(-0.1)
3.4(3.7) 1.9(0.9)
3.1 −1.0
1.6(2.2) 1.0(0.8)
1.6(2.1) 1.3(0.9)
1.4 −0.1

2.8(3.4) 1.4(1.1)
2.8(3.3) 2.0(1.4)
2.6 0.4
1.3(2.1) 1.2(1.2)
1.4(2.0) 1.4(1.2)
1.1 0.6

2.5(3.3) 1.7(1.5)
2.5(3.2) 2.0(1.8)
2.4 0.8
1.2(2.0) 1.4(1.5)
1.2(1.9) 1.4(1.5)
1.1 0.8

1.8(2.3) 0.9(0.6)
1.8(2.3) 1.6(1.0)
1.4 −0.3
0.9(1.4) 1.0(1.0)
0.9(1.4) 1.2(1.0)
0.5 0.3

3 MSE mean
med
max

MAX mean
med
max

4.6(4.7) 0.4(-0.2)
4.7(4.6) 1.4(1.1)
4.0 −1.1
2.1(2.4) 0.9(0.7)
2.1(2.2) 1.1(1.1)
1.7 −0.1

3.2(3.9) 1.5(1.3)
3.2(3.8) 1.9(1.7)
3.0 0.6
1.5(2.4) 1.3(1.3)
1.5(2.2) 1.4(1.3)
1.4 0.7

2.7(3.6) 1.9(1.7)
2.7(3.4) 2.4(1.9)
2.6 1.1
1.3(2.2) 1.5(1.5)
1.3(2.2) 1.6(1.4)
1.2 0.9

2.4(3.2) 1.7(1.4)
2.4(3.1) 2.3(1.7)
2.2 0.7
1.1(1.8) 1.4(1.4)
1.1(1.6) 1.5(1.3)
1.0 0.7

4 MSE mean
med
max

MAX mean
med
max

6.8(6.5) 0.9(0.6)
7.6(7.0) 1.3(0.8)
5.8 −0.2
3.3(3.2) 1.0(1.0)
3.5(3.2) 1.1(0.8)
2.6 0.3

3.4(4.1) 1.5(1.3)
3.4(3.9) 2.1(1.6)
3.2 0.6
1.6(2.4) 1.3(1.3)
1.6(2.2) 1.4(1.3)
1.5 0.7

2.9(3.6) 1.7(1.4)
2.9(3.5) 2.4(1.8)
2.7 0.7
1.4(2.2) 1.4(1.4)
1.4(2.1) 1.6(1.4)
1.3 0.8

2.6(3.6) 1.8(1.4)
2.6(3.4) 2.4(2.0)
2.5 0.6
1.3(2.1) 1.4(1.4)
1.3(2.0) 1.6(1.5)
1.1 0.7

5 MSE mean
med
max

MAX mean
med
max

7.8(7.0) 0.6(0.1)
10.6(9.5) 1.3(0.7)
6.2 −0.7
4.1(3.5) 0.9(0.8)
5.1(4.6) 1.0(0.8)
2.7 0.0

3.6(4.2) 1.6(1.4)
3.6(4.0) 2.1(1.6)
3.3 0.7
1.7(2.4) 1.3(1.4)
1.7(2.2) 1.5(1.3)
1.5 0.7

3.0(3.7) 1.5(1.2)
3.0(3.7) 2.1(1.6)
2.8 0.4
1.5(2.4) 1.3(1.3)
1.5(2.2) 1.4(1.3)
1.4 0.6

2.7(3.6) 1.9(1.7)
2.7(3.5) 2.4(1.8)
2.6 0.8
1.3(2.2) 1.5(1.5)
1.3(2.0) 1.6(1.4)
1.2 0.8

Table 4.4

Leave-one-out cross-validation results using the cluster expansion method of [9]. The ”All Data”
column tests on the full data set and the “Excluding Small” column requires that the 24 structures
with size less than 5 always be in the training set.

All Data Excluding Small
Error Stat Train Test Train Test
MSE mean

med
max

MAX mean
med
max

2.7(4.5) 2.4(2.3)
2.7(4.7) 2.5(2.3)
2.7 1.5
1.4(2.9) 1.6(1.8)
1.4(3.2) 1.6(1.7)
1.4 1.2

2.7(4.3) 2.5(2.5)
2.7(4.2) 2.6(2.3)
2.7 1.9
1.4(2.9) 1.7(1.9)
1.4(3.2) 1.7(1.7)
1.4 1.3

ture(s) contain independent information that cannot be predicted from the remaining
structures. In examining the structures that were poorly predicted, we noticed they
were often, but not always, very simple structures such as the solid Mo and solid Ta
structures. It seems reasonable to require that these structures always be in the train-
ing set, but exactly which should be considered simple enough is unclear. This issue
is related to the problem of how one should sample the set of all structures, which
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Table 4.5

Leave-one-out cross-validation results similar to Table 4.3, but requiring that the 24 structures
with size less than 5 always be in the training set.

r Error Stat
λ = 0

Train Test
λ = 10.0

Train Test
λ = 100.0

Train Test
λ = 1000.0
Train Test

1 MSE mean
med
max

MAX mean
med
max

2.3(2.7) 1.6(1.4)
2.3(2.7) 2.3(1.5)
1.9 0.9
1.1(1.6) 1.3(1.4)
1.1(1.7) 1.5(1.3)
0.7 0.8

2.2(2.5) 1.8(1.7)
2.3(2.5) 1.9(1.7)
1.8 1.2
1.0(1.4) 1.4(1.5)
1.1(1.2) 1.3(1.3)
0.7 1.0

2.2(2.6) 1.7(1.5)
2.2(2.7) 1.9(1.6)
1.7 0.8
1.0(1.3) 1.3(1.4)
1.1(1.6) 1.4(1.3)
0.5 0.8

0.7(1.7) 0.8(0.7)
0.7(1.8) 1.0(0.6)
0.7 0.1
0.2(1.5) 0.9(1.0)
0.2(1.3) 0.9(0.8)
0.2 0.4

2 MSE mean
med
max

MAX mean
med
max

3.4(3.8) 1.5(1.2)
3.4(3.7) 2.2(1.7)
3.1 0.7
1.6(2.2) 1.3(1.3)
1.6(2.1) 1.5(1.3)
1.4 0.7

2.8(3.5) 1.8(1.6)
2.8(3.4) 2.3(1.8)
2.6 0.8
1.3(2.2) 1.4(1.5)
1.4(2.2) 1.5(1.4)
1.2 0.8

2.5(3.3) 1.8(1.5)
2.5(3.3) 2.1(1.9)
2.4 0.8
1.2(2.0) 1.4(1.5)
1.2(1.9) 1.4(1.5)
1.1 0.8

1.8(2.3) 1.2(0.9)
1.8(2.4) 1.7(1.4)
1.4 0.3
0.9(1.6) 1.1(1.1)
0.9(1.4) 1.2(1.2)
0.7 0.5

3 MSE mean
med
max

MAX mean
med
max

4.7(4.7) 1.4(1.0)
4.8(4.7) 2.0(1.3)
4.1 0.3
2.1(2.4) 1.2(1.2)
2.2(2.3) 1.4(1.2)
1.7 0.5

3.1(3.8) 1.7(1.4)
3.2(3.7) 1.9(1.7)
3.0 0.8
1.5(2.4) 1.4(1.4)
1.5(2.2) 1.4(1.3)
1.4 0.8

2.7(3.5) 2.0(1.8)
2.7(3.4) 2.3(2.0)
2.6 1.1
1.3(2.2) 1.5(1.6)
1.3(2.0) 1.6(1.4)
1.2 0.9

2.4(3.2) 1.9(1.6)
2.4(3.0) 2.3(1.9)
2.2 0.9
1.1(1.9) 1.5(1.5)
1.1(1.6) 1.6(1.4)
1.0 0.8

4 MSE mean
med
max

MAX mean
med
max

6.8(6.4) 1.1(0.9)
7.7(7.1) 1.8(1.2)
5.8 0.3
3.3(3.1) 1.1(1.1)
3.5(3.3) 1.3(1.1)
2.6 0.5

3.4(4.1) 1.7(1.5)
3.4(4.0) 2.3(1.6)
3.2 0.8
1.6(2.4) 1.3(1.4)
1.6(2.1) 1.5(1.3)
1.5 0.8

2.9(3.6) 2.0(1.5)
2.9(3.5) 2.6(2.1)
2.7 0.7
1.4(2.2) 1.5(1.5)
1.4(2.1) 1.7(1.6)
1.3 0.8

2.6(3.7) 2.0(1.8)
2.6(3.7) 2.4(2.0)
2.5 1.1
1.3(2.1) 1.5(1.6)
1.3(2.1) 1.6(1.5)
1.1 0.9

5 MSE mean
med
max

MAX mean
med
max

7.6(6.9) 1.0(0.9)
10.7(9.8) 1.6(1.1)
6.2 0.3
4.0(3.4) 1.0(1.1)
5.1(4.8) 1.2(1.1)
2.7 0.5

3.6(4.2) 1.6(1.4)
3.6(4.1) 2.2(1.7)
3.3 0.7
1.7(2.3) 1.3(1.4)
1.6(2.2) 1.5(1.4)
1.5 0.7

3.0(3.8) 1.8(1.4)
3.0(3.7) 2.1(1.8)
2.9 0.7
1.5(2.5) 1.4(1.4)
1.5(2.3) 1.5(1.4)
1.4 0.7

2.7(3.7) 2.2(2.2)
2.7(3.6) 2.5(2.1)
2.6 1.6
1.3(2.2) 1.6(1.7)
1.3(2.2) 1.6(1.6)
1.2 1.2

is beyond the scope of our work. We do present, in Table 4.5, the cross-validation
results when one requires the 24 structures with size less than 5 to be always in the
training set. For r = 5 and λ = 1000 we obtain results comparable to those for the
cluster expansion method in Table 4.4.

Second, it may be that the predictions of the method have instability. We have
only a rudimentary understanding of how sums of separable functions approximate
other functions in general, so when we include the consistency operator and fit a
poorly understood property function, our understanding is almost nil. We speculate
that the sum of separable functions model may have too much freedom in trying to
approximate the data, and some of these approximations will predict poorly. The
regularization in section 3.7 helps significantly but is not sufficient, and more work is
needed. We tested the additive model (1.4), which has much less freedom, but found
it has essentially no approximation power and so was useless for prediction.

In other numerical experiments not reported in detail here, we attempted to
use the method to obtain an optimal structure with respect to some property. A
small data set was used to generate predictions for a large set of structures. Those
structures with smallest predicted property value were then added to the data set and
the process was repeated. We found the predictions to be insufficiently accurate to
determine useful new data points in this way.
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