
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 128.138.65.115

This content was downloaded on 14/07/2015 at 17:13

Please note that terms and conditions apply.

Long- and short-range electron–hole exchange interaction in different types of quantum dots

View the table of contents for this issue, or go to the journal homepage for more

2009 New J. Phys. 11 123024

(http://iopscience.iop.org/1367-2630/11/12/123024)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/11/12
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Long- and short-range electron–hole exchange
interaction in different types of quantum dots

Jun-Wei Luo1, Gabriel Bester2,3 and Alex Zunger1

1 National Renewable Energy Laboratory, Golden, CO 80401, USA
2 Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
E-mail: g.bester@fkf.mpg.de

New Journal of Physics 11 (2009) 123024 (12pp)
Received 2 October 2009
Published 21 December 2009
Online at http://www.njp.org/
doi:10.1088/1367-2630/11/12/123024

Abstract. The electron–hole (e–h) exchange interaction leads to the splitting
of the exciton into a pair of bright and a pair of dark states. This bright–dark—or
singlet–triplet—exciton splitting was historically calculated as the sum of a long-
range (LR) and a short-range (SR) component. Using a numerical atomistic
approach, we are able to calculate the exchange integrals as a function of the e–h
range of interaction S, revealing the ‘internal’ structure of the integrals. We apply
this procedure to thickness-fluctuation GaAs/AlGaAs quantum dots (QDs), self-
assembled InAs/GaAs QDs and colloidal InAs QDs. We find a heterogeneous
situation, where the SR component contributes ∼10, ∼20–30 and ∼20–50%
to the total e–h exchange splitting, which is in the range of 10, 100 and 10 000
µeV, for the three types of QDs, respectively. The balance between SR and LR is
found to depend critically on the size, shape and type of structure. For all types of
QDs we find, surprisingly, a range of interaction, close to the physical dimension
of the structures, contributing to a reduction of the integral’s magnitude. These
results highlight the complexity of the exchange interaction, warning against
simplified models, and establish the basic features of the nature and origin of
dark–bright excitonic splitting in QDs.
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1. Introduction

Electron–hole (e–h) interactions in semiconductor quantum dots (QDs) are manifested by a
direct Coulomb part, constituting the ‘excitonic-binding energies’ (typically 0.01–0.5 eV) [1], as
well as a Coulomb exchange interaction, constituting the ‘dark–bright splitting’, 1X (typically
0.000 01–0.005 eV) [2]–[4]. The latter interaction—due to the coupling of electron with hole
spins—is important for many applications of QDs utilizing the spin degree of freedom in an
optical setting [5]. The calculation of this effect is intrinsically difficult because it requires
a microscopic treatment. Indeed, an e–h exchange coupling is a consequence of the non-
orthogonality of the electron and hole Bloch functions within the crystal unit cell, and must be
calculated using an atomistic description for nanostructures containing thousands to hundreds
of thousands of atoms.

In model Hamiltonian approaches based on the effective-mass approximation (EMA), the
e–h exchange interaction is calculated by a separation of the integral into a short-range (SR)
and a long-range (LR) part [6]. This procedure, with its underlying approximations, can lead
to analytic expressions for the LR and SR contributions [7]–[9]. For instance, in a zinc-blende
spherical nanocrystal of radius R, with Td-point group symmetry, for an exciton derived from a
06 electron state and a 07 hole state, under the assumption that R is significantly smaller than
the Bohr radius, R � aB, the exciton splitting 1EMA

X can be written as [9]

1EMA
X = πC

(
1
(b)
X +

1

3
h̄ω(b)LT

) (aB

R

)3
, (1)

where C = 0.672, 1(b)
X is the bulk exchange splitting and h̄ω(b)LT is the longitudinal-transverse

splitting of the bulk exciton. Variations in shape, crystal structure, material, or in the type of
exciton addressed (a 07 hole state, as assumed above, may be the ground state hole in CuCl,
but not in conventional III–V semiconductors) lead to different expressions for equation (1), or
prohibit an analytic treatment altogether. Furthermore, the separation into an LR and SR part is
only valid for large crystallites and can be questioned for colloidal structures of typically few nm
diameter or epitaxial structures with heights of typically 2–5 nm. The fact that the experimental
situation is more complex than is usually assumed in the derivation of analytic solutions
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(e.g. equation (1)) becomes obvious from the size dependence of 1X . For InP [11] and
InAs [12], a dependence of 1X ∝ R−2 was found experimentally in contrast to the 1X ∝

R−3 dependence of equation (1). Furthermore, recent experiments on CdSe nanocrystals [10]
highlight the discrepancy between exciton models such as that in equation (1) and experiments
that call for a more comprehensive theory.

In this work, we wish to establish a description of the e–h exchange bright–dark splitting
in QDs that reveals the relative importance of SR and LR effects and their dependence on
size, shape and type of structure. This approach will be applied to the three leading forms
of semiconductor QDs, with their attendant shapes, compositions and geometries; namely,
(i) self-assembled QDs (e.g. InAs in GaAs), (ii) thickness fluctuation QDs (TFQDs, e.g. GaAs
in AlGaAs) and (iii) colloidal QDs (e.g. InAs in chemical colloidal suspensions). To this end, we
will use an atomistic approach to directly calculate the value of the e–h exchange energies [3, 13]
and analyze the results as a function of the range of interaction included in the calculation of
the integrals. We find for all three different types of dots a significant contribution from LR
interactions. We also find a surprising non-monotonic behavior of the exchange interaction with
increasing e–h interaction radius that we explain by an interface effect. This analysis establishes
the basic features of the nature and origin of dark–bright excitonic splitting in QDs.

2. Symmetry analysis of exciton states in three prototypical quantum dots (QDs)

1. Self-assembled (Stranski-Krastanov (SK)) QDs are grown epitaxially under strain
conditions leading to island (dot) formation [14]. The QDs are strained, embedded in
a (usually) smaller lattice constant material such as InGaAs in GaAs, and have a shape
resembling a lens or truncated cone.

2. TFQDs are created by a monolayer fluctuation in the width of a quantum well. In our case
(and most experimental cases), the TFQDs are given by the one monolayer fluctuation of a
nominally 10-monolayer thick GaAs/Al0.3Ga0.7As quantum well. The lateral dimension of
the TFQD (region where the well is 11-monolayer thick) spans a rectangle with dimensions
a × b, where a and b will be varied between 200 and 400 Å (for more details on this system,
see [15]).

3. Spherical (colloidal) InAs QDs are precipitates in chemical solutions. We use a spherical
overall shape with radii varying between 10 and 35 Å. The surface passivation is performed
using an artificial high band gap material surrounding the structure. This approach has been
used previously in [16].

In figure 1, we show the exciton splittings expected from group theoretical arguments for the
three different prototypes of QDs introduced previously. The symmetry analysis summarized
in figure 1(a) shows the results for TFQDs and SK QDs in black and red lines, respectively.
The situation for spherical zinc-blende colloidal QDs is shown in figure 1(b). We show a
four-step progression leading to the final excitons in columns (iii) and (iv). (i) Single particle
physics, neglecting both Coulomb and exchange interactions. We show the highest occupied
QD state (hole-state) and the lowest unoccupied QD state (electron state). (ii) Including
direct, but neglecting exchange interactions. This represents a bound e–h pair with artificially
high degeneracy following the lack of e–h exchange interaction. (iii) Including e–h exchange
interaction (X(K 6= 0)) and keeping the symmetry of the structure unchanged. The dark states
in TFQD and SK QDs can be split, since both belong to different irreducible representations.
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Figure 1. Schematic of the evolution of the exciton states for (a) self-embedded
InAs/GaAs QDs (text in red) and GaAs TFQD (text in black) and (b) spherical
InAs QDs. From the left to the right columns are the single-particle conduction
band minimum and valence band maximum states (column (i)), exciton manifold
neglecting the exchange interaction (column (ii)), including the exchange
interaction (column (iii)), and for reduced symmetry (column (iv)).

In practice, this splitting is very small and not shown graphically. (iv) Allowing for a lower
symmetry, due to random alloy fluctuations (in the case of QDs made of a semiconductor alloy,
such as InxGa1−xAs), an irregular overall shape, or crystal field splittings. The macroscopic
shapes of the TFQDs and SK QDs combined with the zinc-blende atomistic symmetry of their
crystal lattices lead to the point groups C2v for SK QDs, D2d for TFQDs and Td for spherical
colloidal QDs. The effects mentioned in (iv) can further reduce the symmetry.

Figure 1(a) (gray [red]) shows the evolution of exciton states in SK QDs. The hole states
of lens-shaped InAs/GaAs SK QDs are mainly derived from the heavy hole bulk band and
have 0̄5v symmetry. The electron state has 0̄5c symmetry and the direct product 0̄5v ⊗ 0̄5c leads
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to the four irreducible C2v representations 01 ⊕02 ⊕03 ⊕04 [17]. The e–h direct Coulomb
interaction lowers all the e–h exciton states by 1coul, whereas the exchange interactions split
02,4 from 01,3 by the exchange energy1X . Lowering the symmetry further splits the degenerate
exciton states. Note that already at the C2v level (figure 1(a), column (iii)), all the four states
are split, as discussed in [3], the splitting δ being referred to as fine structure. The focus of this
paper is, however, the ‘dark–bright’ splitting 1X .

Figure 1(a) (black) shows the evolution of TFQDs with D2d symmetry. Both the top hole
state (dominant heavy hole, Jz = ±3/2 [15]) and the lowest electron state have 0̄6 symmetry,
leading to three irreducible D2d representations, 01 ⊕02 ⊕05. All the exciton lines are lowered
by the direct Coulomb interaction 1coul. The exchange interactions split the optically active
twofold 05 states from the optically dark 01,2. A further reduction of the symmetry is required
for the twofold 05 states to split (figure 1(a), column (iv)).

Figure 1(b) shows an equivalent picture for spherical colloidal InAs QDs. In the Td point
group, the e–h exciton consists of the twofold 08v hole states and the non-degenerate 06c

electron state giving rise to the 03 ⊕04 ⊕05 exciton states. The exchange interactions split
the threefold optically active 05 states from the optically dark 03,4 states. In contrast to Td

bulk semiconductors [18], where the dark 04 states are unsplit from the 03 states, our atomistic
calculations show a splitting of 03,4 already for a spherical QD. In lower symmetry (e.g. in
an ellipsoidal QD), additional splittings occur (figure 1(b), column (iv)), notably LR exchange
splits the longitudinal exciton 05L from the transverse excitons 05T [18]. Similarly, the 04 states
are shown to further split into singlet (04L) and doublet 04T .

3. Method of calculation

Our approach is to construct an electronic structure theory where the form, range and scaling
of the e–h exchange are emerging phenomena rather than a parameterized construction. To
this end, the main quantity identifying the QD systems is its single-particle potential Vdot(r)
constructed here from a superposition of overlapping atomic spherical potentials for atom type
α, vα(r),

Vdot(r)=

∑
α

∑
r

vα(r−Rn,α)+ VNL. (2)

The atomic positions {Rn,α} define the shape, size and composition profile, and are relaxed
to minimize the strain. The indices (α, n) extend over the QD and the barrier materials.
Both local {vα} and non-local (spin–orbit) VNL potentials are adjusted [19, 20] to correctly
reproduce the overall bulk properties such as effective masses, critical transition energies,
deformation potentials and spin–orbit splittings. Once Vdot(r) is constructed for a given
structure,

(
−

1
2∇

2 + Vdot(r)
)
ψi = εiψi is solved by iterative diagonalization, producing single-

particle energies εi and wavefunctions {ψi}. This approach naturally captures the multiband,
intervalley and spin–orbit interactions. Once the single-particle states are solved, the many-body
problem is set up as a configuration–interaction expansion [21],

〈8vc|H |8v′c′〉 = (εc − εv)δv,v′δc,c′ − Jvc,v′c′ + Kvc,v′c′, (3)

where {8vc} are Slater determinants, J and K are the Coulomb and exchange integrals. The
latter are given by

Kvc,v′c′(S)=

∑
σ1,σ2

∫∫
ψ∗

v′(r1, σ1)ψ
∗

c (r2, σ2)ψc′(r1, σ1)ψv(r2, σ2)

ε̄(r1, r2)|r1 − r2|θ(S − |r1 − r2|)
dr1dr2. (4)
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Figure 2. (a) Unscreened (ε̄ = 1) exchange energy 1X(S) for lens-shaped InAs
self-assembled QDs with 250 Å diameter and three different heights, h, as a
function of interaction radius S. (b) Percentage 1X(S)/1X(S = ∞) of the total
exchange interaction. The vertical dashed line shows the Wigner–Seitz radius
RWS, which qualitatively separates the SR from the LR contributions of the
exchange integrals.

The screening of the e–h interaction is described phenomenologically by the microscopic,
position-dependent dielectric constant ε̄(r) [21, 22]. We will also report unscreened results,
setting ε̄(r1, r2)= 1, to highlight the effect of screening on the e–h exchange interaction. We
write K as a function of the e–h interaction radius S [13] via a step function θ(S − |r1 − r2|)

(θ(x)= 1 for x > 0, otherwise = 0).

4. Exchange energies versus electron–hole (e–h) interaction radius

4.1. Self-assembled QDs

Figure 2 shows the results for 1X (as defined in the third column of figure 1(a)) of three lens-
shaped self-assembled InAs/GaAs QDs with 250 Å base diameter and heights of 20, 35 and
50 Å. Figure 2(a) shows 1X(S) versus the e–h interaction radius S, whereas figure 2(b) shows
the percentage 1X(S)/1X(∞) of the exchange interaction enclosed within the e–h interaction
radius S. We use the electronic Wigner–Seitz radius RWS =

a0
4

3
√

3/2π as an attempt to separate
the SR from the LR interactions.

We see that with decreasing QD height h, both the total exchange energy 1X(∞) and its
SR contribution (1X for S 6 RWS) increase. The SR contribution to the unscreened exchange
energy 1X does not exceed 2%. However, if screening effects are included, as in equation (4),
this value increases to 13%, as a consequence of the microscopic screening function acting
mainly on the LR part and leaving the SR part mostly unscreened. Figure 2(a) shows a rapid
increase of 1X(S) versus S until it reaches a maximum of 1max

X (S0) = 5.2, 3.9 and 2.0 meV at
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Figure 3. (a) Unscreened (ε̄ = 1) exchange energy 1X(S) for TFQDs, with
height of 31 Å and lateral rectangular sizes of (400 × 400), (400 × 200)
and (200 × 200) Å2 as a function of interaction radius S. (b) Percentage
1X(S)/1X(S = ∞) of the total exchange interaction. The QD labeled (R(200 ×

200)) has the same size as the (200 × 200) Å TFQD but is fully embedded in
Al0.3Ga0.7As. The vertical dashed line shows the Wigner–Seitz radius RWS.

S0 ∼ 55, 70 and 85 Å for QD heights of 20, 35 and 50 Å, respectively. By further increasing
S, the exchange energy 1X(S) decreases and finally gradually tends to the asymptotic value
1X(S = ∞) = 3.8, 2.9 and 1.5 meV for QD height of 20, 35 and 50 Å, respectively. The
overshoot of the integral (1max

X (S0)−1X(S = ∞)) decreases with increasing QD height (1.4,
1.0 and 0.5 meV for QD height 20, 35 and 50 Å) and is accompanied by a broadening of the
peaks.

4.2. Thickness fluctuation QDs (TFQDs)

Figure 3 shows the exchange energy 1X versus S of three GaAs/Al0.3Ga0.7As TFQDs [15]
with lateral rectangular sizes of (200 × 200), (400 × 200) and (400 × 400) Å, respectively. The
e–h exchange splitting for the TFQDs (lower part of figure 3(a)) shows an overall behavior
similar to the self-assembled QDs (figure 2(a)) but with a magnitude around 30 times smaller.
The smaller magnitude is partly due to the low in-plane confinement potential and the leakage
of the wavefunctions into the barrier [15]. To illustrate this effect, we have calculated the
exchange energy for a GaAs parallelepiped with dimensions 200 × 200 × 31 Å3 fully embedded
in Al0.3Ga0.7As, i.e. confined to all directions by a conduction (valence) band offset of 264
(151) meV. Figure 3(a) shows a large increase of the exchange energy 1X(S = ∞) for this QD,
labeled R(200 × 200), compared to the TFQD ‘T(200 × 200)’, with the same dimensions. The
lower value of the exchange energy in GaAs QDs compared to the InAs QDs is also expected
from the EMA (e.g. equation (1)) since the bulk exciton Bohr radius (113 Å in InAs and 368 Å in
GaAs) and the longitudinal-transverse splitting is larger in bulk InAs than in bulk GaAs. The SR
component of unscreened 1X (figure 3(a)) is almost 7% (30%, including screening effects)—a
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Figure 4. (a) Unscreened (ε̄ = 1) exchange energy1X(S) for colloidal spherical
InAs QDs with different radii as a function of interaction radius S. (b) Percentage
1X(S)/1X(S = ∞) of the total exchange interaction. The vertical dashed line
shows the Wigner–Seitz radius RWS.

percentage larger than in self-assembled QDs—and shows a pronounced overshoot at the RWS

(dashed line).

4.3. Colloidal QDs

We next turn to the spherical InAs colloidal QDs (figure 4). Here, we calculated six different
spherical InAs QDs with radii varying from 10 to 35 Å in steps of 5 Å. Compared to InAs/GaAs
self-assembled QDs and GaAs/AlGaAs TFQDs, these QDs are smaller in size, but have a larger
band offset (>1 eV). In figure 4(a), the inverted triangles indicate the respective QDs’ radii. The
curves show the same qualitative behavior as in figures 2 and 3, but with a larger magnitude.
The total exchange energy 1X(S = ∞) are 98.7, 66.8, 45.2, 24.4, 18.7 and 9.9 meV for R =

10, 15, 20, 25, 30 and 35 Å, respectively, with an overshoot of the exchange energy for an
e–h interaction radius S approximately equal to the QD radius. The overshoot becomes smaller
and broader for larger QDs. The fit of the exchange energy 1X to the expression a/Rλ, leads
to the power factors λ= 2.2 and a = 4948 meV for R in Å. This is in good agreement with
the experimental value λ' 2.0 [12]. The SR contribution to the unscreened exchange energy
increases significantly from 2% for the larger QD with R = 35 Å to 18% for the smallest QD
(R = 10 Å). This contribution corresponds to 55% for the QD with R = 10 Å, if screening is
taken into account (table 1).

5. Conclusions and trends

In table 1, we summarize the results given in figures 2–4 and add the screened values of the
bright–dark splitting 1X . The total magnitude of the interaction is given along with its SR
contribution (defined by the Wigner–Seitz radius RWS). The ratio of the SR component to the
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Table 1. Screened and unscreened e–h exchange energy splittings (1X , see
figure 1) in µeV and Coulomb energy 1coul in meV for three types of QD. The
SR component, the total magnitude and the percentage of the SR part of the
bright–dark exchange splittings are tabulated.

1X (S) (µeV) 1coul(S) (meV)

Screened Unscreened Screened Unscreened

Dot type Dot size SR Total Ratio (%) SR Total Ratio (%) SR Total SR Total

SK h20 35.5 262.4 13.5 80.8 3841.7 2.1 0.169 24.9 0.437 371.8
h35 20.4 197.0 10.4 46.3 2898.7 1.6 0.100 21.4 0.254 313.9
h50 8.4 97.8 8.5 19.0 1453.1 1.3 0.039 16.2 0.105 239.9

TFQDs (200 × 200) 2.8 8.8 31.8 7.3 115.1 6.3 0.012 11.1 0.034 136.6
(400 × 200) 2.0 7.2 27.8 5.2 85.7 6.1 0.008 9.6 0.025 118.3
(400 × 400) 1.6 5.2 19.2 4.1 61.2 6.7 0.007 9.0 0.022 112.1

Colloidal R10 16 750 30 581 54.8 17 655 98 654 17.9 25.2 244.6 21.4 1585.0
R15 5090 13 358 38.1 6327 66 779 9.5 8.1 156.3 8.3 1154.9
R20 1879 7034 26.7 2559 45 240 5.7 3.2 105.7 3.9 892.3
R25 589 3095 19.0 870 24 394 3.6 1.4 75.9 2.3 728.0
R30 307 2093 14.7 470 18 684 2.5 0.8 60.6 1.5 620.0

total interaction is given in per cent. We added the direct Coulomb interactions1coul to the table
to highlight the differences between direct and exchange integrals. The analysis of table 1 and
figures 2–4 leads to five main conclusions.

1. The total (i.e. evaluated for S = ∞) e–h exchange energy 1X in colloidal InAs QDs is at
least one order of magnitude larger than in self-assembled InAs/GaAs SK QDs, which, in
turn, is at least an order of magnitude larger than in TFQDs. This reveals that the degree of
state localization enhanced by quantum confinement is a principal factor in increasing the
exchange interactions. In colloidal InAs QDs, electrons and holes are strongly localized
inside the QD’s interior by the large conduction and valence band offsets, whereas TFQDs
have small band offsets of ∼10 meV (along in-plane directions). The combination of small-
sized objects and deep confinement potentials in colloidal QDs, versus large-sized objects
with small band offsets in TFQDs, lead to the nearly four orders of magnitude difference
in 1X . The ratio between unscreened and screened total exchange energy 1X is close to
their bulk static dielectric constant (εInAs

0 = 15.2 and εGaAs
0 = 12.4 [23]) in SK InAs/GaAs

QDs and TFQDs; however, in colloidal InAs QDs it decreases fast from 8.9 to 3.2 as QD
size decreases from R = 30 Å to R = 10 Å. The latter effect is the consequence of the size-
dependent SR contribution in colloidal structures.

2. For all three types of QDs studied here, we find a balanced situation where both the SR
and the LR parts contribute to the exchange integral. Moreover, we find that the balance
between SR and LR components changes as a function of size and type of QDs. In
general, quantum confinement increases not only the total exchange energy, 1X , but also
the SR component in all three systems. However, using the sole argument of the degree
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of localization of the wavefunctions to draw conclusions on the SR–LR balance would be
erroneous. Indeed, in TFQDs the degree of localization is significantly smaller than in SK
QDs, as discussed above, but the SR component is significantly larger. This observation
reveals that the shape and material dependences do not only affect the overall magnitude
but also the delicate SR–LR balance of the e–h exchange interaction.

3. For SK QDs and TFQDs, we observe an overshoot of 1X(S) for an interaction radius
close to the Wigner–Seitz radius RWS in figures 2(b) and 3(b). The reason for this peak
might be found in the reciprocal space description [6, 9] of the e–h exchange interaction.
The reason is a partial cancellation of the contact part of the analytic (equivalent to SR
in real space [7]) and the contact part of the non-analytic ('LR in real space) exchange
splittings. However, while this separation into analytic and non-analytic parts is required
for an analytic treatment, the physical insight gained is limited. Our results show that the
overshoot of the exchange interaction is related to the degree of macroscopic anisotropy in
the wavefunctions. Firstly, the overshoot is not observed for isotropic InAs colloidal QDs.
Secondly, it is smaller for the GaAs parallelepiped (R(200 × 200), figure 3(b)), which is
fully embedded in Al0.3Ga0.7As and hence more isotropic than the TFQDs. Thirdly, the
overshoot is smaller in the case of fully confined SK QD wavefunctions than in the case
of TFQDs with large lateral leakage of the wavefunctions. We conclude that even for
e–h interaction distance Se,h within the Wigner–Seitz cell, the macroscopic extent of the
wavefunctions is still a relevant quantity. Furthermore, for wavefunctions with very large
in-plane and small out-of-plane dimensions (as in large TFQDs) we expect a large SR
contribution that tends to be canceled out by an LR component that slowly develops with
the e–h interaction distance.

4. For the three types of QDs, we observe a maximum in 1X(S) at an interaction
radius S related to the physical dimension of the QDs (figures 2(a), 3(a) and 4(a)).
For the spherical colloidal QDs, the QDs’ radii are indicated by invert triangles in
figure 4(a) and shown to correspond very well with the positions of the peaks. The
overshoot is therefore associated with the distribution of electronic wavefunctions on
the QD/barrier interface. Following effective mass theory, the wavefunctions have to
satisfy the BenDaniel–Duke [24] boundary condition (i.e. m−1

I ∇ψI(r)= m−1
O ∇ψO(r) in

which the subscript ‘I’ stands for inside and ‘O’ for outside the QD) across the interface,
leading to a significant wavefunction distortion [25]. Additional supporting evidence
is that the overshoot shown in figure 4(a) increases with decreasing R, i.e. when the
volume fraction of the interface region increases. The position of the peak represents an
effective radius for non-spherical QDs such as lens-shaped InAs/GaAs self-assembled
QDs and GaAs TFQDs. We obtain effective radii of 135, 135 and 190 Å for GaAs
TFQDs with base sizes of (200 × 200), (400 × 200) and (400 × 400)Å, respectively. The
effective radii for lens-shaped InAs/GaAs self-assembled QDs are 55, 70 and 75 Å for
QD heights of 20, 35 and 50 Å, respectively. The overshoot of the LR exchange term
had not been foreseen, but is not in disagreement with previous work [13]. Franceschetti
et al [13] showed that for spherical InP, CdSe and GaAs QDs of approximately 20 Å radius
the multipole expansion of the LR term has not only dipole–dipole contributions, but also
monopole–monopole and monopole–dipole components. These components can contribute
positively and negatively to the magnitude of the integral, leading to the observed behavior
as a function of interaction radius.
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5. The e–h exciton binding energy 1coul is naturally dominated by the LR direct Coulomb
interaction. Table 1 shows that in both SK QDs and TFQDs, the SR contribution to total
1coul is less than 1%. The SR direct Coulomb component increases as QD size decreases.
In colloidal InAs QDs, the SR contribution increases from 1 to 10% as QD size decreases
from R = 30 Å to R = 10 Å. In the envelope-function approximation, assuming an infinite
potential barrier at the surface of the QD and a size-independent dielectric constant, one
would expect the size-scaling exponent λcoul ∼ 1 (1coul ∝ R−λcoul). We find λcoul = 1.4 for
InAs QDs (see table 1). The deviations from the 1/R scaling are primarily due to the
electron and hole wavefunctions ‘spilling out’ of the QD as the size becomes smaller [26].

6. Summary

We have calculated the e–h exchange bright–dark splitting for three different common types of
QD using an atomistic methodology. The numerical method employed enables us to truncate the
interaction after a certain cut-off radius and study the SR and LR nature of the interaction. We
first show that from group theory arguments the expected splittings are qualitatively different
for all three types of QD. We then analyze the numerical results to draw several conclusions.
(i) The e–h integrals vary by more than three orders of magnitude for the three different types
of QD as a consequence of the differences in sizes and confinement potentials. (ii) Quantum
confinement increases the SR contribution to the integral within one QD type. Across QD types,
no such simplification can be made and factors such as shape and the underlying band structure
become relevant. For instance, TFQDs have a larger SR component than SK QDs. (iii) For
SK QDs and TFQDs, we observe an overshoot of 1X(S) for an interaction radius close to
the Wigner–Seitz radius. We related this effect to the degree of macroscopic anisotropy in the
structure. No overshoot is observed in spherical structures. (iv) For the three types of QD, we
observe a pronounced maximum in 1X(S) at an interaction radius S representing the physical
dimension of the QDs. This result shows that the exchange integral is not a purely cumulative
quantity (when the interaction radius is increased the magnitude of the integral increases), but
has positive as well as negative contributions. We attribute the pronounced maximum to the
effect of wavefunction distortions at the interface of the QDs. (v) We find for colloidal InAs
QDs a scaling of the exchange integrals ∝ R−2.2 and of the direct Coulomb integrals ∝ R−1.4.
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