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Abstract
The theoretical description of defects and impurities in semiconductors is
largely based on density functional theory (DFT) employing supercell models.
The literature discussion of uncertainties that limit the predictivity of this
approach has focused mostly on two issues: (1) finite-size effects, in particular
for charged defects; (2) the band-gap problem in local or semi-local DFT
approximations. We here describe how finite-size effects (1) in the formation
energy of charged defects can be accurately corrected in a simple way, i.e.
by potential alignment in conjunction with a scaling of the Madelung-like
screened first order correction term. The factor involved with this scaling
depends only on the dielectric constant and the shape of the supercell, and
quite accurately accounts for the full third order correction according to
Makov and Payne. We further discuss in some detail the background and
justification for this correction method, and also address the effect of the
ionic screening on the magnitude of the image charge energy. In regard to
(2) the band-gap problem, we discuss the merits of non-local external potentials
that are added to the DFT Hamiltonian and allow for an empirical band-gap
correction without significantly increasing the computational demand over that
of standard DFT calculations. In combination with LDA + U , these potentials
are further instrumental for the prediction of polaronic defects with localized
holes in anion-p orbitals, such as the metal-site acceptors in wide-gap oxide
semiconductors.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For the theoretical description of defects and impurities, the central quantity of interest is the
defect formation energy �HD, which determines, for example, the defect concentrations in
equilibrium [1–5], and the thermodynamic transition energies between the different possible
charge states of electrically active defects [6]. Notwithstanding the ground state formalism of
density functional theory (DFT), one can also determine optical excitation or recombination
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energies from �HD, as long as the transitions occur as a result of the exchange of electrons
with a distant reservoir, such as the band-edge states hosting the free carriers, or if the optically
excited state is the lowest energy state of a given symmetry [7]. Thus, the formation enthalpy
�HD is the most decisive quantity for the functionality of semiconducting materials in regard
to the presence and properties of defects or impurities. Within a supercell model, the formation
energy is calculated as

�HD,q(EF, µ) = [ED,q − EH] +
∑

α

nαµα + q · EF, (1)

where ED,q is the total energy of the supercell containing the defect in the charge state q and
EH is the respective supercell energy of the host without the defect. The chemical potentials
µα describe the energy of the atomic reservoir of the atoms α removed (nα = +1) or added
(nα = −1) to the host crystal when the defect is formed. For charged defects (q �= 0), the Fermi
energy EF describes the energy of the reservoir for the electrons, which is typically considered
to range between the valence band maximum (VBM) and the conduction band minimum
(CBM), except for conditions of extremely high doping, e.g. in transparent conducting oxides
[4], where EF can reach a few tenths of an electronvolt into the conduction band.

For the accurate calculation of �HD,q one needs to pay special attention to two different
types of uncertainties, i.e. those that arise due to finite-size effects within supercell models, and
those that arise due to inaccuracies in the underlying approximation for the energy functional.
Regarding finite-size effects (1), it has been recognized that the average potentials of the
charged defect calculation and that of the unperturbed host need to be aligned [3, 8], and that
corrections are needed to account for the electrostatic interaction of the periodic images of
the charged defects. Leslie and Gillian [9] suggested using the screened Madelung-energy
of point charges compensated by a background to correct the image interaction. Makov and
Payne [10] later extended this picture by introducing a third order term accounting for the
interaction of the delocalized part of the defect-induced charge with the screened point-charge
potential of the images. However, numerous applications over the past decade have drawn
a mixed picture about the appropriateness of such corrections [11–24]. Only recently, were
we able to demonstrate [25] by calculation of large supercells up to 1728 atoms that a very
good convergence can be obtained when the third order image charge correction is combined
with a potential alignment procedure, and when finite-size effects that are not related to the
presence of a net charge are excluded or addressed separately. Note also that in a recent work
of Freysoldt et al [26], very good convergence has been achieved as well with a method that
does not utilize the expansion of Makov and Payne [10], but instead calculates the respective
interaction energies from the calculated charge densities and the electrostatic potentials of the
defect and of a reference (e.g., pure host) supercell.

In this work, we discuss in more detail than before the background and the justification for
the potential alignment and the image charge corrections, and address the issue of electronic
versus ionic screening for the image charge interaction.

Regarding the errors associated with the functional (2), a lot of attention has been paid
to the ‘band-gap problem’ occurring in calculations of semiconductors and insulators based
on the local density or generalized gradient approximation (LDA or GGA). In general, defect
formation energies are affected by the band-gap problem in two ways. First, defect states
may occur outside the band gap as resonances within the continuum of host states, whereas
after opening of the band gap they should occur inside the gap. As a result of the incorrect
placement of the defect level relative to the host band, electron-occupied defect states can
incorrectly spill the electron into the conduction band [27], or hole defects can incorrectly spill
the hole into the valence band. In this case, even the calculated charge density is incorrect
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leading to an uncontrolled error in �HD. Second, in the case of charged defects, �HD,q

depends linearly on the Fermi level (see equation (1)), which is bounded by the band-edge
energies. When the band gap is changed, the range of formation energies between EF = EVBM

and EF = ECBM changes accordingly. In order to cope with the band-gap problem for defect
calculations, numerous methods and schemes of band-gap corrections for defect calculations
have been proposed [6, 18, 22, 25, 28–34]. We also note that beyond the band-gap problem
per se, the underlying approximation of the DFT functional may of course also affect the
defect states directly, e.g. leading to a qualitatively wrong description of localized hole states
in compound semiconductors [35–39]. Furthermore, the chemical potentials µα that enter the
expression for the formation energy in equation (1) are bounded by the respective elemental
phases of the atoms α. Here, the incomplete error cancellation between the total energies of
the semiconductor compound and that of the elemental phases in general affects the defect
formation energies. Improved bounds for the chemical potentials can be obtained through the
optimized elemental reference energies of [40].

For the purpose of band-gap corrected defect calculation, much effort has recently been
focused on post-LDA methods such as hybrid DFT [21, 24, 41–44], the related screened
exchange (sX) method [45], GW [44, 46–48] or quantum Monte Carlo [49]. Common to
these methods is that they are computationally much more demanding than standard DFT
calculations. Also, hybrid DFT does not necessarily yield very accurate defect levels when
the parameters are adjusted so as to match the experimental band gap [50]. Thus, there
exists a desire for self-consistently band-gap corrected methods that are not significantly more
expensive than standard LDA. For example, an empirical correction for the band gap can
be achieved using parametrized potentials that are added to the DFT Hamiltonian [51, 52].
A similar band-gap opening effect is obtained by the LDA + U method, when applied not
only to cation-d states, but also to cation-s or anion-s states [23, 25, 33, 53], or by an atomic-
orbital based variant [32, 54] of the self-interaction correction (SIC) [55]. In order to achieve a
flexible means for empirical adjustment of the band structure, we recently [27] introduced non-
local external potentials (NLEP) whose implementation is similar to the respective LDA + U

potentials, but which do not depend on the orbital occupation. Here, we describe more details
of this method and discuss possible extensions.

2. Finite-size effects due to charged defects

2.1. The need for potential alignment

When periodic boundary conditions are applied, the total energy of a system with a net charge
is ill-defined due to the divergence of the electrostatic potential. Depending on the particular
implementation of the energy expression, e.g. that of [56] for pseudopotential methods, the
calculated total energy E follows Janak’s theorem

dE(ni)

dni

= ei, (2)

upon variation of the occupation number ni of the highest occupied state i with the eigenvalue
ei . In particular, the energy of a hole at the VBM in a unit of a semiconductor host (H) with
N electrons is then obtained as

lim
N→∞

[EH(N) − EH(N − 1)] = eVBM, (3)

i.e. the hole energy equals the eigenvalue of the VBM in the limit of a infinite system (in practice,
this result can be calculated within a small unit cell and fractional charges [34]). Thus, the
eigenvalue eVBM can be used as the reference energy for the electron reservoir in equation (1),
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i.e. EF = eVBM + �EF, where �EF denotes the position of the Fermi level within the
semiconductor band gap (0 < �EF < Eg).

Since the (otherwise divergent) average electrostatic (el) potential within the cell is
conventionally set to zero within the pseudopotential momentum-space formalism [56], i.e.
Vel(G = 0) = 0, the eigenvalues are defined only up to an undetermined constant. Whereas the
total energy of a charge-neutral system is a well-defined quantity [56], the ‘charged energies’
depend on the same undetermined constant as the eigenvalues, which can be seen from
equations (2) and (3). While the omission of the G = 0 term of the Fourier expansion is
often described as in effect introducing a compensating background charge, it is important
to note that the charge compensation occurs only in the potential, but a background charge
density is usually not explicitly introduced into the calculation. Note that if a compensating
charge density were introduced, the resulting overall charge-neutral system should have a well-
defined total energy and not depend on the undetermined constant [25]. While the energy of the
‘charged cell + background density’ in principle can be calculated, it is usually not desirable
to have the interaction energy of the background with all N electrons and Z ionic charges
included in the total energy.

In order to obtain a physically meaningful formation energy �HD,q without explicitly
introducing the interaction with a background density, one can use the total energy calculated
with the usual energy expression [56] for which equation (2) holds, and then correct for the
undetermined offset by ensuring that the undetermined constants in ED,q and in eVBM are
consistent. That is, one needs to restore the relative positions of the average potential in the
calculations of the defect (affecting ED,q) and the pure host (affecting eVBM). This is achieved
by means of a ‘potential alignment’ (pa) correction that is added to the formation energy:

�Epa(D, q) = q · �Vpa, (4)

where �Vpa is the potential alignment between the defect and the host calculation, respectively.
For practical calculations we use as reference potentials the atomic-site electrostatic potentials
V α

D
1, serving as ‘potential markers’. The potential alignment �Vpa = (V α

D − V α
H ) is then

determined as the average difference between V α
D,q in the defect supercell and the respective

V α
H in the pure host. The immediate neighbors of the defect are excluded from averaging, since

their atomic potentials can be affected by the chemical interaction with the defect. For the case
of the As vacancy V 3+

As in GaAs, which we used in [25] as a test case to study finite-size effects,
figure 1 shows the potential difference V α

D,q(r) − V α
H (r) as a function of the distance r from

the defect. If the supercell is large enough (e.g., 1000 atoms in figure 1(a)), the atomic-site
potentials clearly reflect the shape of the long-ranged screened electrostatic potential due to
the charged defect (and its images).

2.2. Correction of image charge interactions

The leading (first order) correction term for the electrostatic interaction energy between
the images (i) of charged supercells is the screened Madelung-like lattice energy of point
charges [9],

�E1
i = q2αM

2εL
, (5)

where L = �−1/3 is the linear supercell dimension (supercell volume �), ε is the dielectric
constant and αM is the appropriate Madelung constant for the respective supercell geometry.

1 The atomic-site potentials V α
D,q are determined as the average electrostatic potential in a small sphere around an

atom [57].
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Figure 1. The difference in the atomic-site potentials VGa and VAs between a supercell containing a
vacancy V 3+

As and the defect-free host, shown for 1000 atom supercell (a) and a 64 atom supercell (b).

Addressing primarily the case of molecules in vacuum (ε = 1), Makov and Payne derived
an expression for a third order correction term by decomposing the total charge into a point
charge plus an extended (e), net neutral density ρe(r). In this case, the energy correction
due to the energy of ρe(r) in the potential of the point-charge images (quadrupole–monopole
interaction) is

�E3
i = 2πqQr

3εL3
, (6)

where

Qr =
∫

�

d3rρe (r) r2 (7)

is the second radial moment of the extended charge density. Since, for the case of molecules
in vacuum, ρe(r) is confined within the supercell, the interaction energy between ρe(r) and
its images (without the point-charge contribution) scales as O(L−5) and is neglected.

When translating these results for molecules in vacuum to the case of defects in solids
(ε � 1), the defect-induced electronic charge density, �ρD(r) = ρD(r)−ρH(r) (ρD =charge
density in the defect supercell; ρH = density in the unperturbed host supercell) takes the place
of the extended density ρe(r) in equation (7), and the total energy correction �Ei = �E1

i +�E3
i

is calculated as the sum of the first and third order terms, equations (5) and (6), respectively.
In [25], we demonstrated for a number of defects in GaAs that the image charge correction
calculated in this way, in conjunction with the potential alignment (see above), provides for
excellent convergence of the �HD,q with respect to the supercell size, being well converged
already for typical cell sizes of 64 atoms. The results for the triply charged As vacancy
V 3+

As in the zinc-blende lattice of GaAs are shown in figure 2, where the atomic relaxation
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Figure 2. The formation energy �H of the V3+
As defect in GaAs (EF = EV, As-rich conditions) as

a function of the inverse linear supercell dimension 1/L = �−1/3 (� = supercell volume, �0 =
volume of the 2 atom GaAs unit cell). (Modified from [25].)

was constrained so as to exclude finite-size effects originating from elastic energies [25].
Less satisfying convergence was observed only for the face-centered cubic (FCC) supercell
symmetries (e.g., 16, 54, 128 atoms), which was attributed to the fact that in these geometries,
the defects are aligned along the (1 1 0) zig-zag chains, which promote strong direct defect–
defect interactions. Consequently, these supercells are generally not recommended for defect
calculations.

While the image charge correction according to equations (5)–(7) proved very successful,
there exist a few conceptional issues regarding the application in semiconductors, which we
address now. First, in their original paper, Makov and Payne surmised that the density entering
the integration of Qr (see equation (7)) should contain only that part of �ρD(r) that does not
arise from electronic screening. However, we found in [25] that Qr is actually dominated by
contribution to �ρD(r) arising from the screening response upon introduction of a charged
defect into the semiconductor host. Excluding this part would greatly reduce the magnitude
of �E3

i and significantly worsen the convergence behavior. Second, since the defect density
�ρD(r) is largely due to the screening response of the host, it is not confined within the
supercell, but extends toward the space between the images. Thus, superficially, it seems
unjustified to neglect the interaction energy between the extended densities �ρD(r), i.e. the
quadrupole–quadrupole interaction as was done in the case of confined density ρe(r) for
molecules in vacuum.

In order to resolve these apparent conceptional conflicts, we now discuss in more detail
the image charge interactions in the presence of a dielectric medium: The total (electron + ion)
charge density in the defect supercell, can be written as ρ tot

H (r) + �ρp(r) + �ρD(r), where
�ρp(r) is the point-charge-like contribution due to the ionic substitution, which is assumed
here to include also a compensating background. The image charge correction is the difference
between the electrostatic interaction energy of the supercell with an environment (env) of
unperturbed host supercells minus the interaction energy of the supercell with an environment
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Figure 3. Schematic illustration of a defect supercell (�) in an environment (env) of periodic
images (left) or in an environment of host cells (right).

of identical defect supercells (see figure 3):

�Ei = −
∫

�

dr3(ρ tot
H (r) + �ρp(r) + �ρD(r))

∫
env

dr ′3 �ρp(r
′) + �ρD(r′)

|r − r′| . (8)

Under the approximation that the supercell is large enough so that each unit cell of the pure
host appears as a neutral object on the scale of the supercell (despite being modulated within a
unit cell), we can neglect the interaction energy of ρ tot

H (r) with the total defect-induced density
[�ρp(r

′) + �ρD(r′)] in the image supercells. Thus, excluding the term involving ρ tot
H (r), we

can express equation (8) as the sum of interactions between the subsystems ρp and ρD:

�Ei = −(Ep,p + Ep,D + ED,D). (9)

At this point we observe that (i) so far no screening has been invoked and (ii) equation (9)
contains the quadrupole–quadrupole term ED,D which cannot be neglected because the density
�ρD(r) is not confined within the supercell. However, considering that �ρD(r) essentially
reflects the screening response of the host upon introduction of the charged defect [25], we can
interpret the integral over the volume ‘env’ in equation (8) as the screened potential V env

scr (r)

created by the point charges in the supercell images and their compensating background:

�Ei = −
∫

�

dr3(�ρp(r) + �ρD(r))V env
scr (r). (10)

The interaction energy between screened point-charge potential V env
scr (r) with �ρp(r) and with

�ρD(r) corresponds to the first and third order terms, equations (5) and (6), respectively, when
the screening response of the host is included in �ρD(r). Thus, comparing equation (10) with
equation (9), we see that after electronic screening is accounted for, the quadrupole–quadrupole
does not enter anymore. It is therefore justified to truncate the expansion beyond the third order
term despite the fact that the delocalized part of the defect-induced charge extends up to the
border of the supercell.

Regarding the role of the compensating background, we again note that the total energy
does not include the (undesired) electrostatic interaction of the background with the full
electron+ion system (∼N charges), since the background is not explicitly included in the
charge density of the supercell (see above). Rather, as seen from equation (8) after dropping
the term with ρ tot

H , the only interaction energy involving the background is that between
the background and the defect-induced charge (∼q charges) in the surrounding supercells.
This artificial interaction energy is corrected for by the image charge interaction according to
equations (5) and (6).
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Table 1. The factors csh for the simplified expression, equation (11) of the image charge correction,
given for the supercell geometries SC, FCC, BCC, HCP and a 3×3×2 multiple of the ideal HCP cell.

Supercell geometry csh

SC −0.369
FCC −0.343
BCC −0.342
HCP −0.478
HCP (3 × 3 × 2) −0.365

2.3. Simplified expression for the image charge correction

The observation that the delocalized part of the defect-induced density, �ρD(r), is dominated
by the screening response of the host has the important consequence that the second radial
moment Qr entering the third order correction term, equation (6), is proportional to q and to
L2, such that the �E3

i scales effectively as ∝ q2/L instead of the nominal ∝q/L3 scaling
implied by equation (6). Thus, the full first plus third order image charge correction �Ei

can be accounted for by a simple scaling of the first order Madelung-like term [25]. We now
use this finding to give a simplified expression for �Ei. Considering that the electronic
charge that accumulates close to the defect due to dielectric screening is drawn more or
less homogeneously from the entire supercell [25], the defect-induced charge density is
approximately �ρD(r > lscr) ≈ 1

�
q(1 − ε−1) for distances r from the defect that are larger

than the screening length lscr, i.e. at those distances that dominate the integration of Qr (due
to the r2 factor in the integrand of equation (7)). Thus, we can express the full image charge
correction approximately by the first order correction �E1

i , equation (5), times a factor that
depends only on the dielectric constant ε and on the shape (sh) of the supercell:

�Ei = [1 + csh(1 − ε−1)]�E1
i . (11)

The shape factors csh can easily be calculated using equations (5)–(7), by performing the
integration in equation (7) over the Wigner–Seitz cell with a constant charge density. In table 1,
we give the numerical values of csh for simple cubic (SC), face-centered cubic (FCC), body-
centered cubic (BCC), hexagonal close packed (HCP) cells and for a 3 × 3 × 2 HCP supercell.
For the cubic supercells, the values of csh are close to −1/3. The ideal HCP geometry has a
larger csh (absolute value) which is due to its rather anisotropic shape (aspect ratio). The more
isotropic 3 × 3 × 2 supercell, as used below for defect calculations in wurtzite ZnO, however,
has a value of csh similar to the cubic geometries. Thus, we see that equation (11) reduces to
�Ei ≈ 2/3�E1

i if two conditions are fulfilled, i.e. (i) the dielectric constant is sufficiently large
(ε � 1) and (ii) the supercell is approximately isotropic. This explains the earlier empirical
observation that �Ei ≈ 2/3�E1

i when the third order term was calculated from the actual
defect-induced density �ρD determined from the self-consistent defect calculation [32].

2.4. The role of ionic screening

In order to examine the scaling behavior of the electrostatic interactions, some previous
works [20, 25, 26] have used a constrained relaxation (e.g., only nearest neighbors [25]), so
as to eliminate the effect of elastic energies from the finite-size scaling. In this situation, the
interaction between the charged defect and its images is only electronically screened, i.e. one
would use the static electronic (e) dielectric constant ε = εe to determine the image charge
correction in equations (5), (6) and (11). In practical applications, however, one is generally
interested in the defect properties including full relaxation. In this situation, ionic screening
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Figure 4. Finite-size scaling of �H for the V2+
O defect in ZnO (EF = EV, O-rich) in GGA,

calculated with constrained atomic relaxation (diamonds) and with full relaxation (circles). The
image charge correction is determined using ε∞ = 5.0 or ε0 = 10.3.

also contributes to the screening of the image charge energy, so that the total (electronic+ionic),
i.e. the low-frequency dielectric constant ε = ε0 is appropriate, proposed that the supercell
dimension is sufficiently large compared with the effective screening length.

Using 72, 192 and 576 atom supercells of the wurtzite lattice, we show in figure 4 the
finite-size scaling of V 2+

O in ZnO, where there exists a larger difference between ε0 and εe

than, e.g., in GaAs. We determine here εe = 5.0 from a calculation with a periodically
modulated external field, in agreement with previous calculations based on density functional
perturbation theory [58, 59], and we use ε0 = 10.3 from [58]. In a calculation with constrained
atomic relaxation, as determined for the nearest and next nearest neighbor shells in the 72
atom cell, we find that finite size effects are very well eliminated if we apply the image
charge correction according to equation (11) (with respective factors csh for the actual cell
geometries), and if we use the electronic dielectric constant ε = εe (figure 4). Similarly,
converged formation energies for the fully relaxed situation are obtained, if we instead use the
low-frequency dielectric constant ε = ε0. The difference, �Erel = −0.94 eV, accounts for
the (elastic) relaxation energy when atomic relaxation beyond the second shell is taken into
account. For illustration, we further show in figure 4 the formation energies for the fully relaxed
supercell, but using εe (only electronic screening). In this case, considerable finite-size effects
remain, and we emphasize that the apparent relaxation energy, obtained without considering
the reduction of the image charge energy due to ionic screening, is considerably smaller than
the true relaxation energy, in particular for small cells, e.g. the apparent relaxation energy is
only �Erel = −0.18 eV in the 72 atom cell (see figure 4). Thus, in general, it is important
to account for the ionic contribution to the screening when determining the magnitude of the
image charge correction.

3. Correction of the band-gap problem

3.1. The aim of self-consistent band-gap correction

Ever since the first predictions of defects in semiconductors within the LDA [6, 60], the
‘band-gap problem’ pervasively troubled the literature on the theoretical prediction of defect
properties, and a range of band-gap correction methods emerged, many of which apply energy
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corrections to the defect formation energy but still rely on the self-consistent LDA defect
calculation [6, 18, 22, 25]. In many cases, however, the very small band gap leads to a spurious
hybridization between the defect states and the host bands, leading to a qualitatively wrong
description of the defect state [27]. In these cases, the gap correction within the self-consistent
calculation is indispensable. In order to correct the band structure of the semiconductor host
within the self-consistent calculation, Christensen [51] introduced additional potentials, which
were empirically adjusted to match the experimental band structure. In a similar spirit, the
LDA +U method [61–64], which is typically used to improve the LDA description of cation-d
states, was applied for band-gap corrected defect calculations, where it acts to open the band
gap when using negative values for U on anion-s states [33, 53], or very large positive values
for U on cation-s states [23, 25]. Self-consistently band-gap corrected defect calculations
have also been performed [65] on the basis of SIC [55] in a simplified implementation [32, 54]
that, similar to LDA + U , employs atomic projections. Recently, hybrid-DFT calculations
which mitigate the band-gap problem by a mixing of the density functional and Hartree–
Fock exchanges became quite popular for defect calculations [21, 24, 41–45], although they
are computationally still much more demanding than standard DFT calculations. Based on
perturbation theory arguments, Perdew et al [66] suggested a parameter of 25% for the uniform
mixing of the exact exchange for typical molecules, which, by extension, is also often preferred
for solids. On the other hand, in practical applications of hybrid DFT to semiconductors or
insulators, the mixing parameter is often also empirically chosen to match the experimental
band gap [24, 67]. The uncertainties arising from the question how to mix the exact and the
GGA exchange are avoided in GW, which, however, for the purpose of defect calculations is so
far only feasible for determining the quasi-particle energies [44, 46], but not for self-consistent
total-energy calculation.

3.2. Empirical NLEP

Given that fully parameter-free and accurate post-LDA methods such as GW or quantum
Monte Carlo [49] remain very demanding for defect systems which typically require a system
size on the order of 100 atoms, an alternative route is to devise computationally effective
parametrized functionals that can be employed for very large systems or for a very large number
of calculations, once the parameters have been fitted to high-accuracy reference calculations,
or to experiment. In this vein, non-self-consistent (semi-) empirical pseudopotentials [68] can
be applied to large scale problems such as quantum dots and nanostructures without the band
gap problem [69]. In order to achieve a self-consistent band-gap correction that can be applied
to defects, including different charge states and atomic relaxation, we recently introduced
NLEP, which are parameterized in the atom type α and the angular momentum l [27]. The
implementation of these potentials into the projector-augmented wave (PAW) method [70, 71]
employs the PAW projectors pi and the all electron partial waves φAE

i which depend on an
index i that comprises the atomic site α, the angular momentum numbers l, m and an index
k for the reference energy used to determine the partial waves φAE

i [71]. Thus, the functional
form of the NLEP potential is analogous to the LDA + U potential [72]:

V̂ NLEP
α,l =

∑
i,j

|pi〉〈φAE
i |V NLEP

α,l |φAE
j 〉〈pj |, (12)

but contrary to LDA + U , the potential strength parameters V NLEP
α,l are free parameters that do

not depend on the orbital occupancies. In equation (12), the sum runs only over those iandj

that contain the atom type α and angular momentum l for the specified NLEP potential.
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A further difference between NLEP and LDA+U is that the total-energy contribution due to
the NLEP potential is not derived from a model for the electron–electron interaction. Whereas
LDA + U is derived from a (screened) Hartree–Fock-like interaction [61, 62], the NLEP are
treated as simple external potentials. Since, the interaction energy between the electrons and
an external potential is contained in the sum of occupied eigenvalues, no additional terms for
the total energy are needed. For example, we used in [27, 73] the NLEP method to predict
the defect levels of transition metals in ZnO and In2O3, where the main contribution to the
band-gap correction comes from the repulsive NLEP potential for cation-s states. According
to equation (12), e.g. the NLEP potential V NLEP

Zn-s leads to an energy contribution ENLEP
Zn-s in the

sum over the occupied eigenvalues en of the corresponding Kohn–Sham orbitals ψn:

ENLEP
Zn-s = V NLEP

Zn-s
∑

n=occ.

∑
i,j

〈ψn|pi〉〈φAE
i |φAE

j 〉〈pj |ψn〉, (13)

which equals simply the potential strength times the Zn-s partial charge nZn-s :

ENLEP
Zn-s = V NLEP

Zn-s nZn-s . (14)

In order to achieve an optimal overall description of the band structure and structural properties,
we used in [27, 73] not only NLEP potentials for Zn-s, but also for Zn-p and for O-s/p. A
drawback of the NLEP method is that the static NLEP potentials act to change the charge
density in an unphysical way. For example, while the repulsive V NLEP

Zn-s potential increases the
band gap in ZnO by shifting the Zn-s-like conduction band states to a higher energy, it also
acts to reduce the Zn-s partial charge that exists due to the partially covalent character of the
Zn–O bonds. Thus, the band-gap correction by NLEP renders ZnO more ionic than in LDA
or GGA, which is probably unphysical. While we confirmed for the cases studied in [27, 73]
by variation of the NLEP parameters that the reduction of the Zn-s partial charge does not
significantly affect the predicted defect levels of the transition metals, one would in general
like to achieve the band-gap correction without adverse effects on the charge density. Possible
extensions of the NLEP potentials, e.g. by including the dependence on the energy parameter k

in the NLEP parameters, V NLEP
α,l,k , are expected to accomplish this [74].

Apart from the empirical band-gap correction, the NLEP potentials proved useful for the
prediction of polaronic hole states in oxides [37, 39], such as the acceptor states introduced
by LiZn or the cation vacancy VZn in ZnO, and the metal-site acceptors in other oxides such
as In2O3 and SnO2. While it is generally known that such localized hole states are incorrectly
described in standard DFT functionals as rather delocalized states that spread over all oxygen
ligands [35–39], the quantitative prediction of the acceptor states remains challenging. For
example, the LDA + U potential, e.g. in the form of [64],

V U
m,σ = U eff( 1

2 − nm,σ ), (15)

qualitatively restores the correct localization of the acceptor state of AlSi in SiO2 on just one O
ligand when it is applied on O-p states [37]. However, it simultaneously distorts the underlying
host band structure in a rather uncontrolled way, because the O-p partial charge nO−p depends
sensitively on the integration radius used for LDA+U [38]. In order to avoid such ambiguities,
we introduced in [38] a hole-state potential of the form

Vhs = λhs(1 − nm,σ /nhost), (16)

where nhost is the O-p partial charge of the unperturbed (defect-free) oxide host and λhs is a
potential strength parameter. The specific form, equation (16), of the hole-state potential can
be easily constructed by the combination of the NLEP and LDA + U potentials, using

U eff
O−p = λhs/nhost (17)
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and

V NLEP
O−p = λhs(1 − 0.5/nhost), (18)

and it ensures that the underlying host band structure is not affected [38], in contrast to
LDA + U . Further, the strength parameter λhs is determined by the fundamental requirement
that the energy must be a piecewise linear function of the (fractional) number of electrons
between integers [75–77]. Using this condition, the correction of the localized acceptor state
(without band-gap correction) and the restoration of the correct splitting between occupied
and unoccupied anion-p sublevels can be achieved fully non-empirically. Applying the hole-
state correction in [35] to the metal-site acceptors in ZnO, In2O3 and SnO2, we obtained much
deeper acceptor levels than in standard LDA or GGA calculations, which curbs the expectations
to achieve p-type doping by acceptor-like point defects in wide-gap oxide semiconductors.
Studying the behavior of Zn vacancies in the series of Zn chalcogenides (ZnO, ZnS, ZnSe,
ZnTe), we further demonstrated in [39] that the metallic-type band structure predicted in GGA
for the host + vacancy system changes into an insulating-type akin to the situation in a Mott
insulator, when the correct linear behavior of the energy as a function of the electron number
is restored. Thus, quite unexpectedly, electronic correlation effects beyond LDA or GGA that
cause such a transition from metallic to insulating behavior exist not only in anion-p shells of
first row elements, such as oxygen, but also in much heavier anions such as Te. The qualitative
change of the electronic structure of the vacancy defects has important consequences for the
so-called d0 magnetism [78]. Corroborating the conclusions of Droghetti et al [79] based SIC,
we found in [39] that the magnetic interaction between VZn vacancies is impeded when the
localization of the holes is correctly described.

4. Conclusions

Finite-size effects due to charged defects in supercell calculations can be corrected by
considering potential alignment and image charge corrections simultaneously. The expansion
up to third order in the inverse linear supercell dimension, as suggested by Makov and Payne,
provides a very accurate correction of the image charge energy if the full defect-induced density,
including the contribution from dielectric screening, is considered for the calculation of the
third order term. We further provided a justification for the truncation of the expansion after
the third order term, despite the fact that the defect-induced density is not confined within the
supercell. Based on the observation that the defect-induced density is actually dominated by
the screening response of the host, we suggest a simple but accurate approximation of the full
third order image charge correction, being expressed as the respective first order term times a
factor that depends only on the shape of the supercell and the dielectric constant. We further
demonstrated that the low-frequency dielectric constant determines the magnitude of the image
charge correction if atoms within the entire supercell are allowed to relax, whereas the ion-
clamped (electronic-only) dielectric constant is more appropriate if the atomic relaxation is
restricted to a small volume around the defect.

With respect to the band-gap problem, we highlighted the desire for self-consistently
band-gap corrected methods whose demand in computational resources does not significantly
exceed that of standard DFT calculations. For this purpose, we described the addition of
the NLEP to the DFT Hamiltonian, which carries the prospect of combining the benefits of
empirical pseudopotentials and self-consistent DFT calculations. Apart from the application
for band-gap correction, we have used these NLEP potentials also in combination with LDA+U

to define a ‘hole-state potential’ for polaronic, localized anion-p holes which are otherwise
incorrectly described in standard DFT functionals. The correct description of the localization
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of the anion-p hole and of the energy splitting between occupied and unoccupied sublevels has
quite important ramifications for acceptor doping of wide-gap oxide semiconductors and for
the prospects of d0 magnetism.
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