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Density-functional theory of the correlation energy in atoms and ions: A simple analytic model
and a challenge
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A simple and accurate analytic model is derived for the correlation energy of any atom or ion within three density-

functional approximations based on the uniform electron gas: the local-spin-density approximation (LSD), the self-

interaction corrected (SIC) version of LSD, and the antiparallel-spin LSD of Stoll et al. The last two approximations
give good results for the correlation energies of neutral atoms, in contrast to LSD which overestimates these energies

by a factor of 2. However, all three approximations show an incorrect lnZ leading behavior when the nuclear charge
Z tends to infinity at fixed electron number N. It is hard to see how any a priori electron-gas approximation can
reproduce the exact leading behavior, which is constant or linear in Z according to the value of N.

I. INTRODUCTION

One of the long-standing problems in the physics
of many-electron atoms and ions has been the cal-
culation of the correlation energy (Ref. 1) E„de-
fined as the difference between the exact nonrela-
tivistic total energy and the Hartree-Fock approxi-
mation to it. %hile many different, sophisticated
computational techniques have been applied to
study the correlation energy in individual atoms or
ions (ranging from configuration interaction' to
various diagrammatic techniques'), theoretical
formulations of the trends [i.e., atomic number
Z and electron number N dependence of E,(g, N)]
have rarely been attempted. If one considers only
Z ~ 36, and allows one negative-ion state and

Z —1 positive-ion states per atomic number, there
are 702 distinct values for E,(Z, N). Thus a
formidable computational effort would be re-
quired if standard quantum-chemical techniques
were used. However, density-functional approxi-
mations&' provide an alternative which is simple
and amenable to analytic modeling over the whole
Z, N plane.

The simplest approximation for the correlation
energy of a many-electron system is the local
spin density (LSD)&'

E"' = d'r n(r) a,(n t(r), n &(r)),

where n(r) =n&(r)+n&(r) is the electron density
and e, (n &, n ) is the correlation energy per parti-

cle of an electron gas with uniform spin densi-
ties n

&
and n . Although an early application to

atoms' led to the disappointing result that E," is
about twice the exact correlation energy, more
recent work has shown that self-consistent LSD
gives a useful account of correlation effects on
valence-shell interconfigurational energies and
multiplet splittings, ' as well as other important
properties of atoms, molecules, and solids. '

It has recently been shown' ' that the factor-
of-two error of Eq. (1) is largely due to a spurious
orbital self-correlation. This can be removed by
a simple scheme of self-interaction correction
(Slc)8-10

(2)

where n, (r) =
~
g~, (r)

~

is the density of occupied
orbital &cr. Self-consistent SIC calculations for
atoms, " including corrections for self-exchange
as well as self-correlation, show a dramatic im-
provement over I SD in the total energy, the
separate exchange and correlation energies, the
orbital energy eigenvalues (which now closely ap-
proximate physical removal energies), and the
predicted stability and binding energy of negative
ions. Some other properties, such as intercon-
figuratiohal energies, are essentially the same
jn SIC as in LSD. ~

Stoll and co-workers""' have argued that LSD
exaggerates the correlation between parallel-spin
electrons in atoms and small molecules, where
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the long-range correlations present in the electron
gas cannot occur. They proposed using LSD only
for antiparallel-spin correlation

Eanti-II ELsD [n n ]c c

-z,'"[n,,o] -E:"[n„o],
a scheme which also effectively subtracts out the
self-correlation. "

Both the SIC and antiparallel-spin approxima-
tions give accurate (within 20%) correlation ener-
gies for neutral atoms with Z 18.'"~' In order
to predict the results for larger atoms and for
ions, we have constructed a simple analytic model
for the correlation energy as a function of nuclear-
charge Z and electron number N. The model
shows that all three electron-gas approximations
for the correlation energy are qualitatively wrong
when Z —~ for fixed N, a result that was also
observed independently for &=2 in the numerical
calculations of Stoll et al. ,"using the LSD and
antiparallel-spin approximations. This fact is
not a practical obstacle, since correlation is not
qualitatively important in strongly positive ions;
correlation is more important in neutral systems
and negative ions' "'+"where it is well des-
cribed by, e.g., SIC. However, it will appear
that no a priori electron-gas approximation is
likely to succeedfor the correlation energies of
strongly positive ions. This problem thus poses an
intellectual challenge to density-functional theory,
and a stringent test of new density-functional ap-
proximations. "

II. THE MODEL AND RESULTS

The basic ingredient of all three approximations
is the electron-gas correlation energy e, (n t, n &),

for which we use the recent and accurate results

of Ceperley and Alder, ' matched smoothly onto
the exact high-density limit. ' The densities of
greatest importance in atoms are the high and
metallic densities 0&r, &5 where n = (4iir,'/3) ' in
atomic units (5=m =e'=1). In this density range,
the Ceperley-Alder correlation energies can be
fitted with an error of 1/o by the simple expres-
sions (in atomic units)

c,(n/2, n/2) =0.03111nr, —0.048+ 0 003.4r, jnr,

-0.0116r, , (4)

a, (n, 0) = 0.015 551nr, —0.0269+0 001.3r, lnr,

-0.0048r, . (5)

The first two constants in each of Eqs. (4) and (5)
reproduce the exact high-density limit, while the
next two were found by fitting at r, = 1 and 5. More
elaborate parametrizations, valid at all r„have
been given elsewhere. ' "

At typical atomic densities, the first two terms
in each of Eqs. (4) and (5) are dominant. These
terms depend so weakly on the density that we
may use a rather crude model for the density pro-
file,

Z'
n(r)=N ' e-'""

m
(6)

where Z, is an "effective nuclear charge. " %e
will also take n~(r) = n~(r) = n(r)/2, which is only a
mild approximation for all g& 2, and in the SIC cal-
culation we will replace each orbital density n, (r)
by the average orbital density n(r)/N. Then the
integrals of Eqs. (1)-(3) can be evaluated analy-
tically, with the results for the correlation energy
per electron (in atomic units)

@LSD
= 0.0311lns —0.048+ 0.0043s lns —0.0123s,

EsIC
= 0.015 55 Ins —(0.0211+0.015 55 lnN ') + (0.0043 —0.0016N' ')s Ins

—(0.0123 —0.0052N + 0.0016' InN ')s,
@anti- I I

= 0.015 55 lns —0.0247+ 0.0023s lns —0.00'62s,

(8)

where

)us
~ =el(4 Ngs, I

(1o)

evidently plays the role of an "effective r, value
for the atom" and e is. the base of natural logar-
ithms. Finally, for the effective nuclear charge
Z, we use

(N/2)'~ '+ 1.105
+e (~ ss ) 2 105(N/2)4/ s

Equation (11) was chosen to have the following
properties: (1) When N = 2, S,= Z ——,', is the value
of Z, which minimizes the Hartree-Pock energy
using the exponential orbitals, (ZI/m)'~me

Thus our model of the density is realistic for
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FIG. 1. Correlation energies per electron for neutral atoms of atomic number Z. Solid curves show the analytic re-
sults (7)-(9) for the LSD, SIC, and antiparallel spin approximations. Triangles and squares show the results of nu-
merical calculations using accurate self-consistent orbitals and expressions for ~, (n ~, n ~) valid at. all densities, for
the LSD and SIC approximations, respectively. Open circles show the experimental correlation energies (from Ref.
20). The Lamb correction (Ref. 20) has been neglected in the experimental correlation energies, which for 10 & Z &18
have an uncertainty of 10 or 20%.

%=2. (2) In the opposite limit N- ~, the leading
terms (0.08111ns —0.048) in the LSD. expression
(7) are the same as those found in the Thomas-
Fermi calculation of Appendix A. In this limit,

'the Thomas-Fermi density is a qualitatively cor-
rect description of the core.

Figure 1 compares the analytic expressions
(V)-(9) with experimental correlation energies~
for neutral atoms. The results of numerical cal-
culations in the LSD and SIC approximations
using accurate self-consistent orbitals are also
shown for comparison. The analytic LSD expres-
sion (7) is evidently very close to its numerical
counterpart, the largest deviations occuring for
the strongly spin-polarized atoms like I i, N, P,
and Cr because spin polarization was neglected in

the analytic calculation. The analytic antiparallel-
spin expression (9) would probably also be close
to its numerical counterpart, if the latter were
known for Ceperley-Alder z, (n&, n&). However,
the analytic SIC expression (8) is somewhat more
negative than its numerical counterpart because
the orbital densities were so crudely approxi-
mated in the analytic calculation. In comparison
with experimental correlation energies" for
Z ~ 18, both the numerical SIC and the analytic
antiparallel-spin correlation energies are found
to be highly accurate. Note that the SIC and anti-
parallel-spin expressions are identical for +=2,
but gradually start to differ as + increases. Note
further that the antiparallel-spin expression (9)
is always about half of the LSD expression (7).

Figures 2 and 3 show similar comparisons for
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FIG. 2. Correlation energies per electron for atoms
and ions of the N =2 isoelectronic sequence. See cap-
tion of Fig. 1 for details. (Experimental values from
Ref. 21).

FIG. 3. Correlation energies per electron for atoms
and ions of the N =4 isoelectronic sequence. See cap-
tion of Fig. 1 for details (Experimental values from
Ref. 21).
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the atoms and ions of the W=2 and N=4 isoelec-
tronic sequences. Once again the analytic expres-
sions agree very we11 with their numerical
counterparts, especially for N=2, where the ap-
proximations used to derive the analytic expres-
sions are least severe. However, the calculated
behavior of E, as Z increases for fixed + is not
in agreement with experiment": All the electron-
gas approximations fail for strongly positive ions.

III. DISCUSSION

Equations (7)-(11) show that, for all three elec-
tron-gas approximations, the correlation energy
behaves as lnZ when Z- for fixed &. This be-
havior is also evident in Figs. 2 and 3. However,
the experimental atomic correlation energy be-
haves either as a constant or as Z in this limit,
depending on W; the former behavior is found for
N= 2 and the latter for N=4. Linderberg and
Shull" have explained this as follows: The elec-
tron-electron repulsion can be regarded as a per-
turbation of order Z ' on a zero-order atom".
Both the exact and the Hartree-Fock total ener-
gies have a Z ' expansion, and the difference of
these two energies (the correlation energy) can
begin at order Z' or Z', depending on whether or
not other orbital configurations of the same sym-
metry become degenerate with the ground-state
configuration in the limit Z '- 0. This happens
for N=4, where (2s)' 'S and (2p)' 'S become de-
generate as Z '- 0, but not for & = 2.

The uniform electron gas cannot discriminate
between these two cases, and settles on ln Z as a
compromise between Z' and Z'. In the context of
a different problem (correlation in open shell neu-
trals like Ni), Kleinman's has also observed that
electron-gas approximations cannot be simul-
taneously correct for nondegenerate and degen-
erate configurations. Of course one might try to
account for degeneracy effects by postulating dif-
ferent density functionals for different N, as
Scroll et al."have done for += 2. However, it is
a difficult intellectual challenge to density-func-
tional theory to find an a priori, universal den-
sity-functional approximation which correctly des-
cribes the correlation energy of strongly positive
ions. Unlike LSD and related schemes, such an
approximation would have to be accurate even when
the density varies quite rapidly on the scale of
the local Thomas-Fermi screening length, i.e.,
when

~

Vn ~/n» 2v ~ '(3v n)' ' atomic units.

Note added in Proof. Our simple analytic mod-
els for the correlation energy, tested here for
p ~ 36, are comparably accurate at much larger
Z. For Au (Z =N=79) the analytic models pre-
dict E~s /N= —2.80 eV and E~'c /N= —1.92 eV,

while the corresponding self-consistent numeri-
cal values are -2.83 and -1.76 eV (i.. Cole, pri-
vate communication).

APPENDIX A: THOMAS-FERMI VARIATIONAL
CALCULATION FOR AN ATOM OR ION

The Thomas-Fermi density profile" for a neu-
tral atom of atomic number Z=N is (in atomic
units)

N 1 (y(r/b)l "2
n(r)= —,—

( ( / )

where b =
4 (9v /2Z) and

Q '(x) = 1+0.027 47x' + 1.243x —0.1486xs

+ 0.2302x'+0. 007 298x' '+ x'/144. (A2)

To describe an arbitrary ion, let us use (A1) as a
trial density profile and adjust b to minimize the
Thomas-Fermi total energy E . We then find
(in atomic units) that the effective radius of the
ion ls

pP/ 3
b 0 7588

( 7

and its energy is

(A3)

1 0463N&&s(Z -&N)~ (A4)

Equation (A4) reduces for neutral atoms to the
exact Thomas-Fermi. " For ions the error in
(A4) is of order [(Z -N)/Z)', but even in the limit
N/Z - 0 the variational estimate (A4) lies only
9/0 above the exact Thomas-Fermi value. ~' An

approximate energy expression similar to (A4)
(but slightly more complicated) was derived by
Parr, Gadre, and Bartolotti. "

The Thomas-Fermi energy itself becomes rela-
tively exact in the limit N=Z —~,"and we sup-
pose the same may be true of the Thomas-Fermi
core density. Inserting (A1)-(A3) into Eq. (1),
and retaining only the two leading terms of Eq.
(4), we find

E, = 0.0311in~ ~ )
—0.0106 .-7 (A6)

'

Equation (A5) is almost the same as the leading
terms of Eq. (7) when we take the limit N- ~ in
Eq. (11). It is exactly the same when we take

g~ OD
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