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Si nanowires have attracted considerable attention as promising candidates for electronic, thermoelectric,
photonic, and photovoltaic devices, yet there appears to be only limited understanding of the underlying electronic
and excitonic structures on all pertinent energy scales. Using atomistic pseudopotential calculations of single-
particle as well as many-body states, we have identified remarkable properties of Si nanowires in three energy
scales: (i) In the “high-energy” ∼1-eV scale, we find an unusual electronic state crossover whereby the nature
of the lowest unoccupied molecular orbital (LUMO) state changes its symmetry with wire diameters for [001]-
oriented wires but not for [011]-oriented wires. This change leads to orbitally allowed transitions becoming
orbitally forbidden below a certain critical diameter for [001] wires. (ii) In the “intermediate-energy” ∼10−1-eV
scale, we describe the excitonic binding, finding that in [001] wires the diameter (D) dependence of excitonic
gap scales as 1/D1.9, not as 1/D1 as expected. The exciton binding energy increases from 52 meV at D = 7.6 nm
to 85 meV at D = 3.3 nm and 128 meV at D = 2.2 nm. (iii) In the “low-energy” ∼10−3-eV scale, we describe
dark/bright excitonic states and predict how orbitally allowed transitions [in scale (i)] become spin-forbidden
due to the electron-hole exchange interaction, whereas the spin-allowed states in the orbitally forbidden diameter
region remain dark. The diameter dependence of the fine-structure splitting of excitonic states scales as 1/D2.3

in [001] wires and as 1/D2.6 in [011] wires. Surface-polarization effects are found to significantly enhance
electron-hole Coulomb interaction, but have a small effect on the exchange fine-structure splitting. The present
work provides a road map for a variety of electronic and optical effects in Si nanowires that can guide spectroscopic
studies.
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I. INTRODUCTION

Si nanowires have attracted considerable interest as promis-
ing candidate structures for electronic,1,2 thermoelectric,3,4

photonic,5,6 and photovoltaic devices,7–11 reflected by nu-
merous papers on growth,12–14 structural characterization,15

transport,16,17 and optical15,18–23 properties. Yet, there appears
to be limited understanding of the underlying electronic and
excitonic properties. Such understanding would span three
energy scales: (i) in the high-energy ∼1-eV scale one needs
to understand the nature of confined energy levels and their
dependence on wire orientation and diameter (single-particle
physics); (ii) in the intermediate-energy ∼10−1-eV scale one
needs to understand the screened electron-hole Coulomb
attraction, which determines the exciton binding energy
(many-body physics); and finally (iii) in the “low-energy”
∼10−3-eV scale one encounters the electron-hole exchange
interaction, which splits the excitonic states into bright/dark
states (many-body physics).

Current calculations and experiments on Si wires provide
only limited understanding of the electronic and excitonic
structures on all of these energy scales. On the theoretical
side, in the ∼1-eV energy scale (i), density-functional theory
(DFT) calculations, which are computationally restricted to
small-diameter wires, reported band structures for different
wire orientations.24–27 Since in DFT the bulk band gaps
and effective masses are often underestimated (by 60%),
the description of quantum confinement effects in nanowires
is questionable. The semiempirical tight-binding method28

was also used to probe scale (i). In the ∼10−1-eV energy
scale (ii) the Bethe-Salpeter equation (BSE) within the GW
method was used to describe excitonic absorption,29,30 yet

GW-BSE calculations are computationally rather expensive,
so large-diameter wires (>1.5 nm) were not considered and
the spin-orbit (SO) coupling effect was generally ignored.29,30

In the ∼10−3-eV energy scale (iii), the understanding is still
dominated by the simple exchange singlet-triplet splitting
model based on two single-particle levels.30,31 Furthermore,
in an indirect-gap system such as Si the dark states are not
only exchange induced, but are affected by the symmetry of
band-edge states and by intervalley coupling in the conduction
bands.32,33

On the experimental side, scanning tunneling spectroscopy
has been employed to evaluate the size-dependent quasiparticle
band gaps in the scale (i). The gap increases from 1.1 eV at D =
7.0 nm to 3.5 eV at D = 1.3 nm.15 As to scale (ii) and (iii),
available photoluminescence spectra for Si nanowires show a
complicated profile with relatively weak intensity compared
to porous Si, broad peaks (the narrowest reported linewidth
ν ∼ 85 meV at 7 K),21 and long carrier decay time on the order
of 1–103 μs.20,34 These properties are strongly dependent on
the wire size, morphology, and surface passivation.14,19,22,23

In this situation theoretical studies on excitonic properties of
Si wires were usually compared to experimental results for
porous Si,29,30 which has a yet poorly understood morphology
and interface.

Here we describe via explicit atomistic pseudopotential
calculations a comprehensive analysis of Si nanowires along
the [001] and [011] growth direction on all three energy scales.
In scale (i) we find an unusual electronic state crossover
whereby the nature of the lowest unoccupied molecular orbital
(LUMO) state changes its symmetry with wire diameter for
[001] wires but not for [011]. This symmetry change leads
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to orbitally allowed transitions becoming orbitally forbidden
below a certain critical diameter for [001] wires. In scale (ii)
we describe the excitonic states of Si wires for different sizes
and orientations, predicting the symmetry and polarization of
the first few excitonic peaks. In [001] wires, the electronic state
crossover noted above leads to distinct polarization behaviors
of excitons for different diameter regions, whereas for [011]
wires the excitonic structure is much simpler and the bright
exciton is always polarized along the wire growth direction.
In scale (iii) we predict how orbitally allowed transitions
[in scale (i)] become spin-forbidden due to the electron-
hole exchange interaction, whereas spin-allowed states in the
orbitally forbidden diameter region are still dark. We also
discussed the effect of surface polarization induced by the
dielectric mismatch between Si wire and the surrounding
material. This study provides a road map for a variety of optical
effects in Si nanowires that can guide spectroscopic studies of
such systems.

II. METHOD

The single-particle electronic energies and wave functions
[scale (i)] are calculated via the atomistic pseudopotential
method described in Ref. 35. Briefly, the nanowire system
is described by solving the Schrödinger equation:[

− h̄2

2m
�2 +

∑
n,α

vα(r − Rn,α) +
∑

α

V SO
α

]
ψi(r) = εiψi(r),

(1)

where the Hamiltonian consists of the kinetic energy (first
term), the nanocrystal potential (second term), and the spin-
orbit operator (third term). The nanocrystal potential specifies
the atomistic symmetry as well as the mesoscopic shape and
size of nanostructures, and is represented as a superposition of
screened atomic pseudopotentials vα(r − Rn,α) centered at the
atom sites Rn,α . vα(r − Rn,α) and V SO

α are fitted to accurately
reproduce the properties of bulk Si (band gap, critical energy

levels, effective masses, deformation potentials, and spin-orbit
splittings), thus correcting the well-known “DFT errors” for
semiconductors. The Hamiltonian is diagonalized iteratively
by expanding the wave function [ψi(r) in Eq. (1)] in plane
waves, and selectively calculating band-edge states via the
folded spectrum method.36,37 The pseudopotential method
naturally includes the effects of atomistic symmetry, quantum
confinement, spin-orbit coupling, multiband coupling, and
intervalley coupling (the last two originating from the lack of
translational symmetry in nanostructures). Here the Si wires
are constructed with circular cross sections (except as noted)
along the [001] and [011] direction and are embedded in
a matrix material having a (variable) wide gap, mimicking
various target surface passivations. Whereas other specific
passivations have been used in the literature such as atomistic
hydrogen H termination, we prefer here to capture a range of
possible passivations by using a generic one.

The many-body excitonic properties [scales (ii) and (iii)
above] are calculated within the framework of the screened
configuration-interaction (CI) approach.38 The exciton wave
functions |�(ν)〉 are expanded in terms of linear combinations
of Slater determinants |�hi,ej

〉 (corresponding to the hi-ej

electron-hole pair) constructed from the antisymmetrized
products of single-particle wave functions ψi(r) obtained from
Eq. (1):

|�(ν)〉 =
∑
hi ,ej

C(ν)(hi,ej )|�hi,ej
〉, (2)

where the coefficients C(ν)(hi,ej ) are the eigenstates of the CI
Hamiltonian constructed by using the electron-hole Coulomb
(Jhiej ,h

′
i e

′
j
) and exchange (Khiej ,h

′
i e

′
j
) integrals:

Hhiej ,h
′
i e

′
j

≡ 〈�hi,ej
|HCI|�h′

i ,e
′
j
〉

= (εej
− εhi

)δhih
′
i
δej e

′
j
− Jhiej ,h

′
i e

′
j
+ Khiej ,h

′
i e

′
j
. (3)

The eigenvalues are energies of excitons, EX. The Jhiej ,h
′
i e

′
j

and
Khiej ,h

′
i e

′
j

are calculated by using the single-particle orbitals
ψi(r):

Jhiej ,h
′
i e

′
j
= e2

∑
σ1,σ2

∫ ∫ ψ∗
h′

i
(r1,σ1)ψ∗

e′
j
(r2,σ2)ψhi

(r1,σ1)ψej
(r2,σ2)

ε(r1,r2)|r1 − r2| dr1dr2, (4)

Khiej ,h
′
i e

′
j
= e2

∑
σ1,σ2

∫∫ ψ∗
h′

i
(r1,σ1)ψ∗

ej
(r2,σ2)ψe′

j
(r1,σ1)ψhi

(r2,σ2)

ε(r1,r2)|r1 − r2| dr1dr2. (5)

The screening for these integrals is described by a position-
dependent and size-dependent screening function ε(r1,r2),
which gives a physically smooth transition from short range
(unscreened) to long range (screened).38 To describe the
electron-hole interaction for excitons, in the CI calculations
the wires are periodically expanded along the growth direction
with a length of ∼11 nm, which is more than twice the exciton
Bohr radius of bulk Si (∼4.9 nm). We use a large enough
number of single-particle valence (>40) and conduction (>40)
-band states to converge our CI basis: the calculated excitonic

energies EX have a residual convergence error of less than
0.2 meV.

The optical-absorption spectra including excitonic effect
are calculated with the CI eigenstates of Eq. (3) by using
Fermi’s golden rule:

I (E) =
∑

ν

|Mν |2exp

[
−

(
E − Eν

σ

)2
]

, (6)
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where Mν = ∑
hi ,ej

C(ν)(hi,ej )〈ψhi
|̂P|ψej

〉 is the dipole tran-
sition matrix, Eν is the exciton energy and the broadening
of spectral lines, σ is chosen as 50 μeV. The exciton decay
lifetime (τν) is calculated according to39

1

τν

= 4αEνn|Mν |2
m2

0h̄c2
, (7)

where n is the refractive index (∼4.0 for photon
energies of 1–2 eV for Si),40 α is the fine-structure constant,
m0 is the electron rest mass, and c is the velocity of
light.

The dielectric mismatch between the nanostructure (di-
electric constant εin) and its surrounding material (εout) will
create image charges at the surface.41 This leads to two
additional contributions to the energies of excitons: (i) the
self-energy correction (�pol

i ) of an electron (hole) in the
single-particle state i, originating from the interaction between
the electron (hole) and its own image charge; (ii) the Coulomb
(exchange) interaction correction (U pol

hiej ,h
′
i e

′
j
), originating from

the mutual interaction of electron and hole, mediated by their

image charges. The self-energy term is evaluated in first-order
perturbation theory by

�
pol
i =

∫
|ψi(r)|2�(r)dr, (8)

where ψi(r) is the single-particle wave function from
Eq. (1) and the surface-polarization potential, �(r) is nu-
merically calculated as in Ref. 42. The Coulomb (exchange)
interaction term is calculated via the electrostatic potential,


pol
ej ,e

′
j
(r),

U
pol
hiej ,h

′
i e

′
j
= e2

∑
σ

∫
ψ∗

hi
(r,σ )ψh′

i
(r,σ )pol

ej ,e
′
j
(r)dr, (9)

where 
pol
ej ,e

′
j
(r) is the solution of the generalized Poisson

equation,

∇ · ε(r)∇[
dir

ej ,e
′
j
(r) + 

pol
ej ,e

′
j
(r)

]
= −4πe2

∑
σ

ψ∗
ej

(r,σ )ψe′
j
(r,σ ), (10)

where the macroscopic dielectric constant ε(r) changes
smoothly from εin to εout at the wire surface. dir

ej ,e
′
j
(r)
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FIG. 1. (Color online) Single-particle band-edge energy levels (a), wave function amplitudes (right panel), and corresponding optical
transitions (b) for [001] Si wires of diameter D = 7.6, 3.3, and 2.2 nm. These diameters are chosen to represent three distinct size regimes with
different optical transitions. The square of wave functions are shown for a D = 3.3 nm wire, with the plane intersecting the wire, perpendicular
to the wire axis. The wire cross sections are shown as blue circles. The dashed arrow lines represent orbitally forbidden transitions whereas
the solid arrow lines correspond to orbitally allowed transitions. Note that as a result of strong confinement, the oscillator strength for D = 3.3
and 2.2 nm are enhanced by two orders of magnitude compared with that for D = 7.6 nm.
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TABLE I. Direct product of interband dipole matrix elements
〈h|Pi |e〉 in Si [001] wires (D2d symmetry) and [011] wires (C2v

symmetry). Pi represents the dipole operator along the wire axis
(P001 for [001] wires and P011 for [011] wires) and in-plane direction
(P110 for [001] and P100 for [011]). The symmetric A1 representation
(dipole-allowed transition) is given in bold. For [001] wires the
LUMO A1 is allowed in P001 and E is allowed in P110. For [011]
wires A1 is allowed in P011.

[001]: 〈h|P001(B2)|e〉 〈h|P110(E)|e〉
〈B2 ⊗ B2 ⊗ A1〉 = A1 〈B2 ⊗ E ⊗ A1〉 = E

〈B2 ⊗ B2 ⊗ B1〉 = B1 〈B2 ⊗ E ⊗ B1〉 = E

〈B2 ⊗ B2 ⊗ E〉 = E 〈B2 ⊗ E ⊗ E〉 =
A1 ⊕A2 ⊕ B1 ⊕ B2

[011]: 〈h|P011(B1)|e〉 〈h|P100(A1)|e〉
〈B1 ⊗ B1 ⊗ A1〉 = A1 〈B1 ⊗ A1 ⊗ A1〉 = B1

corresponds to the electrostatic potential excluding the surface-
polarization effect, and is the solution of the Poisson equation,

ε(r)∇2dir
ej ,e

′
j
(r) = −4πe2

∑
σ

ψ∗
ej

(r,σ )ψe′
j
(r,σ ). (11)

Equations (10) and (11) are solved in real space by using a
finite-difference discretization of the gradient operator and a
conjugate-gradient minimization algorithm.42,43

In the following we first present results for [001] wires
from the above (i), (ii), and (iii) energy scales, and then show
results for [011] wires. We then discuss the effects of dielectric
mismatch on exciton binding and exchange interaction.

A. The eV energy scale: Single-particle states

Bulk Si has six equivalent conduction-band valleys �X

(along the �-X direction), from which the LUMO of wires is
derived. The confinement plane of [001] wires contains four of
these six �X valleys, folded to the �̄ point of the wire Brillouin
zone. For [001] wires belonging to the D2d point group,
symmetry analysis44 indicates that these four �X-derived
states correspond to the A1, B1, and E representation, where
both A1 and B1 are nondegenerate and E is doubly degenerate.
The highest occupied molecular orbital (HOMO) always has
nondegenerate B2 symmetry for all wire sizes. Figures 1(a)
and 2 show evolution of the LUMO and HOMO state when
the wire diameter is varied. At large diameter D = 7.6 nm, as
quantum confinement and intervalley coupling are negligible,
the splitting between A1, B1, and E is tiny, leaving all these
states practically degenerate. With decreasing diameters, the
enhanced intervalley coupling lifts the degeneracy of these
four states. This makes the B1 state the lowest-energy one at
diameter D = 3.3 nm to D ∼ 2.5 nm (see Fig. 2). For lower
diameters, the A1 state becomes the LUMO [e.g., D = 2.2 nm
in Fig. 1(a)]. In contrast to the LUMO, the HOMO keeps the
B2 symmetry for all the diameters. These HOMO and LUMO
states have characteristic wave functions corresponding to their
specific symmetries, as shown in the right part of Fig. 1.

The switching of symmetry of the LUMO state with diam-
eter has a strong effect on the optical properties of these wires.
Table I shows the direct product 〈h|Pi |e〉 for electron-hole
dipole transition matrix elements, in terms of the irreducible

representations of the D2d group (|e〉 = A1; B1; E and
|h〉 = B2). The dipole operator Pi consists of two components:
P001 representing photon polarized along the wire axis (along
wire), belonging to B2 representation and P110 representing
photon polarized perpendicular to the wire axis (in plane),
belonging to E representation. Any direct product having
a symmetric A1 representation is orbitally allowed.45 Thus
among all the HOMO→LUMO transitions for [001] wires,
B2 → A1 with the photon polarization P001 (along wire) and
B2 → E with P110 (in plane) are orbitally allowed, whereas
B2 → B1 is orbitally forbidden. This symmetry analysis is
consistent with our numerical calculations of the oscillator
strength depicted in Fig. 1(b). At diameter D = 7.6 nm, we
can see both B2 → A1 (along-wire polarized) and B2 → E

(in-plane polarized) transitions are orbitally allowed, whereas
the B2 → B1 transition is orbitally forbidden. With decreasing
diameters, the LUMO symmetry changes from degenerate
A1 + B1 + E (at D = 7.6 nm) to B1 (at D = 3.3 nm) and finally
to A1 (at D = 2.2 nm). The optical transitions [Fig. 1(b)] show
corresponding changes in polarization. At D = 3.3 nm the
orbitally forbidden B2 → B1 transition is below the orbitally
allowed B2 → A1 and B2 → E transitions, and then at D =
2.2 nm the orbitally allowed B2 → A1 transition emerges as
the lowest-energy one with along-wire polarization. We also
checked the above calculations for wires with square cross
section (also belonging to the D2d point group) and obtain
exactly the same symmetry-change sequence for the LUMO
state. This indicates that the symmetry change does not depend
on slight modifications of the wire surface. It is an intrinsic
property of the wire D2d symmetry, which originates from
the competition between quantum confinement and intervalley
coupling. Thus we predict a confinement-induced electronic
state crossover with diameter changes in [001] Si wires. As
shown below, this will result in corresponding transitions
between different excitonic states.

12345
D (nm)

0.4

0.8

1.2

ε c(e
V

)

e(A
1
)

e(B
1
)

e(E)

FIG. 2. (Color online) Evolution of energies and symmetries of
conduction-band-edge states with decreasing diameters in Si [001]
wires. One can clearly see the symmetry change sequence of the
LUMO state with decreasing diameters: from degenerate A1 + B1 +
E to B1, and to A1.
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TABLE II. Symmetry analysis of the excitonic states generated from HOMO and LUMO
single-particle orbitals of [001] and [011] Si wires. Single-group representations are converted to
corresponding double-group representations to include the spin degree of freedom for excitons.

HOMO LUMO Excitons (HOMO⊗LUMO)

[001]:
D = 7.6 nm B2 −→ �6 E−→ �6 + �6 �6 ⊗ �6 = A1⊕ A2⊕ E

D = 3.3 nm B2 −→ �6 B1 −→ �6 �6 ⊗ �6 = A1⊕ A2⊕ E

D = 2.2 nm B2 −→ �6 A1 −→ �7 �6 ⊗ �7 = B1⊕ B2⊕ E

[011]:
D = 3.3 nm B1 −→ �5 A1 −→ �5 �5 ⊗ �5 = A1⊕ A2⊕ B1⊕ B2

B. Intermediate energy scale: Exitonic states

Based on the group theory Table II describes how single-
particle HOMO and LUMO states contribute to produce
excitons. Here we convert single-group representations to
corresponding double-group ones adding the spin degrees of
freedom. It can be seen that three groups of excitonic states
emerge from different symmetry of the LUMO state:

(1) At diameter D = 7.6 nm [Fig. 3(a)], the spin-orbit
interaction splits the doubly degenerate LUMO E to �6 + �6,
and also transforms the HOMO B2 to �6. This �6 ⊗ �6

manifold in principle should lead to two combinations of
A1 ⊕ A2 ⊕ E excitonic states, of which the doubly degenerate
E state is bright and in-plane polarized. However, due to
very weak splitting of the two �6 states (as a result of weak
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FIG. 3. (Color online) Many-body excitonic states generated from HOMO⊗LUMO and absorption spectra for [001] Si wires at D = 7.6
(a), 3.3 (b), and 2.2 nm (c). The effect of spin-orbit coupling is included. Dashed arrow lines represent spin-forbidden transitions whereas solid
arrow lines represent spin-allowed transitions. The GS refers to the ground state after electron-hole recombination. The notations 1, 2, 3, and
4 mean the order of excitonic transitions from lower energy to higher energy in individual exciton group. The transition 1 corresponds to the
ground excitonic state (excitonic gap).
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TABLE III. Calculated ground-state exciton energy E(i) and
exciton fine-structure splittings for [001] wires (Fig. 3) and [011]
wires (Fig. 6). E(i) (i = 1, 2, 3, and 4) represent the energy of
excitonic transition corresponding to the notation (1, 2, 3, and 4) in
Figs. 3 and 6.

[001]: [011]:
D (nm) 7.6 3.3 2.2 3.3

E(1) (eV) 1.182 1.460 1.764 1.335
E(2)-E(1) (μeV) 21.3 238.9 399.4 3.4
E(3)-E(2) (μeV) 25.1 721.3 2668.6 20.8
E(4)-E(3) (μeV) 92.4 1017.6

SO coupling), there is strong configuration mixing between
these two �6 ⊗ �6 exciton combinations, resulting in six
lower-energy dark excitonic states and two upper bright states
(in-plane polarized, labeled as transition 4) as described in
Fig. 3(a).46

(2) At diameter D = 3.3 nm [Fig. 3(b)], the LUMO B1

state is transformed to �6, leading to �6 ⊗ �6 = A1 ⊕ A2 ⊕ E

excitonic states. The middle E state (labeled as transition 2) is
bright with in-plane polarization.

(3) At diameter D = 2.2 nm [Fig. 3(c)], the LUMO A1 state
becomes �7. When combined with the HOMO �6, it generates
the exciton combination B1 ⊕ B2 ⊕ E. The top B2 (labeled
as transition 3) and middle E state (labeled as transition
2) are bright with along-wire and in-plane polarization,
respectively.

The calculated energy of the ground excitonic state [the
lowest eigenvalue of Eq. (3)], EX are 1.182, 1.460, and 1.764
eV for D = 7.6 nm (B2 → E), 3.3 nm (B2 → B1), and 2.2 nm
(B2 → A1), respectively, as the E(1) listed in Table III. We fit
the size dependence of EX according to

EX = Ebulk
X + a

Dλ
, (12)

where Ebulk
X = 1.1552 eV,40 and D is the diameter, finding

a = 2.75 and λ = 1.90. As expected from quan-
tum confinement, the exciton binding energy (the en-
ergy difference between the quasiparticle band gap and
the ground-state excitonic energy) is significantly en-
hanced from bulk Si (∼15 meV) (Ref. 47) to Si wires,
giving 52 meV (at D = 7.6 nm), 85 meV (D =
3.3 nm), and 128 meV (D = 2.2 nm).

C. Low 10−3-eV energy scale: Bright/dark states vs
fine-structure splittings

The absorption spectra shown on the right-hand side of
Fig. 3 describe the bright/dark excitonic states caused by the
exchange interaction and the intervalley coupling. For narrow
wire of diameter D = 2.2 nm, the ground-state excitons
originate from the orbitally allowed B2 → A1 transition. The
lowest one (B1 symmetry) is dark (spin forbidden), and higher
states are spin allowed — the middle semibright state (E,
in-plane polarized) and the highest bright state (B2, along-wire
polarized). For medium wire of diameter D = 3.3 nm, the
orbitally forbidden B2 ⊗ B1 is lower in energy than the other
two orbitally allowed combinations B2 ⊗ A1 and B2 ⊗ E and
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FIG. 4. (Color online) Calculated excitonic-gap dependence of
the singlet-triplet splitting �ST (without including spin-orbit cou-
pling) in Si [001] and [011] wires, compared to GW + BSE results
(Ref. 30). The wire diameter value is marked onto individual data
point. For same-diameter points, we construct the same wire cross
section as Ref. 30 (not circular), while for larger diameter wires we
use the circular cross sections.

contributes to the ground-state excitons. In these excitons, the
lowest (A1) and highest (A2) states are spin forbidden and
only the middle one (E) is spin allowed. However, even this
spin-allowed state is generally dark, because it is orbitally
forbidden. At wide wire of diameter D = 7.6 nm, the bright
in-plane polarized peak (labeled as transition 4) comes from
the B2 → E transition, which gives two spin-allowed excitons
at the highest energy as mentioned. Also the exciton groups
corresponding to B2 → A1 and B2 → B1 (all dark states)
appear as ground-state excitons owing to the degeneracy of the
LUMO state. The absorption spectrum of D = 3.3 [Fig. 3(b)]
and 2.2 nm [Fig. 3(c)] also shows the excited excitonic states at
higher energies, which can be attributed to B2 → (A1/B1/E)
transitions.

The calculated exciton fine-structure splittings are listed
in Table III. These are quite distinct from the results on Si
quantum dots,32 due to different degeneracy and symmetry of
the LUMO and HOMO states. Figure 4 shows the excitonic-
gap dependence of the singlet-triplet splitting with no SO,
�ST , compared with previous GW+BSE results.30 The wire
diameter dependence of �ST is found to scale as 1/D2.3.
Previous GW+BSE calculations show much larger excitonic-
gap energies and exchange splittings than ours at the same
diameters, especially for the [001] wires. This could result
from a high hydrogen coverage (high H-to-Si ratio) in their
narrow wires: e.g., they used Si25H20 at D = 0.9 nm and
Si49H28 at D = 1.4 nm for [001] wires.29 The (cluster-
connected) [001] wires require more H than (linear-chain-like)
[011] wires,27 and thus their electronic and excitonic properties
are affected more by H passivation than those of [011] wires.
The Si-H bonding is known to modify Si enormously and
H passivation has been reported to result in much bigger
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band gaps than those with other passivations.48 In the present
work, the wire surfaces are passivated by generic large
band-gap materials, and much larger diameter wires can be
calculated.

We calculate the exciton decay time (τν) for the bright
excitonic states. At D = 3.3 nm, τν of the transition 2
[Fig. 3(b)] is 1963.7 μs, as expected from its low oscil-
lator strength since it is orbitally forbidden (though spin
allowed). At D = 2.2 nm, τν of transition 2 and transition 3
[Fig. 3(c)] are 77.2 and 1.6 μs. The long decay time is
consistent with pseudodirect band-gap character of Si nanos-
tructures and are reasonably within the range of experimentally
measured 1–103 μs.20,34

III. RESULTS FOR [011] WIRES

In [011] wires having the C2v point-group symmetry, two
of the six equivalent bulk valleys �X are projected to the
confinement plane, and thus at large diameters the LUMO
consists of only two degenerate states. In contrast to [001]
wires, both of them belong to the A1 representation, and
thus no symmetry change of the LUMO state occurs with
varying diameters. Figure 5 shows the single-particle states
and related optical transitions at D = 3.3 nm, and Table I
gives the symmetry analysis of dipole matrix elements. Despite
having the same symmetry, the two A1 electron states show
different wave functions. The HOMO has the B1 symmetry,
and thus all interband transitions (B1 → A1) have along-wire
polarization, P011 (Table I), as also confirmed by the calculated
optical absorptions in Fig. 5(b).

Figure 6 shows the excitonic structures generated from
the HOMO and LUMO state. The corresponding symmetry
analysis are given in Table II. The HOMO �5 (from B1)
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state and LUMO �5 (from A1) state produce the exciton
combination of A1 ⊕ A2 ⊕ B1 ⊕ B2. Among them the B1

is a bright state with along-wire polarization, and A1, B2

are also bright with in-plane polarization. However, in the
absorption spectra of Fig. 6 (right panel) we only can observe
the bright B1 exciton (labeled as transition 4) with the
along-wire polarization, as the semidark A1 (transition 2) and
B2 (transition 3) have two-order smaller oscillator strength.
The ground-state excitonic energy is 1.335 eV (Table III)
and the corresponding exciton binding energy is 66 meV.
Both are smaller than those of the same size [001] wire
due to weaker confinement. The fine-structure splittings for
the B1 → A

(1)
1 exciton group are listed in Table III. The

excitonic-gap dependence of exchange splitting �ST is shown
in Fig. 4. The diameter dependence of �ST scales as 1/D2.6,
i.e., with a larger scaling factor than that of [001] wires. The
calculated exciton decay time of the bright 4 state in Fig. 6 is
20.9 μs.

IV. EFFECTS OF DIELECTRIC MISMATCH

Because nanowires are usually surrounded by materials
with small dielectric constants (e.g., air, water, oxides, and
organics), we studied the effects of dielectric mismatch by

Radial direction
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0

Σ(
r)
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eV

)

ε
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ε
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 = 5.0

D

FIG. 7. (Color online) The numerically calculated surface-
polarization potential �(r) of a Si wire (D = 3.3 nm) is shown
along the radial direction, for two values of macroscopic dielectric
constant of the surrounding material (εout = 1.0, 5.0).
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sum �
pol
e1 + �

pol
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e1,h1 are shown as a function of εout for a [001]

wire of diameter D = 3.3 nm. The direct Coulomb interaction
(excluding surface-polarization effect) J dir

e1,h1 is shown as a solid
(horizontal) line for comparison.

using εin = 11.85 (Ref. 40) for the Si wire and εout =
1–5 for the surrounding material. The calculations are per-
formed for the [001] wire with diameter D = 3.3 nm.
Figure 7 shows calculated surface-polarization potential
�(r). There is a sharp transition from positive to nega-
tive value near the wire surface, and the transition smears
off with increasing εout. These are typical behaviors of
surface-polarization potentials, also consistent with analytic
expressions.28,49,50

The dielectric mismatch mainly contributes two opposite
terms to the exciton energies (optical band gap): the self-energy
of the electron and the hole, which tends to increase the band
gap, and the electron-hole Coulomb interaction, which tends to
decrease the band gap. Figure 8 shows the surface-polarization
contribution to the self-energy (�pol

e1 + �
pol
h1 ) and the Coulomb

interaction (−J
pol
e1,h1) as a function of εout. Both terms are

remarkably enhanced for small values of εout. The correction
from self-energy is significant: �pol

e1 + �
pol
h1 reaches ∼400 meV

at εout = 1, which agrees well with previous tight-binding
results.28 The enhancement of the exciton binding energy
is also pronounced, as demonstrated in Refs. 49 and 50,
e.g., J

pol
e1,h1 ∼ 250 meV for εout = 1, by comparison with

J dir
e1,h1 ∼ 60 meV. In three-dimensional quantum dots, it was

demonstrated that �
pol
e1 + �

pol
h1 and J

pol
e1,h1 tend to cancel each

other, and thus the surface polarization has a negligible effect
on the optical band gap.43 In Si wires, the cancellation is not
complete and the correction to the optical band gap is positive.
For other wires, negative (in CdSe)51 and zero (in PbSe)52

corrections were reported. The underlying mechanism is still
under investigation and might be related to the different band
structures and to the electron-to-hole effective-mass ratio.52

Interestingly, we do not observe substantial change of the
exchange interaction after including the dielectric mismatch,
at least in our perturbative approach. The corresponding value
of the exchange splitting, K

pol
e1,h1, is less than 1 μeV. This

demonstrates that the exchange interaction is predominantly
enhanced by spatial confinement, not by dielectric mismatch.
However, it should be mentioned that exciton localization
near the wire axis induced by enhanced exciton binding
(J pol) can lead to increased electron-hole exchange interaction.
Another consequence of dielectric mismatch is the local-field
effect, which leads to a strong suppression of lights polarized
perpendicular to the wire axis within the framework of classical
electromagnetic theory.53 The evaluation of these effect is
beyond the scope of this work.

V. SUMMARY

We have presented a detailed study of electronic and
excitonic properties on different energy scales for Si nanowires
along the [001] and [011] growth direction. In the high-
energy single-particle energy scale, we predict an interest-
ing electronic state crossover signaled by the switching of
symmetry of the LUMO state with wire diameter for [001]-
oriented wires (but not for [011]). This crossover leads to
the formation of distinct exciton groups at different diameter
regions in [001] wires. The orbitally forbidden low-energy
transitions in the medium-diameter region may result in a
large Stokes shift, which can be probed experimentally. This
result highlights the important role of intervalley coupling in
determining electronic and optical properties of indirect band-
gap nanomaterials. In the low-energy many-body excitonic
energy scale, we describe the excitonic states of Si wires
for different sizes and orientation, and provide a systematic
analysis of symmetry, polarization, and fine-structure splitting
of several excitonic lines. The size dependence of excitonic
band gap, exciton binding energy, and exciton lifetime are
calculated. The effects of dielectric mismatch on exciton
binding energy and exchange splitting are discussed. The
current study could be helpful for gaining insight into the
electronic and optical properties of Si nanowires toward future
optoelectronic applications.
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