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Absence of intrinsic spin splitting in one-dimensional quantum wires of tetrahedral semiconductors
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The energy bands of three-, two-, and one-dimensional (1D) structures are generally split at certain wave-vector
values into spin components, a spin splitting (SS) that occurs even without an external magnetic field and reflects
the effect of spin-orbit interaction on certain symmetries. We show via atomistic theory that 1D quantum wires
made of conventional zinc-blende semiconductors have unexpected zero SS for all electron and hole bands if
the wire is oriented along (001) (belonging to D2d symmetry), and for some of bands if the wire is oriented
along (111) (belonging to C3v symmetry). We find that the predicted absence of a Dresselhaus SS in both
(001)-oriented and (111)-oriented 1D wires is immune to perturbations lowering their original D2d and C3v

structural symmetries, such as alloying of the matrix around the wire or application of an external electric field.
Indeed, such perturbations induce only a Rashba SS. We find that the scaling of the SS with the wave vector is
dominated by a linear term plus a minor cubic term.
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In the presence of the spin-orbit interaction (SOI), an
electron moving in the inversion-symmetry-breaking electric
field feels an internal effective magnetic field Bin(k) which
leads to splitting of the spin degeneracy of energy bands along
certain wave-vector directions k. The inversion-symmetry-
breaking electric field can arise either from the intrinsic bulk
inversion asymmetry (a Dresselhaus SOI)1 or from an extrinsic
structural inversion asymmetry (a Rashba SOI).2 Such a SOI
hence provides certain control on the electron spin through the
manipulation of electron motion and plays a central role in
spintronics3–9 as well as topological insulators.10,11

The absence or presence of intrinsic spin splitting (SS) at a
given k point in a particular structure and dimensionality can
be obtained from symmetry, as we illustrate in Fig. 1, where
we give all irreducible representations γ

(λ)
i (with degeneracy

λ) of the point group of k points along high-symmetry k lines
for three-dimensional (3D) bulk zinc-blende structures, two-
dimensional (2D) quantum wells (QWs), and one- dimensional
(1D) quantum wires. In double group representations including
spin,1 a band belonging to a representation with dimension
λ � 2 has no SS (spin degeneracy) and spin degeneracy is
lifted in a band if it belongs to a representation with dimension
λ = 1. Therefore, two general cases are noteworthy in Fig. 1,
relating to the absence (presence) of SS to the degeneracy
λ = 2 (λ = 1): (i) If the point group of a k point contains
only representations with dimension λ = 2, then there is no
spin splitting for any bands at this k point. Thus, a 3D zinc-
blende bulk structure has no SS along [100]. (ii) If the point
group of a k point contains only single-degenerate (λ = 1)
representations, there is SS for every band at this k point, e.g.,
k points along [110] (�-K) in zinc-blende structures.1

We see that the absence or presence of intrinsic SS is a
general physical feature anchored in the symmetry properties
of the underlying states, as first discussed by Dresselhaus.1

However, the prediction of the magnitude of SS, when it
is nonzero, as well as the determination of its scaling with
the wave vector k (linear versus cubic) requires an atomistic
approach, capable of resolving the correct symmetry of the
object at hand. The scaling is understood for 3D and 2D but not

for 1D: In 3D bulk zinc-blende structures the cubic term is the
lowest order of electron Dresselhaus SS.1 In 2D QWs, besides
cubic terms, a linear term appears due to a quantized wave
vector in the growth direction.12 In contrast to 3D bulk and
2D QWs, far less attention has been devoted to understanding
the SOI-induced SS in 1D quantum wires. Indeed, it has not
been determined if SS exists at all in certain 1D structures, and
what is the scaling with momentum. Ignoring the atomistic
symmetry, k · p calculations13–17 have postulated sometimes
only linear and sometimes both linear and cubic Dresselhaus
terms in their model Hamiltonian.

In this Rapid Communication we (i) use symmetry (Fig. 1)
to establish the rigorous absence of intrinsic SS in (001)-
oriented 1D zinc-blende quantum wires, where the SS vanishes
identically for all electron and hole bands. In addition, in
(111)-oriented 1D quantum wires, SS vanishes for part of
bands including the lowest conduction band (CB1) and highest
valence band (VB1). (ii) We find that this symmetry-enforced
vanishing of Dresselhaus SS is immune to symmetry lowing
factors such as random alloy fluctuations of the wire matrix
or application of an external electric field perpendicular to the
wire; these factors introduce only Rasbha SOI-induced SS.
(iii) Applying atomistic electronic structure calculations we
find the magnitude and scaling of the intrinsic SS with the
wave vector. The scaling is dominated by a linear term plus a
minor cubic term.

Approach. We calculate SS in the (001)-, (110)-, and
(111)-oriented 1D GaAs/AlAs quantum wires which have
a cross section with GaAs atoms inside the atom-centered
circle with radius R and AlAs atoms outside. We use a lattice
constant a = 5.653 Å for both GaAs and AlAs, neglecting
the slight lattice mismatch. Since the origin of intrinsic SS
lies in the atomic-scale (a)symmetry, we avoid a geometric
continuum description underlying the few-band k · p. Unable
to resolve atomic symmetry,18 such approaches add intrinsic
SS essentially “by hand” (sometimes guessing it incorrectly19).
Instead, we describe the (screened) electron-ion potential
V (r) of the system (3D, 2D, or 1D) as a superposition of
atom-centered potentials vα of all atoms in the system, thus
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FIG. 1. (Color online) The subgroup and representations of k

points along the wave-vector directions [001], [100], [110], [11̄0],
and [111] for 3D zinc-blende (ZB) structures, 2D quantum wells,
and 1D quantum wires accompanying the point group (PG) of the
structures. There are three real-space orientations (001), (110), and
(111) for 2D quantum wells and 1D quantum wires. The degeneracy
of each representation is presented as its superscript in parentheses.
We adopt the Koster-Dimmock-Wheeler-Statz notation (Ref. 26) for
representations of the symmetry double group.

forcing upon us the correct atomically resolved symmetry.
The single-particle Schrödinger equation associated with V (r)
is then solved in a general plane-wave basis set whose size is
selected so that it does not affect the answer. Hence, the results
are equally applicable to any wave vector (not just small k), and
all-band as well as all-valley coupling are naturally included.
In practice, V (r) is taken as a superposition of overlapping
potentials v̂α(r) of the constituent atoms,20,21

V (r) =
∑

n

∑

α

v̂α(r − Rn − dα), (1)

where v̂α(r − Rn − dα) pertains to atom type α at site dα in
the nth primary cell Rn. The symmetry of the structure is
hence expressed in an explicit manner via atomic positions.
The construction of v̂α is the key to accuracy and realism.
To remove the “local density approximation (LDA) error” in
the bulk crystal, we fit v̂α to reproduce well not only the
bulk band gaps throughout the zone, but also the electron
and hole effective-mass tensors, as well as the valence-
and conduction-band offsets between two materials in a
heterostructure, the spin-orbit splitting, and the hydrostatic
and biaxial deformation potentials.19,21,22 The construction of
V (r) and its accuracy has been described in Refs. 21 and 22.
This approach has been previously applied to SS in 3D bulk
GaAs (Ref. 22) and in 2D (001) GaAs/AlAs quantum wells.19

The linear and cubic terms of numerically calculated SS �i(k)
of band i is obtained by fitting it to a power series in k,

�i(k) = αik + γik
3. (2)

Intrinsic spin splitting in 1D wires. The band structure of
(001)-, (110)-, and (111)-oriented 1D GaAs/AlAs quantum
wires near the Brillouin zone center �̄ is shown in Fig. 2. The
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FIG. 2. (Color online) Band structure of (a) (001)-, (b) (110)-,
and (c) (111)-oriented GaAs/AlAs quantum wires with radius R =
4.0 nm. Red (gray) and black denote different spin bands for each
orbital band, which are hardly resolved visually on this energy scale.
Vertical arrows indicate the band crossing (or anticrossing) of the
lowest conduction band (CB1) and the highest valence band (VB1).

two spin components of each orbital band are represented by
red (gray) and black lines, respectively. For the (001) wire in
Fig. 2(a) one observes a single color for all bands because
�i(k) = 0. For the (110) wire in Fig. 2(b) both red (gray) and
black lines are seen for every band, since there is SS for all
bands. However, in (111)-oriented wire, as shown in Fig. 2(c),
some bands, including CB1 and VB1, have no SS and others
have SS. Figure 3 shows SS (defined as the absolute energy
difference between two spin components for each orbital band)
of both CB1 (top panels) and VB1 (bottom panels) for three
wire orientations. Indeed, Fig. 3(a) shows zero SS for both
CB1 and VB1 in (001)-oriented 1D wire and Fig. 3(b) shows
large SS for both CB1 and VB1 in (110)-oriented 1D wire.
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FIG. 3. (Color online) Spin splitting of (a) (001)-, (b) (110)-, and
(c) (111)-oriented GaAs/AlAs quantum wires with radius R = 4.0
nm. The top panels are for the lowest conduction band (CB1) and the
bottom panels are for the highest valence band (VB1). The vertical
arrows indicate the band crossing of CB1 or VB1.
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However, Fig. 3(c) shows different results for (111)-oriented
1D wire: In the valence bands the (111) wire shows no SS
for VB1 in the small-k region, but SS appears suddenly at
a critical k point [∼0.03(2π/a)]. The transition between the
absence and presence of SS in VB1 is due to band crossing
(marked by arrows in Fig. 2). As shown in Fig. 2(c), VB1 and
VB2 in the (111) wire have no SS but VB3 does exhibit SS.
At k ∼ 0.03(2π/a) there is a band crossing between VB1 and
VB3, hence there is a transition from the absence of SS to the
presence of SS. In the conduction bands of the (111) wire, band
crossing between the CB1 and CB2 bands does not contribute
to a similar transition of SS since both CB1 and CB2 bands
have no SS [the observed SS in Fig. 2(c) is arising from CB3,
which is almost degenerate with CB2].

Atomistic symmetry and spin splitting. It is interesting to
note the absence of SS in 1D wires as opposed to the presence
of SS in the corresponding 2D QWs and 3D bulk structures. To
understand this phenomena we analyze in Fig. 1 the symmetry
of k points along high-symmetry k lines in 1D, 2D, and 3D
structures with real-space lattice orientations (001), (110), and
(111). Figure 1 indicates the point-group (PG) symmetry of
each structure, which is Td for 3D bulk, and D2d for the (001)
wire and well, C2v for the (110) wire and well, and C3v for
the (111) wire and well. Next, Fig. 1 indicates the k directions
where there are no band dispersion (“nd”), hence no SS. In
the remaining k directions that manifest band dispersion, we
give the symmetry representations γ

(λ)
i . We find the following

from Fig. 1: (a) In 3D bulk zinc-blende structures with Td

symmetry, SS exists for all bands along the k = [110] and k =
[11̄0] directions since there λ = 1 and for some of bands along
k = [111] since there λ = 1, 2. (b) In (001)-oriented 2D QWs,
SS exists for all bands in all the in-plane directions since there
λ = 1. (c) In (110)-oriented 2D QWs, there exist finite SS �i

for all bands along the in-plane k = [11̄0] direction since there
λ = 1, but �i vanishes along the in-plane k = [001] direction
since there λ = 2. (d) In (111)-oriented 2D QWs, there exist
finite SS in all in-plane directions since there λ = 1. (e) In 1D
quantum wires there is only a single direction where energy
dispersion exists, which is different from the infinite number
of dispersing directions as in 2D quantum wells and 3D bulk
structures. In (001)-oriented 1D quantum wires, there is no SS
for any dispersing bands since λ = 2. In (110)-oriented 1D
quantum wires, there exist finite SS for any dispersing bands
since λ = 1. However, in (111)-oriented 1D quantum wires,
both types of λ values exist and hence the bands belonging to
λ = 2 have no SS and other bands belonging to λ = 1 have
SS. The numerical results shown in Figs. 2 and 3 follow this
symmetry analysis.

Effects of reduced symmetry. The absence of SS in (001)-
and (111)-oriented 1D quantum wires is a result of atomic
symmetry. One therefore wonders what would happen if
one reduces the atomic symmetry by alloying, or adding
surface ligands, or applying an external electric field. This
can be examined by randomly alloying the wire matrix to
Al0.9Ga0.1As and keeping the wire core as pure GaAs. For
(001) wire, this results in the appearance of SS but with a rather
small magnitude. Its linear term coefficient αi (i = CB1, VB1)
and cubic term coefficient γi (i = VB1) of Eq. (2) (Ref. 23)
as a function of wire radius is shown in Figs. 4(a) and 4(b),
respectively, as well as that of intrinsic (Dresselhaus) SS of
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FIG. 4. (Color online) Magnitude of (a) linear term coefficient
αi (i = CB1, VB1) and (b) cubic term coefficient γi (i = CB1)
of spin splitting terms as a function of wire radius R for (110)-
oriented GaAs/AlAs quantum wires (belonging to C2v symmetry)
and (001)-oriented GaAs/Al0.9Ga0.1As quantum wires (belonging to
C1 symmetry) as well as (001)-oriented GaAs/AlAs quantum wires
(belonging to D2d ) by applying an external electric field as large as
E = 107 V/m.

(110) GaAs/AlAs wires. We find that the linear term of both
CB1 and VB1 of alloyed (001) wire [Fig. 4(a)], which is
dominant in the small-k range, is two orders of magnitude
smaller than that of corresponding bands in 1D (110)-oriented
wire. This symmetry-lowering-induced SS through alloying of
the wire matrix is a Rashba SOI effect rather than a Dresselhaus
SOI effect, as evidenced by the fact that its cubic term is
extremely small compared with the Dresselhaus SOI cubic
term of (110)-oriented wire, as shown in Fig. 4(b). For electron
bands, a Rashba SS has only a linear term2,5 and a Dresselhaus
SS has a large cubic term (the magnitude of the cubic term is
expected to be the same for 1D, 2D, and 3D according to the
single-band model12,15,24).

Another way to reduce the D2d symmetry of (001) wire
is by applying an external electric field perpendicular to the
wire. We apply an electric field as large as 107 V/m to
the 1D (001) GaAs/AlAs wire. The calculated coefficients
of linear and cubic terms αi and γi [i = CB1 (Ref. 25)]
are also shown in Figs. 4(a) and 4(b), respectively. Similar
to the alloying-induced SS, the E-field-induced SS is linear
in k (the cubic term is negligible). This indicates that the
external electric field induces only a Rashba SS and does
not switch on the intrinsic Dresselhaus SS. By comparing
[Fig. 4(a)] the E-field-induced (Rashba) SS of CB1 of (001)
wire to the intrinsic (Dresselhaus) SS of CB1 of (110) wire,
we see that the Rashba SOI is smaller than the Dresselhaus
SOI. This is in contrast to 2D QWs where the Dresselhaus
SOI is negligible in comparison with the Rashba SOI.7,9 We
conclude that the predicted absence of a Dresselhaus SS in both
(001)- and (111)-oriented 1D quantum wires is immune to the
perturbations lowering their original D2d and C3v structure
symmetries, such as alloying the wire matrix and applying an
external electric field. These induce only the Rashba SS. This
conclusion can be applied to intrinsic E fields due to a quantum
wire operating as a device, e.g., surface-polarization-induced
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field in response to space charge and E field in response to the
charge current flowing in the wire.

The absence of a Dresselhaus SS in 1D wires is rather
general because it is based on an atomistic symmetry con-
sideration, and thus applies to all zinc-blende wires of the
same orientations. This finding is unexpected by the existing
literature.13–17 This result suggests that 1D quantum wires
might be promising candidates for spintronic devices because

they avoid some of the problems underlying the 2D struc-
tures that manifest intrinsic untunable Dresselhaus electron
SS.7,8,11
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