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Abstract
Epitaxial growth of semiconductor alloys onto a fixed substrate has become the method of
choice to make high quality crystals. In the coherent epitaxial growth, the lattice mismatch
between the alloy film and the substrate induces a particular form of strain, adding a strain
energy term into the free energy of the alloy system. Such epitaxial strain energy can alter the
thermodynamics of the alloy, leading to a different phase diagram and different atomic
microstructures. In this paper, we present a general-purpose mixed-basis cluster expansion
method to describe the thermodynamics of an epitaxial alloy, where the formation energy of a
structure is expressed in terms of pair and many-body interactions. With a finite number of
first-principles calculation inputs, our method can predict the energies of various atomic
structures with an accuracy comparable to that of first-principles calculations themselves.
Epitaxial (In, Ga)N zinc-blende alloy grown on GaN(001) substrate is taken as an example to
demonstrate the details of the method. Two (210) superlattice structures, (InN)2/(GaN)2 (at
x = 0.50) and (InN)4/(GaN)1 (at x = 0.80), are identified as the ground state structures, in
contrast to the phase-separation behavior of the bulk alloy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction: issues surrounding a
thermodynamic description of epitaxial alloys

Since the collection of individual, binary semiconductor
compounds [1] offers but a limited repertoire of pertinent
material properties (e.g., band-gap, effective-masses, band
offset with respect to a reference etc), it has become
common to mix two or three such binary ‘building-blocks’
to achieve intermediate values of such properties. With the
advent of vapor-phase growth techniques (e.g., MBE [2] and
MOCVD [3]), epitaxial evaporation onto a fixed substrate
has become the method of choice for making crystalline
semiconductor alloys, replacing the more traditional substrate-
free melt-growth (e.g. Bridgman) approaches. It is now clear
that vapor-phase epitaxial growth not only produces greater
purity and provides better process-control relative to the melt-
growth, but that in fact it corresponds to an altogether different
thermodynamic state of the system, possibly yielding different
microstructures and different phase diagrams [4–14]. The
difference stems from two aspects, one existing at the top of the
film (the free surface) and one at its bottom (the film–substrate
interface).

Firstly, the presence of a free surface gives rise to
a translational symmetry break and, consequently, surface-
modified atomic interactions. This surface contribution has
significant influence on the atomic microstructures of alloys
near the surface, e.g., surface segregation and different
disorder-order transitions from the bulk alloys [13–19].
Additionally, the existence of an exposed free surface above
the film can lead to a surface reconstruction that creates strain
patterning in a few near-surface layers, and leads, in turn,
to an energetic driving force for selective incorporation of
the smaller (larger) of two alloy atoms at high (low) strain
subsurface sites, leading to atomic ordering, [5, 6, 10–12],
rather than randomness, in various semiconductor alloy thin
films. The surface contribution persists only within several
atomic layers next to the free surface. For example, in the Al–
Co and Al–Ni systems, the perturbation induced by the free
surfaces is almost zero beyond the 4th atomic layer from the
surface [14, 17]. In the case of surface reconstruction, for
example, InGaP alloy, the strain pattern due to the surface
reconstruction disappears beyond the 4th–5th atomic layer.
Progress on the first-principles studies on the alloy surface
thermodynamics have been reviewed in [6, 19] and [17].

0953-8984/09/295402+19$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/29/295402
http://stacks.iop.org/JPhysCM/21/295402


J. Phys.: Condens. Matter 21 (2009) 295402 J Z Liu and A Zunger

Secondly, the existence of lattice coherence between the
alloy film and the underlying substrate induces a particular
form of strain, adding an energy term U epi to the alloy free
energy and thus potentially altering the thermodynamic state
of the system. In contrast to the alloy surface thermodynamics,
the coherent strain from the substrate persists throughout the
whole epitaxial alloy film. In light emitting diodes, diode
lasers and III–V multijunction solar cell applications [20–22],
the alloy films are typically 1 μm thick, and thus the
contributions from the exposed surface can be assumed
negligible. The epitaxial constraint from the substrate becomes
dominant in deciding the thermodynamic state of such alloy
films [5, 7, 8, 23–28]. For example, the ordered chalcopyrite
structures InGaAs2 and Ga2AsSb are observed in the epitaxial
alloy films (away from the top free surfaces) grown on
InP(001) substrates. In this paper we do not discuss the
top-surface contributions (which can often be controlled and
eliminated chemically via surfactants [29], addition of fast-
diffusers [30] or growth temperature changes [31]), but rather
present an accurate and efficient method to study the more
robust thermodynamic effects of substrate-coherent strain.

The effect of substrate-coherent strain is illustrated in
figure 1. Two constituents AC and BC (with respective
equilibrium lattice constants aAC �= aBC) combine to form
an alloy σ (i.e., a specific assignment of atomic occupation
on lattice sites) with equilibrium lattice constant aσ . Long-
standing tradition [32] suggests that in a bulk alloy with
large lattice mismatch constituents, the formation energy (i.e.,
the energy difference between structure σ and an equivalent
amount of AC + BC)

�Hbulk(σ ) = E(x, σ )−[(1−x)EAC(aAC)+x EBC(aBC)] (1)

is usually positive [33, 34] for both a random alloy and ordered
structures, where E is the total energy. Yet, when AC + BC
are grown epitaxially on a substrate that is nearly lattice-
matched with the alloy asub ≈ aσ , strain could destabilize
AC(asub) + BC(asub) sufficiently to make the alloy have a
negative epitaxial formation energy:

�H epi(σ ) = E(x, σ, asub) − [(1 − x)EAC(asub)

+ x EBC(asub)] = �Hbulk(σ ) − [(1 − x)U epi
AC(asub)

+ xU epi
BC(asub) − U epi(σ, asub)], (2)

where U epi is the strain energy due to biaxially deforming a
structure from its own equilibrium lattice constant to asub on
the substrate plane. Epitaxy could convert, in this case, a bulk-
immiscible AC + BC to an ordered alloy. Thus, in addition to
kinetic factors, the constraint present during epitaxial growth
could control the ensuring atomic microstructure. Since
the atomic microstructure decides the electronic, optical and
transport properties of the film [6], it is important to have a
quantitative description of the thermodynamics of a substrate-
coherent epitaxial alloy.

The difficulty with the thermodynamic description of
the bulk and epitaxial alloys is the existence of numerous
configurations. Indeed, a binary A/B semiconductor alloy
could have ∼2N possible atomic configurations σ in an N
lattice-site unit cell (e.g., ∼106 configurations at N = 20).

Figure 1. Schematic plot of energetic orders in bulk-incoherent and
substrate-coherent epitaxial (A, B)C alloy. The lattice mismatch
between AC and BC leads to a higher energy for the ordered structure
σ than the incoherent phase separation AC(aAC) + BC(aBC), i.e.,
�E(σ ) > 0. In the presence of a substrate, the strain energy U epi

destabilizes the phase separation AC(asub) + BC(asub) and the
formation enthalpy �H epi(σ ) becomes negative.

Many thermodynamic descriptions of semiconductor alloys
do not attempt to resolve the energy �H (σ ) of an
individual configuration σ , instead modeling just the random
alloy [4, 27, 35–37] (reviewed in [8, 38]). Such continuum
phenomenological models work very well for many bulk
semiconductor alloys. This is because a large lattice mismatch
between the two constituents usually leads to a positive
formation energy (of both the disordered solid solution and the
ordered structures) and thus the phase diagram is characterized
by the miscibility gap separating the disordered alloy from
the phase separation. During the phase transition, only
disordered alloy phases with different concentrations appear.
In the case of a substrate-coherent epitaxial alloy, most of
the works [27, 36, 39–43] have attempted to account for the
epitaxy effect by simply adding the substrate strain energy
term to the free energy of the disordered solid solution
phase. Consequently, a large depression of miscibility gap
temperature has been observed [27, 39–41, 43]. However,
all these models failed to recognize that epitaxial strain could
stabilize some ordered structures (i.e., negative formation
energies �H epi(σ )) and thus convert the bulk phase separation
into an epitaxially ordered one [7, 8]. It is, therefore, important
to model the formation energy �H (σ ) for all configurations,
not just the disordered alloy.

Since direct quantum-mechanical calculations of the total
energy Edirect(σ ) = 〈�|H (σ )|�〉 are practical only for a few
configurations M � 2N , an efficient approach is to use M
such calculated values {Edirect(σ )}, (e.g., from first-principles
calculations) to fit a general mixed-basis cluster expansion [44]
(CE) for the formation energy �HCE(σ ) in terms of the pair
and many-body interactions

�HCE(σ ) = J0 +
∑

i

Ji si +
∑

i j

Ji j si s j +
∑

i jk

Ji jksi s j sk

+ · · · + ECS(kσ ) (3)

where si is the pseudospin variable (si = −1 or 1 if site i is
occupied by atom type A or B respectively), J0, Ji , Ji j , Ji jk . . .
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Figure 2. Three variants of the L10 structure (also called the CuAu-I type) on a (001) substrate. L10 is a superlattice structure composed of
alternate atomic monolayers along the (100)-equivalent crystallographic directions: L10-I is along the (001), L10-II is along the (100) and
L10-III is along the (010) crystal direction, respectively. Due to the presence of the substrate, the lattice constant on the substrate plane (i.e.,
(001) in this case) is fixed as asub while in the (001) direction, it is allowed to relax. It is obvious that the strain energy of L10-I is generally
different from the strain energies of L10-II and L10-III.

are the interaction energies for the empty, point, pair, three-
body . . . ‘figures’. The constituent strain (CS) energy ECS(kσ )

is used to describe the long-range elastic energy:

ECS(kσ ) =
∑

k �=0

�ECS(k̂, x)

4x(1 − x)
|Sσ (k)|2e−(|k|/kc )

2
, (4)

where Sσ (k) is the Fourier transform of the pseudospin
variables of configuration σ , �ECS(k̂, x) is defined as the
strain energy of the long period superlattice (AC)m /(BC)n

(n/(m + n) = x and m, n → ∞) along crystal direction
k̂, and the last term is an attenuation function for a short
concentration wave. All the quantities defining the mixed-basis
cluster expansion (equations (3) and (4)) will be determined by
first-principles calculations.

In equation (3), a set of lattice sites, called the ‘figure’, has
the same interaction energies as other figures that are related to
it by the space-group symmetry of the underlying lattice. Thus,
geometrically, we can define the space-averaged pseudospin
product �̄ f (σ ) corresponding to each class of symmetry-
equivalent figure f of configuration σ as

�̄ f (σ ) = 1

O f

∑

f (i1,i2,···im)

si1(σ )si2(σ ) · · · sim (σ ), (5)

where the sum runs over all O f figures of class f . We can now
express equation (3) in terms of the space-averaged pseudospin
product �̄ f (σ ) as

�HCE(σ ) = J0 + J1(2x − 1) +
∑

f

Dpair
f J pair

f �̄
pair
f (σ )

+
∑

g

DMB
g J MB

g �̄MB
g (σ ) + ECS(kσ ), (6)

where Dpair
f and DMB

g (MB stands for many-body) are the
number of figures of class f and g per lattice site. In this paper,
we will use the term ‘figure’ to represent a class of symmetry-
equivalent figures. In practice, the CS energy, ECS(kσ ), of
each configuration σ is subtracted from the formation energy
calculated from the first-principles method. We only need to

cluster expand the relative formation enthalpy �H̃LDA(σ ) =
�HLDA(σ ) − ECS(kσ ) as

�H̃CE(σ ) = J0 + J1(2x − 1) +
∑

f

Dpair
f J pair

f �̄
pair
f (σ )

+
∑

g

DMB
g J MB

g �̄MB
g (σ ). (7)

This MBCE approach has been applied to many metallic
and semiconductor bulk alloys, such as W–Ta [45], Mo–
Ta [46], Au–Pd [47, 48], Ni–Pt [49], Cu–Au [49–54], Ag–
Au [50, 51], Cu–Ag [50–54], Ni–Au [51–54], Al–Mg [53],
Al–Zn [55], Al–Cu [55], InP–GaP [53, 56, 57], InN–GaN [58],
etc.. It has also been applied to study alloy thermodynamics
near the free surfaces, such as Al–Ni [14], Al–Co [17], and Pt–
Rh [18]. In these studies, the surface contribution is taken as a
correction to the bulk interaction and thus the CE are separated
into two parts: the bulk CE (equivalent to the bulk alloy)
and the surface CE. The interaction energies Js in the surface
CE become site dependent and approach zero with increasing
distance from the free surface. This method is developed to
describe the surface alloy thermodynamics (persisting close
to the exposed free surfaces) where the ‘surface chemistry’
is dominant. In this paper we will address the relative
thick epitaxial thin film (1 μm) where the ‘surface’ effect is
negligible and the epitaxial coherent strain effect (persisting
throughout the whole alloy films) is dominant.

Relative to the bulk alloy, cluster expansion for the
‘substrate-coherent epitaxial alloy’ possesses three computa-
tional differences, which we will treat in this paper.

Firstly, whereas in a bulk alloy a certain configuration,
σ , has a convenient geometry degeneracy, the presence of a
substrate in the epitaxial system lifts this degeneracy, creating
a few distinct σepi from one σbulk. Figure 2 illustrates this
situation for σbulk = L10 (i.e., a CuAu-I structure) in an fcc
alloy. L10 is a superlattice structure composed of alternate
atomic monolayers along the (100)-equivalent crystallographic
directions: L10-I is along the (001), L10-II is along the (100)
and L10-III is along the (010) crystal direction, respectively.
Due to the presence of the substrate, the lattice constant on
the substrate plane (e.g., (001)) is fixed as asub while a free
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Splitting of 1st and 2nd nearest neighbor pair figures
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Figure 3. The splitting of the first and second pair figures on a tetragonal parent lattice (i.e., the elongated fcc parent lattice) from the cubic
fcc lattice. On the fcc lattice, the nearest neighbor figures (i.e., the 12 solid and dashed bonds shown in the upper-left plot) are symmetry
equivalent. On the elongated fcc lattice along the z direction, they split into two types of figures: four symmetry-equivalent pair figures on the
xy plane and eight symmetry-equivalent pair figures out of the xy plane (i.e., the solid and dashed lines in the lower-left plot). Similarly, the
second nearest figure on the fcc lattice (i.e., the 6 solid and dashed bonds shown on the upper-right plot) splits into two types of figures on the
elongated fcc lattice along the z direction, four symmetry-equivalent figures on the xy plane and two out of the xy plane.

relaxation in the perpendicular direction is allowed. The
substrate-coherent strain energy U epi(σ ) of L10-I is generally
different from the strain energies of L10-II and L10-III. Thus
we need to calculate, in the epitaxial case, more energies
Edirect(σepi) than in the ‘free-floating’ bulk case.

Secondly, the interaction energy J f and its associated
figure f in the bulk alloy split into more members. For an
fcc alloy grown on a (001) substrate, figure 3 illustrates the
splitting of the first and second pair figures. On a bulk fcc
lattice, the 12 nearest neighbor figures connected to a lattice
site (i.e., the 12 solid and dashed bonds shown in the upper-left
plot) are equivalent. As for the epitaxial fcc lattice, the (001)
substrate constrains the figures on the substrate plane and thus
makes them distinct from the figures out of the plane. They
now split into two types: four equivalent pair figures on the
(001) plane and eight equivalent pair figures out of the (001)
plane (i.e., the solid and dashed lines in the lower-left corner
of figure 3). Similarly, the second nearest figures on the fcc
lattice (i.e., the 6 solid and dashed bonds shown on the upper-
right corner of figure 3) split into two types, four equivalent
figures on the (001) plane and two equivalent figures out of
the plane. For the substrate-coherent epitaxial alloy, we need
to reconstruct new figures and recalculate the {�̄ f (σ )} for
various atomic configurations.

Thirdly, for bulk fcc and bcc alloys, the constituent strain
energy �ECS(k̂, x) is calculated as the strain energy to obtain
lattice coherence at the interface k̂ of two semi-infinite slabs
AC and BC (with different equilibrium lattice constants aAC �=
aBC). The two semi-infinite slabs AC and BC are biaxially

strained to have the same lattice constant a⊥ at the interface
k̂ and freely relaxed along the perpendicular direction (to the
interface k̂). In the substrate-coherent epitaxial alloy, since the
interface k̂ is not necessary parallel to the substrate direction
Q̂, when forming the lattice coherence at interface k̂, the
free relaxation along the perpendicular direction would be
constrained by the substrate. Thus, not only the coherence at
interface k̂ but also the lattice coherence at the substrate-film
interface Q̂ should be considered.

The three differences between the bulk and the epitaxial
cluster expansions were treated in different ways in the past.
Wood and Zunger [7, 8] employed the fcc bulk cluster
expansion to describe the formation energy of the epitaxial
alloy Cu–Au and Ga(As, Sb). The interactions J were fitted
from the epitaxial formation energy �H epi(σ ) of a few ordered
structures (e.g., around five) calculated by the first-principles
method or the VFF model, where only one specific variant
of the ordered structures (with respect to the substrate) was
considered. The splitting of atomic configurations and figures
were not accounted for and the ECS(kσ ) was set to zero.
Teles and Ferreira et al [28] did first-principles calculations for
different variants of an ordered structure on a given substrate.
However, to avoid such splitting of σ and Js in their cluster
expansion, they expanded the averaged energies and also set
ECS(kσ ) = 0.

In this paper, we will present a method to consider
fully all the three effects: splitting of σ and J f , and the
calculation of �ECS(k̂, x) in the presence of a substrate. We
will take the epitaxial (Ga, In)N zinc-blende alloy grown
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Table 1. �̄ f (σ ) of the three epitaxial variants of the L10 compound on the tetragonal lattice (elongated fcc along (001) crystal direction).
�̄ f (σ ) of the bulk L10 compound on fcc lattice is shown for comparison.

Compounds Description 1st pair 2nd pair 3rd pair 4th pair 5th pair

fcc lattice

L10 {100} (AC)1/(BC)1 SL −0.33 1.0 −0.33 1.00 −0.33

Tetragonal lattice

L10-I (001) (AC)1/(BC)1 SL 1.00 −1.00 1.00 1.00 −1.00 1.00 1.00 1.00 1.00 −1.00
L10-II (100) (AC)1/(BC)1 SL −1.00 0.00 1.00 1.00 0.00 −1.00 −1.00 1.00 −1.00 0.00
L10-III (010) (AC)1/(BC)1 SL −1.00 0.00 1.00 1.00 0.00 −1.00 −1.00 1.00 −1.00 0.00

on a GaN(001) substrate as an example to demonstrate
our methodology. The thermodynamic properties of an
epitaxial (Ga, In)N zinc-blende alloy on a GaN(001) substrate
(e.g., the composition–temperature phase diagram and atomic
microstructures) have been discussed and compared with those
under other thermodynamic states (i.e., bulk-incoherent and
bulk-coherent) in [59].

2. Methodology: general cluster expansion for
epitaxial alloys

2.1. Formulation of cluster expansion for epitaxial formation
energy �H epi(σ )

2.1.1. Selection of underlying lattice type. The general for-
mulation of the MBCE has been summarized in equations (3)
and (6). In principle, the MBCE is applicable to alloys on any
Bravais lattice [44, 60], because for a given underlying lattice
the pseudospin product functions �̄ f of all figures f represent
a complete basis set in the configuration space [60]. In the case
of a semiconductor zinc-blende bulk alloy with alloyed species
existing on either the cation or the anion sublattice (e.g., (In,
Ga)As, Ga(As, Sb), etc.), the underlying Bravais lattice is
fcc. For the zinc-blende epitaxial alloy deposit on an (001)
substrate, we select the tetragonal fcc lattice elongated along
(001) direction, because of the natural relaxation of the cubic
fcc lattice caused by the constraint from the (001) substrate.
Such a selection naturally describes the split of J s in compar-
ison with bulk zinc-blende alloy (figure 3) and makes the epi-
taxial MBCE capable of distinguishing the different variants of
an ordered structure (figure 2) (i.e., the splitting of atomic con-
figuration). The same idea also applies to other epitaxial sys-
tems, including different lattice type (e.g., fcc, bcc, etc.) and
different substrates direction Q̂ (e.g., (110), (210), (111), etc.),
i.e., the underlying lattice of the epitaxial alloy can be selected
as the elongated/compressed lattice of its bulk alloy along the
substrate direction Q̂.

2.1.2. Generating figures and calculation of �̄ f (σ ). The
selected underlying lattice of an epitaxial alloy, normally, has
a lower symmetry than the underlying lattice of its bulk alloy.
The figures, which were symmetry equivalent in bulk, now split
into symmetry inequivalent figures under epitaxial conditions,
as depicted in figure 3 (for an epitaxial fcc alloy on a (001)
substrate). The determination of the new figure ‘classes’ can
be done by exhaustively searching combinations of different

lattice sites (on the selected underlying lattice) within a given
cut-off radius and applying the group symmetry operations (of
the underlying lattice) to remove the degeneracy.

For an epitaxial zinc-blende alloy grown on a (001)
substrate, we construct a pool of figures (belonging to the new
tetragonal fcc lattice), including 38 pair, 68 three-body, 40
four-body, 12 five-body and 6 six-body figures (in total 126
many-body figures) by gradually increasing their size in real
space. The �̄ f (σ ) of all the atomic configurations with up to
16 cations per unit cell are also calculated by an exhaustive
enumeration method [61]. Table 1 listed the calculated �̄ f (σ )

for the L10 compound on the tetragonal lattice (applied to the
epitaxial alloy) and compares them with the �̄ f (σ ) on a cubic
fcc lattice (applied to a bulk zinc-blende alloy). The �̄ f (σ ) of
the L10-I variant is different from those of L10-II and L10-III.

2.1.3. Constituent strain energy for epitaxial alloy. To
calculate the CS energy, �ECS(k̂, x), of the substrate-coherent
epitaxial alloy, not only the lattice coherence at the interface
k̂ of the two semi-infinite slabs AC + BC, which is required
for the bulk alloy, but also the constraint from the substrate Q̂
should be considered. A computational procedure is developed
and shown in the appendix. Once the CS energies of several
selected directions k̂ are calculated by the first-principles
method, we use spatial harmonic functions (with the same
symmetry as the underlying lattice) to fit the �ECS(k̂, x)

as a function of the spatial direction k̂. The coefficients
of the harmonic functions are fitted as polynomials of the
concentration x .

2.2. Fitting procedure

The number of terms needed to make an exact mapping of
�H epi

LDA(σ ) to equation (6) is 2N . In practice, some interactions
are more important (depending on the chemical system), thus
a truncated series of equation (6) may still give a good
approximation. We need to select which pair and many-body
figures are to kept in the truncated cluster expansion and decide
their corresponding interaction J s. This is done in such a way
that the resulting cluster expansion has a real prediction power,
besides simply fitting well the first-principles calculations of
a set of selected ordered structures. In other words, the
key issue is to find the best combination of figures with the
best prediction power. Intuitively, chemical and magnetic
interactions become weaker as the separation of lattice sites
in a figure increases. Therefore, some intuitive rules to select
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Figure 4. Flow chart of the iterative procedure used to establish the cluster expansion after figure 3, [48].

figures for a combination have been introduced [62, 63]: a
figure can be included in the combination only if (1) all the
figures having the same number of lattice sites but with a
smaller size have been included and (2) all its sub-figures
have been included. We apply this rule to our pair figure
selections. But it is not feasible to apply this rule for
many-body figures because of the exponential explosion of
the number of many-body figures with increasing size [45].
In practice, if we adopted such intuitive selection rule, the
affordable number of LDA input (e.g., ∼30–60) would make
it impossible to select the high-order many-body figures (e.g.,
4-body, 5-body, etc.), although there are well-established cases
where the many-body interactions are important even in simple
alloys [38, 64]. Instead, in our epitaxial cluster expansion,
a many-body (i.e., three-body, four-body, . . .) figure can be
selected for the combination without interference from other
figures. In summary, a pair figure can only be included in
the combination if all the pair figures with smaller size have
been included, while for a many-body figure it can be freely
included.

Our fitting procedure follows the strategy developed
in [45, 48, 65], which includes the two loops depicted in
figure 4. The inner loop is intended to find the best cluster
expansions, for a given set of input �H̃ epi

LDA(σ ), with the best

ability to predict the energies not included in the fitting. The
outer loop iteratively adds the newly predicted ground state
structures by the cluster expansions determined in the inner
loop to the LDA data pool. The outer loop is repeated until
the predicted ground state structures agree with the direct LDA
calculations. The outer loop, here, actually acts as a feedback
against spurious ground state predictions from the inner loop
and/or artificially found on the basis of too few input structures.
We will illustrate how this scheme works in section 3.

2.2.1. Inner loop: finding the best {J } from a given set of
{�H epi

LDA(σ )}. For each iteration in outer loop i , we provide
a set of input LDA energies (the total number is N (i)

tot ). To
calculate the prediction power of different cluster expansions,
we break N (i)

tot into two groups: a fitting group made up of
N (i)

fit structures and a non-overlapping prediction group made
up of N (i)

pred = N (i)
tot − N (i)

fit structures. By dividing the two

groups in different ways, we generate b(i) prediction sets. For
a cluster expansion with the given figures, we firstly determine
the interaction energy J s by fitting the LDA energies in the
fitting group. Secondly, we compare its predictions with the
direct LDA energies in the prediction group. The quality of the
prediction power is measured by the averaged prediction errors
over all the b(i) prediction sets. This gives the ‘leave-many-out

6
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cross validation score’ (CV):

CV(CEm) = 1

b(i)N (i)
pred

∑

b(i)sets

N (i)
pred∑

σ=1

|�H̃ epi
CEm

(σ ) − �H̃ epi
LDA(σ )|2.

(8)
In this paper, the size of the prediction set N (i)

pred is set roughly

to one third of the total size of the input N (i)
tot [48]. While it is

numerically prohibitive to use all
( N (i)

pred

N (i)
tot

)
possible prediction

sets, we can choose the prediction sets (and the value of b(i))
in such a way that each structure enters at least two prediction
sets. Once determined, the prediction set is kept unchanged
throughout the given outer loop iteration. The advantage of
the leave-many-out cross validation score has been discussed
in [46, 66].

The pair coefficients J pair
f of a cluster expansion are

determined using the ‘t − λ’ constrained fit [44], which allows
us to keep, in principle, an infinite number of pair terms. We
rewrite the pair interaction of equation (6) in reciprocal space
as ∑

f

Dpair
f J pair

f �̄
pair
f (σ ) =

∑

k

J (k)|Sσ (k)|2, (9)

where the sum is over a finite number of reciprocal space k
vectors in the Brillouin zone of the underlying lattice for which
S(k, σ ) is non-zero. We require J (k) to be a smooth function
and thus we define a ‘smoothness value’ M as

M = 1

α

∑

k

J (k)[−∇2
k]λ/2 J (k) = N

2α

∑

f

Rλ
f D f (J pair

f )2,

(10)
where the exponent λ is a free parameter and α is a
normalization constant:

α = N

2

∑

f

Rλ
f D f . (11)

The final objective function for fitting is then

Nfit∑

σ=1

wσ |�H̃ epi
CE (σ ) − �H̃ epi

LDA(σ )|2 + t M, (12)

where t is a Lagrangian multiplier. The {J pair
f } and {J MB

g }
of the cluster expansion are determined by minimizing
equation (12). The additional smooth function M naturally
favors short-range pair interactions over long-range pair
interactions; which is physical sensible. We access different
values of t, λ and npair by means of the CV score to find
the optimal {t, λ, npair} for a given combination of many-body
figures.

We find the best combination of many-body figures in
the inner loop via the genetic algorithm (GA). To do so, a
large pool of many-body figures is constructed including more
than 100 different types, much more than we will need (e.g.,
we will end up using only 8 many-body figures for the (Ga,
In)N alloy on a GaN(001) substrate). Then we impose a
restriction that NMB many-body interactions be non-zero in the
CE fit. The optimal combination of these NMB non-zero figures

is then explored by the GA using the procedure established
in [65]. In this procedure, a ‘population’, consisting of Npop

members. evolves over a number of generations, with mating,
mutation and adjustment steps [65] to replace the least-fit
(1 − rs)Npop CE individuals (i.e., those with large CV scores)
with new, better individuals. In [65], it is found that the
GA performance is not sensitive to the survival rate rs but
to the mutation rate and the ‘lock-out’ strategy which bring
the GA out of deep local minima in the searching space.
We adopted the parameters established in [65], including the
average ‘mutation rate’ of two mutations per new individual
and ‘lock-out’ after ∼100 locked-in generations. The GA was
performed at different NMB to find the optimal value Nopt

MB by
means of the CV score.

2.2.2. Outer loop: the ground state search and adding
more {�H epi

LDA(σ )}. Although the usage of the CV score
is statistically helpful to avoid over-fitting and quantify the
prediction power [62], there is still a risk of finding a cluster
expansion which happens to have a low CV score because of
limited LDA input. This situation can be eliminated in the
outer loop, where we will analyze the predictions of several
cluster expansion candidates with low CV scores, instead of
the one with the lowest value, to minimize the influence of
over-fitting. At each iteration of the outer loop, we determine
the number Nopt

MB sufficient to obtain a low CV score and select
a set of best cluster expansions with a number of many-body
figures close to Nopt

MB. We then analyze the predicted energetics,
especially the predicted ground state structures by this set of
cluster expansions. Some of these newly predicted ground
states are selected (based on some criteria described later) and
calculated by the first-principles method. Their LDA energies
are included in the next outer loop iteration. This ensures the
redundancy of the input data used for fitting, resulting in a more
reliable prediction.

Ground state structures are the phases that appear in
the composition (x)—temperature (T ) phase diagram as
stable ordered phases at low temperature. The ground
state structures characterize the thermodynamic properties and
the microstructures of an alloy system and thus determine
its mechanical, electronic, optical and magnetic properties.
Finding the ground state structure is a classical problem in
an inorganic solid state [67], metallurgy [68], and solid-state
physics [38]. The outer loop, here, acts as a driving engine that
helps us navigate through the configurational space, directing
us to the ground state structures that are consistent with the
direct LDA calculations.

At the end of each inner loop, we get a set of cluster
expansion candidates from a given set of input structures.
Then a ground state search is carried out with this set of CE
candidates by calculating the �H epi

CE (σ ) of all 2N structures
up to, e.g., N = 16 cations per unit cell. This includes two
steps: Firstly, we find the lowest energy structure σx at each
concentration x (a finite number with a limited size of unit
cell). It should be noted that not all these σx are ground states
because they may be unstable with respect to disproportion
into structures σx′ and σx′′ at some other concentration x ′
and x ′′. Secondly, we build up a convex hull connecting the
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Table 2. LDA epitaxial formation energies (meV/cation) of (Ga, In)N compounds grown on a GaN(001) substrate used as the input to the
first iteration of the cluster expansion. For comparison, the bulk formation energies of (Ga, In)N bulk compounds are shown in the parenthesis
following the structure name. Symmetry-equivalent variants of a given superlattice compound on an fcc lattice now split into distinct
structures when grown on a (001) substrate (e.g., the L10 structure shown in figure 2). Here, {· · ·} represents the symmetry-equivalent
superlattice directions on a cubic fcc lattice, whereas (· · ·) represents the distinct superlattice directions when grown on the (001) substrate.
For example, {100} represents (100), (010) and (001) crystal directions, which are symmetry equivalent on the fcc lattice, while the (100) and
(001) are distinct crystal directions due to the (001) substrate.

Superlattice structures

{100} {110} {111} {201} {311}
(100) (001) (110) (011) (021) (210) (102) (131) (113)
Variant-II Variant-I Variant-II Variant-I (111) Variant-I Variant-II Variant-III Variant-I Variant-II Others

(GaN)3/(InN)1 Z1 (66.98) Y1 (63.46) V1 (119.688) D022 (52.10) W1 (78.00) L12 (84.59)
9.10 −0.38 0.72 3.65 65.32 −8.35 −10.3 −10.3 20.27 16.72 26.87

(GaN)2/(InN)1 β1 (80.87) γ1 (51.58) α1 (150.45)
18.63 0.63 −30.37 −23.54 80.33

(GaN)1/(InN)1 L10 (93.51) L11 (153.803)
29.57 −0.63 85.22

(GaN)2/(InN)2 Z2 (90.14) Y2 (74.01) V2 (156.65) CH (39.22) W2 (68.18)
28.54 0.29 1.02 −6.06 91.74 −24.31 −57.53 −57.53 −6.33 −23.58

(GaN)1/(InN)2 β2 (83.05) γ2 (55.73) α2 (136.09)
35.41 −3.06 −25.69 −9.89 80.64

(GaN)1/(InN)3 Z1 (69.81) Y1 (59.20) V1 (113.25) D022 (36.94) W1 (69.62) L12 (59.36)
32.66 −1.59 2.78 −1.87 66.18 −13.02 −25.62 −25.62 18.48 3.91 4.63

ground state structures so that all other structures have an
energy higher than the connecting ‘tie-line’. Such a direct
enumeration approach limits the size of the unit cell we visit.
In this paper, it is done up to N = 16 (about 105 structures).
For practical reason, in the first few outer loop iterations, we
even restricted the search to N = 12 cations per unit cell.

Following the strategy developed in [48], two quantities
are crucial in deciding which newly predicted ground state
structures will be included in the next iteration: the prediction
frequency and the energy depth. The prediction frequency is
defined as the frequency of occurrence of a given structure
in the predictions of the different CE candidates. The energy
depth, �(m)

σ , is the energy difference of a predicted ground state
structure σ from the tie-line connecting the two neighboring
ground states of the same cluster expansion candidate CEm .
It is used as a measure of the importance of a ground state
structure. In this paper, we adopt the following criteria to select
structures to be calculated by the first-principles method and
added as input in the next outer loop iteration. (1) if a structure
is predicted both frequently (>30%) and is energetically deep
(�(m)

σ > 1.5 meV/cation), it will be included. (2) If a structure
is predicted either frequently or is energetically deep, it will
be included if its size is less than 8 cations per unit cell. (3)
A structure will be included if it persists through several outer
loop iterations, even if it is predicted neither frequently nor is
energetically deep. Such criteria will help us include the deep
ground states early in the outer loop iteration and at the same
time, generally speaking, not miss the important but shallow
states.

The outer loop iteration is terminated when the following
criteria are satisfied: (1) there are no new predicted ground
states whose energy are not already included, calculated by
the first-principles method, and (2) there is a good agreement

between the �H epi
LDA(σ ) and �H epi

CE (σ ) (several times the CV
score) for all the input structures. When these criteria are
satisfied, we select the one that gives the best description of
the ground states of the LDA results.

2.3. Calculation of �H epi
LDA(σ )

The formation energy �H epi
LDA(σ ) (equation (2)) is calculated

using first-principles density functional theory with the local
density approximation (LDA) [69]. We use the ultrasoft
pseudopotential and plane wave basis set as implemented in
the VASP code [70]. The Brillouin zone is sampled with
Monkhorst–Pack k-point meshes with roughly constant mesh
densities corresponding to 9 × 9 × 9 for the fcc unit cell. The
basis set cut-off energy is set as 435 eV. Convergence tests
for InN, GaN and In3Ga1N4 L12 structures show that, with
these settings, the error bound of the formation energy is about
1 meV/cation. During the calculations, the unit cell lattice
constant of configuration σ on the substrate plane is fixed as
asub while relaxation along the direction perpendicular to the
substrate and atomic relaxation inside the unit cell are allowed.

The LDA inputs for the 1st outer loop iteration are listed
in table 2 and compared with the formation energy �H bulk

LDA(σ )

of the bulk alloy (data in the parenthesis). These inputs
cover almost all the 4-cation unit cell structures, most of
which are well-defined layered structures along some given
crystal direction, i.e., the superlattice (SL). It is clear that
the symmetry-equivalent variants of a given structure σ of
the bulk alloy (i.e., the fcc lattice) now split into distinct
structures (shown as the multi-columns under the name of the
structure in table 2). The formation energy of the epitaxial
alloy (equation (2)) drastically decreases in comparison with
the bulk formation energy (equation (1)) and even becomes

8
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Figure 5. Selection of pair interaction by minimizing the prediction score for (a) the best CE candidate in the outer loop iteration = 1 and
(b) the final CE iteration = 5.

negative. Generally, (201) superlattice structures have both
lower �H epi

LDA(σ ) and �H bulk
LDA(σ ), while (111) superlattice

structures have the highest values.

2.4. Calculation of Warren–Cowley short-range order

In disordered solid solutions, the occupations of lattice sites
by different type of atoms are not perfectly random (especially
at a temperature close to the phase boundary at a given alloy
concentration). Instead, local ordering or local clustering
takes place, which is referred to as short-range order (SRO).
SRO can serve as the fingerprint of the ordering or phase-
separation tendencies of an alloy system. One way to quantify
the degree of such short-range ordering is the Warren–Cowley

SRO parameters:

α(Rlmn)(x, T ) = 1 − P(A/B)(Rlmn)

x
, (13)

where P(A/B)(Rlmn) is the conditional probability that an A
atom is at origin while a B atom is on site (lmn). This
probability depends on concentration and temperature, thus
leading to an x-dependence and T -dependence of α. If the
alloy is perfectly random, the conditional probability PA/B is
equal to x and thus α = 0. The departure of α from 0 is,
therefore, an sign that correlations between lattice sites exist
in the disordered solid solution. A positive α indicates local
clustering, while a negative α suggests local anti-clustering.
From the definition equation (13), α(R000) = 0. All others are

9
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Figure 6. Genetic algorithm (GA) search for the optimal many-body interaction type. The search is repeated for different values of maximum
number of many-body figures; shown are examples for (a) NMB = 8 in first iteration and (b) NMB = 8 in the last iteration.

Figure 7. The prediction errors (CV score) of CE candidates found by GA (a) in first outer loop, and (b) in the final iteration, versus the
maximum number of many-body figures that the GA is allowed to use.

then related to the pair �
pair
Rlmn

as

α(Rlmn) = 〈�̄pair
Rlmn

〉 − (2x − 1)2

1 − (2x − 1)2
. (14)

In diffraction experiments, short-range ordering does not give
superstructure reflections, but gives rise to modulations in the
monotonic Laue background. Using the diffuse scattering
technique, one can examine these modulations between the
Bragg peaks and extract the intensity portion, I SRO

diffuse, which
is proportional to the lattice Fourier transform of the Warren–
Cowley SRO:

I SRO
diffuse ∝ α(x, T, k) =

nR∑

lmn

αRlmn eik·Rlmn . (15)

In this paper, we will calculate the SRO of (In, Ga)N
epitaxial alloys at different compositions under a typical
growth temperature by Monte Carlo simulations using the
obtained CE as the energy functional.

3. Applications

(Ga, In)N semiconductor alloy has attracted great attention
in the past decade due to its successful applications in blue
and green light LEDs and laser diodes [71, 72]. It can be
fabricated experimentally in both wurtzite (WZ) [72] and zinc-
blende (ZB) [73–76] structures. Due to the structural similarity
(e.g., WZ and ZB differ only in the relative handedness of
the fourth interatomic bond along the (111) chain), the energy

10
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Figure 8. Results for the direct exhaustive enumeration ground state search for the cluster expansions with the lowest CV score in the first
iteration (IT = 1) and the last iteration (IT = 5).

Figure 9. Energy interaction parameters defining our final cluster expansion (CE) for a (Ga, In)N epitaxial alloy on a GaN(001) substrate: (a)
CE interaction parameters in real space including pair interactions (top left) and many-body interactions (top right). The many-body figures
are shown in the bottom part. (b) Constituent strain (CS) energy. The left part shows the CS energy versus In concentration for some selected
directions. The right part shows the spatial dependence of CS energy at In concentration x = 0.50.
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difference between WZ and ZB structures is small. For GaN,
the energy of the WZ structure is ∼12 meV/atom lower than
that of the ZB structure [77]. The thermodynamic properties
of the (Ga, In)N bulk alloy in WZ and ZB formats are also
similar. The miscibility gap temperature calculated by the first-
principles method for WZ (Ga, In)N is about 1848 K [78],
while in ZB format miscibility gap temperature is 1870 K [59].
Despite these structural and thermodynamic similarities, their
electronic properties can be quite different. In ZB (Ga, In)N,
the piezo-electric polarization in the (001) growth direction
does not exist, while in WZ (Ga, In)N there is a piezo-electric
polarization field in the (0001) growth direction. Therefore, it
has been suggested recently that the investigation of ZB (Ga,
In)N will allow us to understand the precise mechanism of
light generation in the alloy [79]. In the rest of this paper,
we will take the (Ga, In)N zinc-blende epitaxial alloy grown
on a GaN(001) substrate as an example to show the detailed
procedures of our method.

3.1. Inner loop: identification of figures and interaction
energies

We show an example of the selection of pair figures with the
help of the t–λ criteria in figure 5 for the two best cluster
expansion candidates in the first and last outer loop iterations.
The smooth condition in the fit (equations (9)–(12)) allows one
to use a large number of pair interactions without over-fitting.
Figure 5 illustrates how the CV score (prediction power) varies
with the parameters. From the plot, we find in the first outer
loop iteration, the CV score is minimized at npair = 15 (with
t = 4, λ = 4) and in the last iteration, we obtain npair = 22
(with t = 6 and λ = 2).

The selections of many-body figures in the first and last
outer loop iteration are illustrated in figures 6 and 7. Figure 6
shows the selection of many-body figures with the total number
fixed as NMB = 8 via the GA. Since the LDA input is
limited, generally, there will more than one possible ‘family’
of many-body figures which yields a low CV, i.e., a set of
good cluster expansion candidates differs by a very few figures
within a family while it differ by several figures between
families. To find different ‘families’, we adopted the lock-out
mechanism [45, 65]. The GA is periodically restarted when
a low CV solution persists for too long (in this paper, 100
generations). This solution is then locked out and is forbidden
in the remaining run. Such a lock-out and restart procedure is
clearly seen in figure 6 (i.e., the abrupt change when a cluster
expansion with the lowest CV persists for long time). The GA
run is continued until the new locked-out candidates appear
with consistently higher CV scores than those already known
(typically ∼3000–5000 generations).

Figure 7 depicts the selection of the optimal Nopt
MB, i.e.,

the total number of many-body figures in a cluster expansion.
Every cross symbol represents one locked-out candidate in the
GA search (figure 6). The CV score first decreases with an
increase of NMB, and then increases, or flattens out, where we
identify the optimal Nopt

MB. In first and last outer loop iteration,
optimal Nopt

MB = 7 and Nopt
MB = 8 respectively. We use the

cluster expansions around Nopt
MB as candidates to predict ground

state structures.

Figure 10. The final ground state structures of a (Ga, In)N
zinc-blende alloy on a GaN(001) substrate. Two (210) superlattice
structures: (InN)2/(GaN)2 (CH-II) at x = 0.50 and (InN)4/(GaN)1 at
x = 0.80 are predicted as the ground states.

3.2. Outer loop: searching ground state structures

Figure 8 shows the global view of �H epi
CE (σ ) for a (Ga,

In)N epitaxial alloy on a GaN(001) substrate spanning
∼O(216) configurations, which are obtained by an exhaustive
enumeration method, using the best cluster expansion
candidates in the first (IT = 1) and the last outer loop iteration
(IT = 5). The convex hull is drawn as the solid line and
the predicted ground structures are also labeled. We repeat
the ground state search for several other cluster expansion
candidates to overcome the over-fitting situation. For the first
iteration, the predictions are summarized in table 3. Since
different cluster expansions give different predictions, we list
the predicted fraction for every structure predicted by the CE
candidates. Also the lowest energy depth is listed. There
are eight structures (highlighted in table 3) satisfying the
‘importance’ criteria set up in section 2.2.2. These structures
will be taken as the ground state structures predicted in the first
iteration. Since CH-II has been included in the first iteration,
the total energies of the remaining seven structures will be
calculated with the first-principles method and then their
epitaxial formation energies (equation (2)) will be included in
the second iteration.

The outer loop is repeated with the LDA inputs of the
newly predicted ground states from the previous iteration
until the final convergence. The LDA energies added at
each outer loop iteration are summarized in table 4. The
outer loop is continued until the fifth iteration to reach the
termination criteria set up in section 2.2.2. The final CV score
is 3.04 meV/cation and the maximum prediction error of all
the LDA input structures is 4.19 meV/cation. Statistically, the
CV score is regarded as a measure of the prediction power.
However, our LDA input is limited and a large portion of the
LDA inputs are low energy structures (referring to the criteria
adopted to add LDA inputs during the outer loop). It is better
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Table 3. First iteration: the ground state predictions of the ten CE candidates analyzed in the first iteration of the outer loop, compared with
the LDA data. For each structure σ we indicate how many CE candidates predict it as the ground state (i.e., how often), the lowest prediction
depth, and the range of �H epi

CE (σ ) given by the CE candidates. Ground state predictions satisfying our criteria (i)–(iv) are highlighted in bold.
In the last two columns, ‘n/a’ means that no LDA calculations were performed for the indicated structure. Note that while all candidates have
low CV score, their ground state predictions are not very consistent, indicating that further iterations are necessary.

Structure CE predictions LDA data
�H epi

CE (meV)

x Name Description How often (%)
Lowest depth
(meV) Min Max �H epi

LDA (meV)
Convex hull
breaking point?

0.1000 #1132-II 30 −2.06 −26.72 +0.45 N/a N/a
0.1250 #298-II A7B1 30 −2.91 −30.83 +1.09 N/a N/a
0.2500 #313-II A6B2 40 −1.60 −31.32 −16.61 N/a N/a
0.3333 #4430-II 10 −1.15 −44.82 −25.95 N/a N/a
0.5000 CH-II (210) A2B2 SL 90 −36.83 −56.61 −55.19 −57.5345 Yes

#359-II A4B4 10 −66.68 −88.72 −7.54 N/a N/a
0.8000 #−30 (201) AB4 SL 60 −9.95 −38.51 −30.78 N/a N/a
0.8182 #−1873-III 40 −0.03 −40.78 −26.24 N/a N/a
0.8333 #−4764-II 10 −1.44 −41.92 −21.71 N/a N/a

#−72-III 40 −0.38 −42.63 −22.42 N/a N/a
0.8750 #−290-II A1B7 10 −1.07 −38.94 −12.91 N/a N/a

#−360-II 10 −32.65 −46.49 −15.43 N/a N/a
#−298-II 20 −3.30 −43.62 −11.78 N/a N/a

Table 4. Summary of the LDA formation energies �H epi
LDA(σ ) (in meV/cation) of the structures added as input over the iterations of the outer

CE loop. Also shown are the range of predicted �H epi
CE (σ ) at the step that caused the structure to be included into the next iteration and the

predicted �H epi
CE (σ ) of the last CE.

x Structure Description �H epi
CE (σ ) �H epi

LDA(σ ) Final CE

Iteration 2

1/10 A9B (310) A9B SL −26.72 to 0.45 −2.03810 −1.0
1/8 A7B (310) A7B SL −30.83 to 1.09 1.077 −0.6
1/4 A6B2 (210) BA2BA4 −31.32 to −16.61 −26.79 −25.1
1/2 A4B4 Non-SL −88.72 to −7.54 −9.486 −10.3
4/5 AB4 (201) AB4 SL −38.51 to −30.78 −21.354 −19.4
7/8 AB7 (312) AB7 SL −46.69 to −15.43 −4.81 −4.2
7/8 AB7 (310) AB7 SL −43.62 to −11.78 −7.634 −8.7

Iteration 3

1/5 A4B (210) A4B SL −25.79 to −19.88 −21.07 −20.61
1/3 A8B4 (410) (BA3)2B2A2 SL −43.03 to −35.30 −26.58 −28.00
2/5 A3B2 (210) A3B2 SL −48.24 to −41.21 −34.3 −34.19
2/3 A4B8 (410) (AB3)2A2B2 SL −49.51 to −41.56 −34.55 −35.02
4/5 AB4 (210) AB4 SL −38.73 to −26.92 −27.92 −27.93

Iteration 4

7/15 A8B7 (102) (B2A2)3BA2 SL −56.07 to −52.90 −48.10 −49.92
8/15 A7B8 (102) (A2B2)3AB2 SL −56.52 to −53.01 −46.77 −49.18

Iteration 5

1/4 A6B2 (102) BA2BA4 SL −30.02 to −26.34 −22.28 −24.46
9/13 A4B9 (123) (AB2)3AB3 SL −41.23 to −38.31 −25.92 −30.12

Table 5. Percentage of the cluster expansions correctly predicting the final ground state structures in each outer loop iteration.

N = 46 N = 53 N = 58 N = 60 N = 62
Composition Structure IT = 1 IT = 2 IT = 3 IT = 4 IT = 5

In2Ga2N4 (210) A2B2 SL 90% 100% 83% 100% 100%
In4GaN5 (210) AB4 SL 0% 91% 91% 62% 100%

to test the prediction of higher energy structures away from
the convex hull. We did LDA calculations for 10 randomly
selected high energy structures. The average prediction error

is 3.87 meV/cation and the biggest error is 9.31 meV/cation.
The details of the final cluster expansion will be discussed in
next section. Table 5 shows the prediction frequency of the
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Figure 11. Fourier transform of the Warren–Cowley short-range-order parameter of the (Ga, In)N solid solution at different concentrations at
T = 1200 K. The peaks at (1 1

2 0) points indicate ordering along the (210) crystal direction. Some figures are scaled to aid visualization and
the scaling factors are labeled.

two identified ground state structures in the history of outer
loop iteration. From tables 2, 4 and 5, we can find the ground
state structure (InN)2/(GaN)2 (CH-II) is included in the initial
LDA input and always keeps its high prediction frequency
throughout the outer loop iterations. The (InN)4/(GaN)1 is
not included in the initial input, and even not predicted in the
first iteration. Its prediction appears in the second iteration
and its LDA input is thus included in the third iteration. This
case justifies the necessity of the outer loop, i.e., searching for
ground states via the calculations of the LDA energy of some
intuitively selected structures might miss the real ground state.

4. Ensuing physics of the (Ga, In)N epitaxial alloy on
a GaN(001) substrate

The interaction energies J and the ground state structures
identified in the final cluster expansion are depicted in figures 9
and 10. Figure 9(a) shows the numerical values of pair
and many-body interaction energies and the geometry of the
selected many-body figures in real space. Figure 9(b) shows
the constituent strain energy defined in equation (4). It is worth
noting that the pair and many-body interactions only determine
�H̃ epi

CE (σ ), so that the constituent strain energy should be

added back to get �H epi
CE (σ ). The left panel of figure 9

shows the concentration dependence of the �ECS(x, k̂) for
some principal directions. The right panel shows the spatial

dependence of the constituent strain energy �ECS(x, k̂) at
x = 0.50. It is clear that �ECS(x, k̂) shares the tetragonal
symmetry of the underlying lattice (i.e., an elongated fcc lattice
along the (001) direction).

Two (210) superlattice structures are identified as the
ground states and illustrated in figure 10: (InN)2/(GaN)2

(CH-II) and (InN)4/(GaN)1. As we discussed previously, the
existence of a substrate removes the symmetry degeneracy
of a structure on the fcc lattice. The counterparts of these
two structures, but along the (102) and (021) (i.e., variant-
I and variant-III, respectively) crystal directions, are not
ground states. It is very interesting to note that for most
of the III–V zinc-blende bulk semiconductor alloys (with
non-negligible lattice mismatch), it has been observed that
the (210) superlattice structures are the best to accommodate
strain from the lattice mismatch between the two constituents
in comparison with all the other structures at the same
concentration [56, 58, 80, 81]. We find that the same pattern
persists in the (Ga, In)N epitaxial alloy on a GaN(001)
substrate.

With the obtained cluster expansion, we calculated the
Warren–Cowley SRO in the reciprocal space at T = 1200 K at
different concentrations x = 0.05, 0.50 and 0.80 (figure 11).
The strong peaks at (1 1

2 0) indicate the ordering tendencies of
the two identified (210) superlattice ground state structures. At
low concentration x = 0.05, the non-zero 
 point is a sign of
GaN clustering.
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5. Summary

In this paper, we developed a cluster expansion method to
describe the thermodynamic properties of a substrate-coherent
epitaxial alloy and apply it to a (In, Ga)N zinc-blende alloy
grown on a GaN(001) substrate. Our developed cluster
expansion approach is fully capable of considering the three
new features of epitaxial alloys in comparison with the bulk
alloys: (1) more than one distinct epitaxial structure σepi from
one bulk configuration σbulk, (2) splitting of the figures, and
(3) the constituent strain energy calculation in the presence
of a substrate. The underlying lattice of the epitaxial alloy
is selected as the elongated/compressed lattice of its bulk
alloy along the substrate directions Q̂. Such a selection will
make the cluster expansion (equations (3) and (6)) naturally
distinguish the distinct epitaxial structures from one atomic
bulk configuration. The algorithm for the constituent strain
energy calculation described in the appendix considers the
lattice coherence at both the (AC)m /(BC)n interface k̂ and the
substrate–film interface Q̂.

We take the (In, Ga)N epitaxial alloy grown on a
GaN(001) substrate as an example to demonstrate this method.
We follow the strategy developed in [45, 48] to determine the
parameters defining our epitaxial cluster expansion from the
first-principles calculations. The fitting consists of two loops.
The inner loop selects the best combination of figures with the
best prediction power based on a set of {�H epi

LDA(σ )}. The
outer loop searches the ground state structures from the cluster
expansion determined in the inner loop and adds the newly
predicted ground state structures into the next iteration. This
procedure is repeated until our cluster expansion predictions
agree with the ground states calculated by the first-principles
method.

Using the obtained cluster expansion, two ground state
structures are identified: the (InN)2/(GaN)2 (210) superlattice
(CH) and the (InN)4/(GaN)1 (210) superlattice. Our results
show that the presence of a substrate indeed radically alters
the thermodynamics of the (In, Ga)N alloy, converting it from
a phase separation to an ordered system. To facilitate the
detection of the ordering tendency in this substrate-coherent
epitaxial alloy, we also calculated the Warren–Cowley short-
range order parameter of the disordered solid solution above
the phase transition temperature. The strong ordering peaks
are consistent with the superlattice directions of the identified
ground states.
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Appendix

The cluster expansion approach has been successfully
employed to describe the total energy (as a function of atomic
configurations) of binary or quasi-binary alloys. In many cases,
it is found that keeping only a set of finite size figures (in

three-dimensional real space) in equations (3) and (6) can yield
good accuracy. This is consistent to the intuition that the inter-
atom chemical and magnetic interactions degrade rapidly with
increasing atomic distances. However, for the inherent long-
range interactions, such as the elastic energy due to the size
mismatch of the two alloying constituents AC and BC, such
a finite-ranged cluster expansion fails. A well-known case is
the energy of a long period superlattice structure (AC)m /(BC)n

( m
m+n = x and m, n = ∞). The superlattice energy is the

combined epitaxial strain energy of both the AC and BC region,
both of which are distorted to fit a common lattice constant a⊥
at the interface k̂, but are free to relax in the perpendicular
direction. A finite-ranged CE is completely incapable of
capturing such a long period superlattice energy. The reason
for this failure is simple: the CE sees all A atoms that are
far from interface as if they were in bulk AC crystal, since
the figures of the finite-ranged CE connect them exclusively
to other A atoms. In the same way, the CE treat almost all the
B atoms as in bulk BC. Therefore, the final CE prediction for
formation energy �H is zero (the formation energy of bulk AC
and BC). A mixed-basis cluster expansion (equation (3)) is thus
introduced to remedy the failure of such a finite-ranged CE, in
which the pair interactions are expanded in reciprocal space
(for details, please refer to [44]) to take the elastic energy into
consideration. The key quantity in equation (3) is the so called
constituent strain energy �ECS(k̂, x), which is defined as the
strain energy of the long period limit superlattice (AC)m /(BC)n

(x = n
m+n ) along k̂.

Calculating the constituent strain energy �ECS(k̂, x) is
crucial in the mixed-basis cluster expansion. In valence
force field (VFF) model calculations, the strain energy
of the superlattice (AC)m /(BC)n converges fairly slowly
with respect to periodicity m and n, often up to 50–100.
Direct large supercell calculations to obtain the CS energy
�ECS(k̂, x) are, therefore, not feasible, especially for first-
principles calculations. In fact, the AC and BC region
inside the superlattice are homogeneously deformed from the
two constituents AC and BC at their own equilibrium lattice
constant. The deformations inside AC and BC are different,
but they are correlated in such a way that the AC and BC slabs
form a lattice coherent superlattice (AC)m /(BC)n in the crystal
direction k̂. If we can derive such correlated deformations, the
superlattice strain energy is just the product of the volume with
the strain energy of the deformed unit cells of AC and BC.
For the bulk fcc and bcc alloys, such correlated deformations
have been obtained in [44], where the AC and BC unit cell
are biaxially deformed to share the same lattice constant a⊥ at
interface k̂ and a free relaxation is allowed in the perpendicular
directions (to k̂). In the epitaxial alloy, substrate coherence
requires the superlattice (AC)m /(BC)n to have the unit cell
lattice constant as substrate asub on the substrate plane Q̂,
whereas atomic relaxation is allowed inside the unit cell. Thus,
in addition to forming a lattice coherent at k̂, the correlated
deformation of AC and BC should also consider the constraint
from the substrate. This appendix will address this issue.

A.1. Derivation for the (001) substrate

In this section, we will restrict our derivation to the case of
the (001) substrate. The extension to other substrates will be
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Figure A.1. (a) Sketch of the two constituents AC and BC grown on the substrate. The lattice constants on the substrate plane are fixed as the
substrate lattice constant, whereas a structural relaxation in the perpendicular direction is allowed. Consequently, crystal planes with the same
index in these two constituents do not match each other. (b) The two as-cut slabs of (AC)n and (BC)m . The energy cost (per atom) to obtain
lattice coherence at the interface is defined as the constituent strain energy when n and m approach infinity.

discussed at the end of this appendix. The starting point is
the AC and BC deposited on a (001) substrate, respectively,
as illustrated in figure A.1(a), where a relaxation in the Q̂
direction is allowed so that the c/a ratio of the AC and BC unit
cells are generally different. The same index (l, m, n) interface
of AC and BC will then have different lattice constants in
the plane and different angles to the substrate (as the (111)
interface shown in figure A.1(a)). The sketch of the two as-
cut (AC)m and (BC)n slabs with the (l, m, n) interface are
shown in figure A.1(b), where they extend infinitely along the
y ′ direction and are periodically repeated in the x ′ direction.
Now we need to deform these two slabs separately to form a
lattice coherence at both the k̂ and Q̂ interfaces as explained
earlier.

Deformation of a solid can be described by a deformation
tensor F. For a infinitesimal vector dx under deformation F, it
becomes dx′ = F · dx. There are nine independent elements in
this tensor. For the (AC)m and (BC)n slabs, there will generally
be 18 independent elements. To describe the deformation more
easily, we build up two Cartesian coordinate systems. The
global xyz coordinates are built up with the z axis along the
substrate plane direction (001) and the x and y axes along the
cubic crystal direction (100) and (010). The local coordinates
x ′y ′z′ are set up with the y ′ axis along the intersection line of
the interface k̂ and Q̂ and the z ′ axis along the substrate plane
direction (001). The elements of the tensor F in the global and
local coordinates will be expressed by symbols Fi j and fi j ,
respectively.

In the local coordinates x ′y ′z′, the deformation along the
y ′ direction is fixed, i.e., f22 = 0 due to the constraint from
the substrate. When the superlattice orientation k̂ is along a
high symmetry direction, such as (110), (111) or (100) on the

(001) substrate, the x ′z′ plane becomes a mirror plane, and thus
the f12 = f21 = f23 = f32 = 0. Only the deformations
inside the x ′z′ plane ( f11, f33, f13 and f31) are non-zero. This
drastically reduces the complexity of the deformation. Here
we assume f12 = f21 = f23 = f32 = 0 hold for any
other orientations (lmn). We will show later that this ‘plane-
deformation approximation’ only introduces a small error (e.g.,
2 meV/cation).

To form lattice coherence at the interface k̂ in the presence
of a substrate, we deform the (AC)m and (BC)n slabs in three
steps as schematically shown in figure A.2. The first step is
to match the interfaces k̂ by uniformly stretching/depressing
AC/BC in the z ′ direction, i.e., f33 �= 1 (equation (16)). The
second step is to relax the structure by moving the interface
k (i.e., f11 �= 1) and preserving the unit cell vector length
(i.e., | �ab| unchanged, due to the constraint from the substrate)
(equation (17)). The third step is to relax the structure by
shearing (i.e., f13 �= 0 and f31 �= 0). We also need to remove
the rigid rotation along the y ′ axis because such a rotation does
not make a contribution to the strain energy (equation (18)).

FA · ( �OhA) = FB · ( �OhB) (16)

|FA · ( �Oa) · �e′
x − FB · ( �Ob) · �e′

x | = | �ab| (17)

FA · ( �Oa) · �e′
z = FB · ( �Ob) · �e′

z (18)

In terms of the deformation tensor, we have

f B
33 = − f A

31 cos φ + xcA f A
33 sin φ

xcB sin φ
(19)

f B
11 = 1 − (1 − x) f A

11

x
(20)
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Figure A.2. The three steps of the ‘plane-deformation’ of the two slabs to obtain the lattice coherence at the interface k̂ = (lmn) and at the
substrate plane Q̂. Cartesian coordinates x ′ y′z′ represent the local coordinates x ′ y′z′ in figure A.1. The thick bold lines represent the interface
(lmn) of each slab. Plane x ′ y′ represents the substrate plane Q̂.

f B
13 = (1 − f A

11) cos φ + xcA f A
13 sin φ

xcB sin φ
(21)

f B
31 = − (1 − x)

x
f A
31 (22)

where cA and cB are the c/a ratio of the AC and BC unit cells
respectively and x = n/(m + n). φ and the θ are the Euler
angles of the interface (lmn) in the global xyz coordinates:
φ = arccos( l√

l2+m2
) and θ = arccos( n√

l2+m2+n2
). In the global

coordinates xyz, the deformation tensors can be expressed as:

FA =
⎡

⎣
1
2 [1 + f A

11 + ( f A
11 − 1) cos 2θ ]

1
2 ( f A

11 − 1) sin 2θ

f A
31 cos θ

1
2 ( f A

11 − 1) sin 2θ f A
13 cos θ

1
2 [1 + f A

11 + (1 − f A
11) cos 2θ ] f A

13 sin θ

f A
31 sin θ f A

33

⎤

⎦ (23)

FB =
⎡

⎣
1 + 1−x

x (1 − f A
11) cos2 θ 1−x

2x (1 − f A
11) sin 2θ

1−x
2x (1 − f A

11) sin 2θ 1 + 1−x
x (1 − f A

11) sin2 θ

− 1−x
x f A

31 cos θ − 1−x
x f A

31 sin θ
(

(1− f A
11) cos φ+xcA f A

13 sin φ

xcB sin φ

)
cos θ

(
(1− f A

11) cos φ+xcA f A
13 sin φ

xcB sin φ

)
sin θ

xcA f A
33 sin φ− f A

31 cos φ

xcB sin φ

⎤
⎥⎥⎦ . (24)

Under such deformations, the (AC)m and (BC)n slabs will
form lattice coherence at interfaces k̂ and Q̂. There are only
four free elements in FA and FB, i.e., f A

11, f A
33, f A

13 and f A
31.

Strain energies can be calculated for the AC and BC unit
cells with deformation FA and FB in equation (23) with a total
energy functional, such as, VFF, the first-principles method
etc. The constituent strain energy is the minimal value of the
concentration weighted average of the strain energies of the
AC and BC unit cells with respect to the four free elements
of the deformation tensor. In this paper, we obtain the CS
energy by exploring a discrete grid mesh in the parameter space
composed of the four free deformation tensor elements.

The directly calculated energies of the superlattice
(InN)n /(GaN)n (x = 0.50) epitaxially grown on the GaN(001)
substrate versus the periodicity n are carried out with the VFF
model and compared with the CS energy calculated with the
algorithm described in this appendix. The results are shown in
figure A.3. At the asymptotic limit of n, the directly calculated
superlattice energies approach the calculated CS energy. There
is about 2–3 meV/cation difference. It is worth noting that,
in the VFF calculations, the structure is fully relaxed except
the fixed lattice constant at the substrate interface. This
suggests that the plane-deformation approximation we made
for interfaces k̂ other than (111), (100), (010), etc introduces
only minor errors.

A.2. Extension to other substrates

The derived equations (23) and (24) can be applied to other
epitaxial alloy systems, including different lattice types (such
as bcc, simple cubic (sc), etc) and different substrates (such
as (101), (201), (111), etc). To use the results, one needs to
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Figure A.3. Formation energy of the superlattice structure
(InN)n/(GaN)n grown epitaxially on a GaN(001) substrate directly
calculated by the VFF model versus the periodicity n. The
constituent strain energies �ECS(k̂, x) calculated by the algorithm
(equations (23) and (24)) described in the appendix, using the VFF
model as the energy functional, are plotted as the solid lines on the
right.

construct the unit cells of AC and BC on the substrates and
relax them in the substrate direction Q̂. However, one should
be aware of the approximation adopted in the derivation of
equations (23) and (24): the deformations are only in the x ′z′
plane. This assumption is strictly true only for an interface
k̂ with mirror symmetry about the x ′z′ plane (in other words,
�y ′ = �Q × �k is a mirror plane). For fcc, bcc and sc alloys
grown on the (001) substrate, these (AC)m /(BC)n superlattice
directions include (100), (010), (110), (102), (103), (113) and
so on. For a �Q = (101) substrate, the directions are (001),
(111), (112), (113), (100), (010), (210) and so on. For a (201)
substrate, they are (100), (001), (101), (102), (103) and so
on. For other �k directions, to check the accuracy, comparison
with the direct long period superlattice calculations should be
carried out, as we have done in figure A.3.

Here we would like to provide some further discussions
of the numerical errors introduced by the plane-deformation
approximation. It is obvious that further relaxation steps out
of the x ′z′ plane would occur if the x ′z′ plane does not have
a mirror symmetry. The magnitude of such an additional
relaxation strain should be proportional to the lattice mismatch
of the two constituents AC and BC. For the very large lattice
mismatch alloy InGaN (e.g., ∼11%) studied in this paper
(figure A.3), it introduced a 2–3 meV/cation error for the
calculated CS energy in the �k = (210) and (311) directions.
This suggests that the relaxation strain out of the x ′z′ plane is
indeed very small for such a large lattice mismatched alloy. It
is known that the elastic strain energy is a parabolic function
of deformation strain. The ‘plane-deformation-approximation’

should, therefore, work very well for other chemical systems
with a similar or smaller lattice mismatch, such as (InGa)As,
Ga(AsSb), Cd(SeTe), etc.
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