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Whereas the Daltonian atom-to-atom ratios in ordinary molecules are well understood via the traditional
theory of valence, the naturally occurring stoichiometries in intermetallic compounds ApBq, as revealed by
phase-diagram compilations, are often surprising. Even equal-valence elements A and B give rise to unequal
�p ,q� stoichiometries, e.g., the 1:2, 2:1, and 3:1 ratios in AlpScq. Moreover, sometimes different stoichiom-
etries are associated with different lattice types and hence rather different physical properties. Here, we extend
the fixed-composition global space-group optimization �GSGO� approach used to predict, via density-
functional calculations, fixed-composition lattice types �G. Trimarchi and A. Zunger, J. Phys.: Condens. Matter
20, 295212 �2008�� to identify simultaneously all the minimum-energy lattice types throughout the composi-
tion range. Starting from randomly selected lattice vectors, atomic positions and stoichiometries, we construct
the T=0 “convex hull” of energy vs composition. Rather than repeat a set of GSGO searches over a fixed list
of stoichiometries, we minimize the distance to the convex hull. This approach is far more efficient than the
former one as a single evolutionary search sequence simultaneously identifies the lowest-energy structures at
each composition and among these it selects those that are ground states. For Al-Sc we correctly identify the
stable stoichiometries and relative structure types: AlSc2-B82, AlSc-B2, and Al2Sc-C15 in the Nat=6 periodic
cells, and Al2Sc6-D019, AlSc-B2, and Al3Sc-L10 in the Nat=8 periodic cells. This extended evolutionary
GSGO algorithm represents a step toward a fully ab initio materials synthesis, where compounds are predicted
starting from sole knowledge of the chemical species of the constituents.
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Dalton’s hypothesis1,2 that compounds manifest character-
istic atom-to-atom ratios explained Proust’s phenomenologi-
cal “law of definite proportions” and set the stage for the
subsequent development of the concepts of valence3 as an
explanation of such hitherto mysterious atomic ratios. Still,
whereas these classic constructs of valence naturally explain
the Daltonian stoichiometries of many molecules and cova-
lent solids,4 they have yet to demystify the atomic ratios even
in the simple intermetallic compounds such as those made of
elements of equal nominal valence, e.g., the occurrence of
1:2, 1:1, 2:1, and 3:1 ratios in Al-Sc,5 or the existence of
Na2K but not of NaK2.6 Indeed, inspection of recent compi-
lations of all measured crystal structures5,7 reveals numerous
instances of Daltonian ratios that are unsuspected on the ba-
sis of the traditional theory of valence and bonding. At the
same time, knowledge of the ratio between the different
atomic constituents in a solid is needed for understanding its
basic electronic and magnetic properties.

Total-energy minimization based on first-principles
density-functional theory is a natural route to identifying
stable, T=0 structures and stoichiometries. Yet, an objective
search of Daltonian indices can be problematic. Such a
search consists, in general, of two steps: first, finding the
lowest-energy configuration at a fixed composition, and sec-
ond, allowing competition between all of the fixed-
composition lowest-energy structures. This is illustrated in
Fig. 1 for a binary AxB1−x system: at the nth step of approxi-
mation �dashed blue line� one finds structures �, �, and � as
the lowest-energy structures at concentrations x, x�, and x�,
respectively, whereas in the �n+1�st step �continuous red
line� the structure ��x� was recognized as having a higher
energy then a combination of the two other structures ��x��

plus ��x��, and thus � was eliminated from the ground state
line described by the convex hull of energy vs composition
�the continuous red line in Fig. 1�.

Performing both types of searches can be readily accom-
plished if all compounds in the 0�x�1 concentration do-
main have the same underlying lattice type. In such a case,
the problem of finding the structures belonging to the convex
hull amounts to determining the lowest-energy decorations
of a given lattice type by, say, A and B atoms. Both steps of
the search noted above can then be effectively conducted
within the cluster-expansion method8 �see, for instance, Ref.
9�. Here, ab initio formation energies of a few configurations
are first mapped onto a generalized Ising Hamiltonian10

which is then searched to determine the ground-state struc-
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FIG. 1. �Color online� Schematic of the construction of the ap-
proximate convex hull Cn�x� during the evolutionary search at the
nth and �n+1�st generations. The fitness function ��n���� of a struc-
ture � is defined as the difference between its formation energy
�H��� and the actual �approximate� convex hull Cn�x�� at the nth
generation.

PHYSICAL REVIEW B 80, 092101 �2009�

1098-0121/2009/80�9�/092101�4� ©2009 The American Physical Society092101-1

http://dx.doi.org/10.1103/PhysRevB.80.092101


tures among an astronomically large number of possibilities
via, e.g., exhaustive evaluation11 or genetic algorithms.12,13

Such searches for fixed-lattice type systems have validated
known Daltonian stoichiometries and have predicted unex-
pected stoichiometries, the latter being illustrated by “con-
tinuously adaptive structures” of Au-rich Cu-Au14 or
Fe-Co.15

Sometimes, however, the A and B constituent solids of
binary alloys have different underlying lattice types �e.g., fcc
Pd, bcc V or hcp Cd, fcc Pt�, often leading to intermediate
ApBq compounds with difficult-to-guess lattice types �e.g.,
the non-Bravais-based A15 structure of PdV3 and the bcc-
like CuPd emerging from fcc Cu and fcc Pd�. In such cases,
e.g., Cu-Pd, one can perform independent cluster expansions
for each lattice type and then superpose the ensuing convex
hulls, constructing the overall lowest. Alternatively, one can
perform individual total-energy calculations of many guessed
ApBq compounds �e.g., with structures and stoichiometries
taken from experimental compilations of related materials16�
and determine the convex hull from such a more limited list
of candidates. More recently, the problem of finding unsus-
pected lattice types was addressed by solving the “global
space-group optimization” �GSGO� problem,17–19 in which
the crystal structure is found in an unbiased way by starting
from random lattice vectors and atomic positions, using evo-
lutionary algorithms. Our approach to GSGO has proven to
be effective in predicting nonintuitive crystal structures20 of
systems such as Al2Sc6, Al6Sc2, Al4Sc4, Cd2Pt6, Cd4Pd4, and
Pd6Ti2. However, such a GSGO approach17–19,21 is currently
performed at fixed composition and stoichiometry ApBq, and
so Daltonian proportions are not predicted. Here, we extend
the ab initio evolutionary GSGO algorithm by lifting con-
straints on composition and by optimizing the formation en-
ergy �H convex hull for supercells of a given number of
atoms Nat. As a test, we choose the Al-Sc system that mani-
fests nonintuitive stoichiometries and stoichiometry-
dependent lattice types. Independently started evolutionary
sequences were able to identify the ground-state composi-
tions and structures: �i� AlSc2-B82, �ii� AlSc-B2, �iii�
Al2Sc-C15, �iv� Al2Sc6-D019, and �v� Al3Sc-L12 �see Fig. 2�.
Here, the compounds of an alloy are predicted fully ab initio
by an optimization algorithm that concurrently explores
structures of all possible compositions and has as starting
information only the chemical types of the constituent ele-
ments.

The evolutionary algorithm of Refs. 17–19 entails two
steps which we will change in what follows: �i� setup a popu-
lation of structures, all at the same, target composition which
is kept fixed during the evolutionary search; and �ii� define
the fitness score of a structure � equal to its total energy
E���. We change these two steps as follows:

�i� The population of structures consists of an
ensemble of any of the allowed compositions ApBNat−p with
1	 p	Nat−1. The formation energy per atom of a binary
ApBq structure at T=0 K is defined as

�H�ApBq� = E�ApBq� − �1 − x�E�A� − xE�B� , �1�

where E�ApBq�, E�A�, and E�B� are, respectively, the equi-
librium total energies per atom of the given binary structure

and of the end-point solids A and B; x= q
p+q is the concentra-

tion �mole fraction� of B. �H�ApBq� corresponds to the
T=0 Gibbs free energy of the ApBq configuration minus the
chemical potentials of the A and B constituents �i.e., their
equilibrium T=0 total energies per atom� each taken with a
weight equal to the mole fraction in the ApBq configuration.
Mating is performed also between structures of different
compositions. Both the mating and mutation operations are
allowed to produce child structures with compositions that
differ from those of the parents, thereby making possible for
the evolutionary search to survey simultaneously structures
across the whole composition range.

�ii� The fitness score is defined as the difference between
the formation energies �H of an A1−xBx structure and the
current convex hull. This is done as follows: for a structure �
to be a ground state its �H��� must lie below the tie line
between the formation energies of any pair of structures �
and � with x��x��x�, i.e., the structure must be stable
against disproportionation into structures at two neighboring
concentrations. This means11 �see Fig. 1�

�H��� 	 �H���
x� − x�

x� − x�

+ �H���
x� − x�

x� − x�

. �2�

The vertices of the line so obtained correspond to the
ground-state structures defining the convex hull, line C�x�.
Since the free energies per atom of all structures sampled in
the evolutionary search are referred to the chemical poten-
tials of the pure elements, the stoichiometric balance be-
tween the �H of a given structure and the phase-separation
term on the right-hand side of Eq. �2� makes no sum of
chemical potentials of the elemental constituents appear in
this relation. To search for the ground-state structures �not
only for the lowest formation energy structures at a given
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FIG. 2. �Color online� Ground-state search of Al-Sc with �a�
Nat=6 and �b� 8. Open markers and the dashed lines connecting
them depict, respectively, the approximate ground-state structures
and the corresponding convex-hull evolving toward the optimal
convex hull �solid markers and line�.
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composition�, we iteratively refine this approximate convex
hull, C�n��x�, by using the objective function introduced by
d’Avezac and Zunger in Ref. 13,

��n���� = �H��� − C�n��x�� , �3�

i.e., the distance of the formation energy �H��� of � from
the convex hull C�n��x� at the nth generation. Figure 1 depicts
the construction of the approximate convex hull and the cal-
culation of the objective function. The evolving approximate
ground-state structures are on the convex hull at each gen-
eration and have ��n����=0. The structures with the largest
values of ��n���� are those farthest away from the convex
hull and are replaced at each generation of the evolutionary
sequence, thereby driving the evolutionary search toward the
lowest-energy structures at each composition–which furthers
the refinement of the convex hull.

The evolutionary search proceeds as follows: a population
of Npop candidate structures with Nat atoms per cell is cre-
ated. The initial population is determined by randomly se-
lecting lattice vectors, atomic positions, and composition
ApBNat−p. The population is evolved through a sequence of
generations where at each generation, the current convex hull
C�n��x� is constructed and the Nrep structures farthest away
from it are replaced by new ones generated by mating or
mutation. Before any crossover or mutation, the parent crys-
tal structures are subjected to a similarity transformation17

which maps the atomic positions onto fractional coordinates.
The crossover of two structures picked from the current
population is done via real-space cut and splice17 where, cor-
responding slabs in the two parents are swapped to generate
the child structures. The structures obtained from mating and
mutation are subjected to full local structural relaxation and
the relaxed structures are included in the �n+1�st generation
of the population. The sequence of generations is carried out
until a given stopping criterion is met, e.g., the allocated
number of generations or of local structural relaxations is
exhausted.

The evolutionary search described here does not require
the number of atoms Nat per supercell to be fixed. Indeed, at
a concentration x one can have structures of composition
ApBq with any Nat= p+q so that q

p+q =x. Furthermore, having
Nat vary during the search allows one to survey structures in
a denser set of concentrations x=q /Nat� �0,1�, and, corre-
spondingly, a more complete space of periodic arrays of A
and B atoms, than would be possible by keeping Nat con-
stant. Here, however, we test the variable-composition evo-
lutionary algorithm by applying it to few numbers of atoms

Nat per periodic cell, one at a time. All concentrations x
=q /Nat with 1�q�Nat−1 are simultaneously surveyed by a
single evolutionary sequence, as opposed to a “do-loop” ap-
proach that would require Nat−1 independent search runs,
one for each of the Nat−1 binary concentrations x=q /Nat in
Nat atom cells.

One might wonder what forces the variable-composition
GSGO to consider the whole composition range. Indeed, the
variable composition algorithm will concentrate �for a com-
pletely flat energetic landscape� on the region around x
=0.5, because that is where the largest number of
decorations/structures reside. As the energy landscape is not
flat, the variable-composition GSGO will compromise be-
tween the region with the most structures, and that with the
lowest-energy ones, i.e., doing its job correctly. Another way
to put it is that neither mutation nor crossover produce struc-
tures with lower or higher energy than the parent ones, i.e.
they do not play the role of Maxwell’s demon. Then, off-
spring structures are more likely to be created in the largest
combinatorial region.

The system we choose for this test is the Al-Sc metallic
alloy, where Al and Sc are, respectively, fcc and hcp solids.
The compounds of Al-Sc known from experiment5,7 are �i�
fcc-based Al3Sc-L12, �ii� Al2Sc-C15, �iii� the bcc-based
AlSc-B2 structure, and �iv� the hcp-based AlSc2-B82 �see
structure models in Fig. 3�. Curtarolo et al.16 calculated the
total energy of 176 candidate structure types �taken from
data mining compilations7� and confirmed that these four ex-
perimentally observed structures are ground states among
this limited candidate list. They also predicted an additional
ground state at composition AlSc3 with the hcp-based D019
structure, where the experimental phase diagram5,7 indicates
instead the coexistence of the Al and AlSc2-B82 solid phases
at T=0 K. Thus, predicting the ground states of the Al-Sc
system is a challenging GSGO problem because the C15
structure is not a simple decoration of a parent Bravais lattice
and, along with B2, can hardly be inferred from the fcc and
hcp lattices of the constituents.

In an earlier GSGO investigation of Al-Sc, Trimarchi and
Zunger20 applied the fixed composition evolutionary GSGO
procedure to Al2Sc6, Al4Sc4, Al6Sc2, and successfully re-
trieved the lowest-energy structures at each of these compo-
sitions. Here, the ab initio evolutionary ground-state search
of Al-Sc22 is done taking Nat=6 and 8 atoms per supercell.
Each randomly started evolutionary sequence was usually
carried out for at least 25 generations and included at least
100 structural evaluations. For Nat=6, we produced five in-
dependent sequences with Npop=16 and Nrep=4. Three
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ground-state structures of Al-Sc are representable in Nat=6
periodic cells, i.e., AlSc2-B82, AlSc-B2, and Al2Sc-C15. Fig-
ure 2�a� summarizes the history of one of the evolutionary
runs for Nat=6. At the initial generation, the convex hull
shows three breaking points: AlSc2-B82, AlSc-B2, and a te-
tragonal I4 /mmm Al4Sc2 structure. As the search unfolds,
the Al4Sc2 structure changes first into a hexagonal P6 /mmm
structure and, at the 23rd generation �i.e., after 108 local
structural relaxations�, into C15, with an energy difference of
15 meV/at between these two structures. The Nat=6 final
convex hull has a vertex also at Al5Sc. All the independent
restarts with Nat=6 found the AlSc2-B82 and AlSc-B2
ground states, and stable structures at Al5Sc and Al4Sc2. The
fcc-based Al5Sc Cmmm structure was always found to be
stable in the six-atom periodic cells, while Al4Sc2-C15 was
obtained in two restarts and in the remaining three restarts
the hexagonal P6 /mmm was found instead.

Three independent sequences were produced for Nat=8,
with Npop=40 and Nrep=8. Figure 2�b� shows the iteration
history of one of these sequences. In the first four genera-
tions, the algorithm found Al4Sc4-B2, Al6Sc2-L12, and
breaking points also at Al2Sc6 and Al3Sc5 compositions. At
the fifth iteration �i.e., after 80 relaxed total-energy evalua-
tions�, Al2Sc6-D019 was obtained and the Al3Sc5 was re-
moved from the convex hull. Hence, this evolutionary se-
quence found all the ground-state structures that are
realizable in AlpSc8−p periodic cells. All the Nat=8 runs
found Al4Sc4-B2 and Al6Sc2-L12. Furthermore, one of the
three restarts found Al2Sc6-D019 while the other two re-
trieved Al2Sc6-L12. To determine the final convex hull of
Al-Sc, we apply the condition of stability against dispropor-
tionation of Eq. �2� to determine the stable structures out of

all the ground-state structures corresponding to all values
considered for Nat. This final step is illustrated by Fig. 3,
where the convex-hull lines of the AlpSc6−p and AlpSc8−p
periodic cells are combined to give the final convex hull of
Al-Sc, whose ground states are AlSc2-B82, AlSc-B2,
Al2Sc-C15, Al2Sc6-D019, and Al2Sc6-L10 �see Fig. 3�, i.e.,
all those previously known.

The success of the present stoichiometry unconstrained
evolutionary algorithm in determining all the ground states
of the nontrivial Al-Sc system shows that this method has a
truly global view of the space of periodic arrangements in
binary compounds. Whereas the fixed stoichiometry GSGO
�Refs. 17–19� requires one to know in advance the �p ,q� the
present variable-composition GSGO combines the ability of
cluster expansion to find the convex hull over all composi-
tions with the GSGO’s ability to explore different lattice
types. In the present scheme, the only input is the chemical
species of the constituents of the material, so, here, a com-
pletely fully ab initio, unbiased prediction of the T=0 struc-
tures of a material is performed.

In summary, we extended the earlier fixed composition
GSGO evolutionary algorithm to determine the stoichiom-
etries ApBq and the optimal lattice type of the stable phases
simultaneously across the whole composition range. As a
test, we searched the ground-state structures of the Al-Sc
system and successfully determined all its stable T=0 com-
pounds.
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