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Contemporary theories of defects and impurities in semiconductors rely to a large extent on supercell
calculations within density-functional theory using the approximate local-density approximation �LDA� or
generalized gradient approximation �GGA� functionals. Such calculations are, however, affected by consider-
able uncertainties associated with: �i� the “band-gap problem,” which occurs not only in the Kohn-Sham
single-particle energies but also in the quasiparticle gap �LDA or GGA� calculated from total-energy differ-
ences, and �ii� supercell finite-size effects. In the case of the oxygen vacancy in ZnO, uncertainties �i� and �ii�
have led to a large spread in the theoretical predictions, with some calculations suggesting negligible vacancy
concentrations, even under Zn-rich conditions, and others predicting high concentrations. Here, we critically
assess �i� the different methodologies to correct the band-gap problem. We discuss approaches based on the
extrapolation of perturbations which open the band gap, and the self-consistent band-gap correction employing
the LDA+U method for d and s states simultaneously. From the comparison of the results of different
gap-correction, including also recent results from other literature, we conclude that to date there is no universal
scheme for band gap correction in general defect systems. Therefore, we turn instead to classification of
different types of defect behavior to provide guidelines on how the physically correct situation in an LDA
defect calculation can be recovered. �ii� Supercell finite-size effects: We performed test calculations in large
supercells of up to 1728 atoms, resolving a long-standing debate pertaining to image charge corrections for
charged defects. We show that once finite-size effects not related to electrostatic interactions are eliminated, the
analytic form of the image charge correction as proposed by Makov and Payne leads to size-independent defect
formation energies, thus allowing the calculation of well-converged energies in fairly small supercells. We find
that the delocalized contribution to the defect charge �i.e., the defect-induced change of the charge distribution�
is dominated by the dielectric screening response of the host, which leads to an unexpected effective 1 /L
scaling of the image charge energy, despite the nominal 1 /L3 scaling of the third-order term. Based on this
analysis, we suggest that a simple scaling of the first order term by a constant factor �approximately 2/3� yields
a simple but accurate image-charge correction for common supercell geometries. Finally, we discuss the
theoretical controversy pertaining to the formation energy of the O vacancy in ZnO in light of the assessment
of different methodologies in the present work, and we review the present experimental situation on the topic.
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I. INTRODUCTION

In semiconductors, the incorporation of desired dopant
impurities and formation of undesired defects, such as re-
combination centers or compensating defects, controls the
electrical and optical properties of these technologically im-
portant materials.1 While numerous experimental methods
exist for the identification and characterization of defects,2

experiment often probes only specific defect properties, as
accessible by the respective spectroscopic method, thereby
providing only isolated aspects of the complete picture of
defect-related effects. Theoretical studies of defects, hence,
play an important complementary role. There, the pivotal
quantity is the defect formation energy �H,1,3–5 from which
one can calculate the defect concentrations1,3,6 and the
electrical3 and optical7 transition levels of electrically active
defects. Combining these theory-derived data with thermo-
dynamic modeling of the host+defect+carrier system, one
can simulate the materials system with all its lattice imper-
fections under realistic thermochemical conditions �growth
conditions�, thus obtaining the concentrations of all desired
and undesired impurities and defects at equilibrium, includ-
ing the carrier densities and the Fermi level.1,4,6,8

Calculations of the defect formation energy are often per-
formed within density-functional theory �DFT�, employing
the local-density or generalized gradient approximation
�LDA or GGA� and modeling the defect systems by con-
struction of supercells with periodic boundary conditions.
Such LDA or GGA supercell calculations owe their popular-
ity for defect systems to their capability to calculate fairly
accurate total energies in large systems on the order of 100
atoms needed to simulate isolated defects in solids. There are
two classes of corrections needed, however, in such calcula-
tions:

�i� Band-edge corrections due to the approximate DFT
functional �see Sec. III�. Both the LDA and the GGA gener-
ally exhibit a considerable underestimation of the semicon-
ductors’ band gap, which in general affects the calculated
defect formation energy.5,9 Thus, defect calculations based
on LDA or GGA generally require ex post facto corrections
which are applied to supercell total energies after the self-
consistent calculation. Recent advances in electronic struc-
ture theory hold promise for band-gap-corrected ab initio
methods, such as GW,10–12 model GW,13 screened
exchange,14–16 exact-exchange or optimized effective poten-
tials �OEPs�,17–20 and hybrid DFT.21–23 Also, the self-
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interaction-correction �SIC� �Ref. 24� method has been ap-
plied in various different formulations for band-gap
correction.25–28 While very accurate methods, such as the
GW method, are yet not practically applicable to total-energy
calculation of large-scale defect systems, approximate or
model methods continue to be tested for their accuracy.29

The advances and limitations of different orbital-dependent
DFT approaches such as OEP, hybrid DFT, and SIC are dis-
cussed in a recent review.30 At the present, such post-LDA
methods have not matured to replace LDA based total-energy
calculation of large, relaxed, and possibly charged defect
systems, because of issues of both accuracy and computa-
tional cost.

�ii� Corrections due to the supercell approximation �see
Sec. IV�. Even large supercells at the limit of today’s com-
putational capabilities ��1000 atoms� for first-principles
quantum-mechanical calculations correspond to very high
concentrations of 1019–1020 cm−3 for semiconductor stan-
dards. The calculation of the properties of isolated defects
�e.g., 1014 cm−3� requires, therefore, the correction of finite-
size effects present in supercell calculations, especially in the
case of charged defects31 or when Moss-Burstein-type band-
filling effects32 occur, as in the case of shallow electron do-
nors or acceptors.

Different schemes and procedures for correcting LDA er-
rors and supercell-size effects have led in some cases to
strongly varying predictions by different theory groups. Most
notably, there is a recent controversy concerning oxygen va-
cancies in the wide-gap semiconductor ZnO,6,7,33–41 which
exhibits a particular severe band-gap problem. This contro-
versy is illustrated in Fig. 1, showing recent theoretical re-
sults on the formation energy of VO, which controls the
O-deficient off-stoichiometry of ZnO. On one extreme end,
Janotti and van de Walle37,40 and Lee et al.38 predicted very
large formation energies for VO in n-type ZnO, even under
the most O-poor/Zn-rich conditions. Such high values of
�H�4 eV lead to the prediction of very small concentra-
tions of VO below 1010 cm−3 under equilibrium conditions.

In contrast, we6,7 and Erhart et al.39 found much lower for-
mation energies of �H�1 eV, predicting considerable VO
concentrations of up to 1019 cm−3.6 Earlier, Kohan et al.33 as
well as Oba et al.35 found still lower �H close to zero �under
the O-poor condition�, and Lee et al.36 predicted even un-
physically negative formation energies of VO. Very recently,
Pemmaraju et al.42 and Oba et al.43 confirmed our finding of
a low VO formation energy close to 1 eV, based on self-
consistently band-gap corrected calculations employing SIC
and hybrid-DFT, respectively.

While many approaches and schemes have been applied
to address the band-gap problem and finite-size effects in the
previous literature, the purpose of the present work is to
assess the validity of such schemes in those cases where
considerable uncertainties and controversies remain. We now
provide a guide for the reader to the organization of this
paper:

In Sec. II, we describe and review in some detail the
general formalism of supercell total-energy calculation of de-
fects in semiconductors and insulators. We also summarize
the specific set of band-gap and supercell corrections we fa-
vored, as introduced before in the Appendix of Ref. 5.

In Sec. III, concerning the correction of the band-gap
problem, we first illustrate the manifestation of this problem
in terms of single-particle and total energies �Sec. III A�, and
the implication of the host-band-edge corrections for defect
formation energies �Sec. III B�. We then discuss different
schemes for correcting the band gap in defect systems, such
as the extrapolation of a band-gap-opening perturbation to-
ward the experimental gap �Sec. III C� and the LDA+U
method, which allows for gap correction in the self-
consistent calculation when applied to s and d states simul-
taneously �Sec. III D; see also Ref. 44�. Applying these
methods to the specific example of VO in ZnO �Sec. III E�,
we find that a universal method for accurate band-gap cor-
rection of defects remains elusive. Comparing the present
results and recent literature data42–44, we find that even self-
consistently band gap corrected methods which do not re-
quire a posteriori corrections yield a rather wide spread of
predicted transition levels for VO. Therefore, we develop a
general picture of different defect behaviors �Sec. III F�,
identified by the energies of the single-particle defect levels
relative to the band edges, which require different types of
corrections. Thereby, we provide guidelines that should gen-
erally aid in recovering the qualitatively correct physical
situation from an LDA defect calculation.

In Sec. IV, addressing supercell finite-size effects, we test
and validate our previously developed set of size-effect cor-
rections �see the Appendix of Ref. 5� by calculating specific
examples in very large supercells �up to 1728 atoms�. Such
an assessment is needed, in particular, as there is no consen-
sus in literature to date5,9,39,40,44–57 about whether one should
apply corrections for the screened electrostatic interactions
of image charges, as proposed by Makov and Payne31 �Sec.
IV A�. We show that after elimination of finite-size effects
that are not related to electrostatic interactions �in particular,
after correction for the undefined potential reference in
momentum-space calculations�, the image charge correction
of Ref. 31 provides essentially the same accuracy as finite-
size scaling methods50,54,56 but at a much reduced computa-
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FIG. 1. �Color online� The formation energy �H of the O va-
cancy in ZnO under O-poor/Zn-rich conditions as calculated in re-
cent theoretical works, using different schemes and procedures to
account for LDA/GGA deficiencies and supercell finite-size effects.
The references are KCMW00 �Ref. 33�, ZWZ01 �Ref. 34�, LKJC01
�Ref. 36�, EAK06 �Ref. 39� �closed symbol: GGA; open symbol:
GGA+U�, LZ07 �Ref. 6�, and JW07 �Ref. 40�.
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tional effort. In Sec. IV B, we test and illustrate the impor-
tance of Moss-Burstein-type band-filling effects5 that occur
when electrons �or holes� occupy strongly dispersive host-
derived band states. The slow convergence with supercell
size necessitates the correction of these band-filling effects if
one is interested in defect formation energies in the dilute
limit. We further discuss the cell-size dependence of the
defect-state–host-band hybridization and the implications for
the correct determination of the single-particle energies of
the genuine defect states, which have to be distinguished
from the host-derived bands that are perturbed by the pres-
ence of the defect.

Finally, we review in Sec. V the experimental situation of
O deficiency in ZnO in the light of the theoretical contro-
versy, finding that experimental evidence strongly suggests
the thermodynamic formation of O vacancies in ZnO under
O-poor/Zn-rich conditions at concentrations on the order of
1017 �Ref. 58� or 1018 cm−3.59,60 Thus, ZnO shows a similar
tendency toward O deficiency as the related oxides In2O3,61

SnO2,62 and MgO.63 The ubiquitous existence of O vacancies
in main-group oxides is thus a crucial benchmark of the va-
lidity of different methodologies to correct for band-gap and
finite-size effects in supercell defect calculations.

II. GENERAL FORMALISM OF SUPERCELL DEFECT
CALCULATIONS

A. Defect formation energies

Within the supercell formalism for the representation of
defects in a host lattice, the defect formation energy of a
defect D in charge state q is defined as

�HD,q�EF,�� = �ED,q − EH� + q�EV + �EF� + �n����
0 + ���� ,

�1�

where ED and EH are the total energies of the host+defect
and host-only supercells, respectively.

1. Energy of the valence-band maximum

EV=EH�0�−EH�+1� is defined as the energy difference be-
tween the pure host �q=0� and the host with one hole �q=
+1� in the valence band in the dilute hole gas limit.5 Thus,
Eq. �1� describes the enthalpy of the defect formation reac-
tion conserving the charge. E.g., for a singly charged donor
and �EF=0, this reaction is

DR + HH + h+ → DH
+ + HR,

where DR denotes the donor atom in its chemical reservoir
�before defect formation�, HH denotes a host atom at its na-
tive lattice site, and h+ denotes a hole at the valence-band
maximum �VBM�.

2. Fermi energy

EF is conventionally defined with respect to VBM, EF
=EV+�EF, and is usually bounded between the VBM and
the conduction-band minimum �CBM�, i.e., EV�EF�EC,
except in the case of degenerate doping, in which additional
energy contributions due to electron-concentration-

dependent band-filling effects have to be considered.6,64

3. Chemical potentials

The growth conditions are reflected in the chemical po-
tentials ��=��

0 +��� of the atoms removed �n�= +1� or
added �n�=−1� to the host crystal when the defect is formed.
For example, O-poor/Zn-rich conditions in ZnO are present
when the Zn chemical potential equals that of elemental Zn
metal, �Zn=�Zn

0 ���Zn=0�. For such metal-rich conditions,
which facilitate the formation of anion vacancies, Fig. 1
shows �H�EF� for VO in ZnO and compares recent literature
results that are based on different assumptions about the cor-
rections of band gap and supercell finite-size errors.

B. Defect transition energies

The thermodynamic transition energy ��q /q�� between
two charge states q and q� describes the Fermi level EF at
which �H�EF ,q�=�H�EF ,q��, i.e.,

��q/q�� − EV = ��H�EV,q�� − �H�EV,q��/�q − q�� . �2�

The thermal ionization energy of simple donors and accep-
tors equals the distance of ��+ /0� from the CBM and that of
��0 /−� from the VBM, respectively. Optical transitions be-
tween defect states in the gap and the band-edge energies can
also be calculated from �HD,q �Eq. �1�� when the atomic
positions of the initial state are kept during the optical �ver-
tical� excitation or recombination process, according to the
Franck-Condon principle. Thus, the optical absorption en-
ergy �O�q /q+n ;ne� due to the excitation �n= +1� of an elec-
tron from the defect level into the CBM or the respective
optical emission �luminescence; n=−1� energy due to the
recombination of an electron from the CBM into the defect
level is calculated as7

�O�q/q + n;ne� = �H�EC,q + n� − �H�EC,q� . �3�

Analogously, the absorption �n= +1� energy from the VBM
into the defect state and the emission �n=−1� energy from
the defect level into the VBM, i.e., the recombination with a
free hole, are given by

�O�q/q − n;nh� = �H�EV,q − n� − �H�EV,q� . �4�

It should be emphasized that the optical �vertical� transi-
tion energies �O calculated from total-energy differences
�Eqs. �3� and �4�� are in general different from the respective
single-particle energy level eD of the defect, i.e., the respec-
tive eigenvalue obtained from the solution of the Kohn-Sham
equation HKS�i=ei�i. Consider, for example, the case of a
finite system �atom, molecule, or cluster�, where the �optical�
excitation energy �O for the excitation of an electron from
state i into the vacuum level is related to the initial-state
single-particle energy ei�q�, according to Refs. 65 and 66, by

�O�q/q + 1;e� = − ei�q� + �i + �i. �5�

The difference, i.e., the term �i+�i, is the result of two
electronic relaxation effects upon electron removal from the
state i. First, the self-interaction term �i=ei�q�
−�q

q+1ei
��q��dq� reflects the energy lowering of the eigen-
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value ei
� due to the elimination of self-interaction and the

reduction in screening upon the electron removal, during
which the initial-state wave functions are kept fixed �denoted
by the asterisk�. Second, the relaxation contribution �i is the
energy gain during relaxation of the initial-state wave func-
tions. Comparing with the Hartree-Fock �HF� theory, where
the Koopmans theorem67 holds, i.e., �i=0, the difference
between single-particle and total-energy transition levels is
generally larger in common DFT functionals where �i�0.
Considering LDA or GGA calculations in semiconductor de-
fect systems, the optical excitation energy, e.g., from a defect
level in the gap into the CBM, differs from the respective
single-particle energy usually by few tenths of an eV �Ref.
68� and becomes larger with increasing localization of the
defect state, e.g., exceeding 1 eV in the case of transition-
metal impurities in ionic oxides such as MgO.

C. Electronic structure methods employed in the present work

1. LDA and GGA supercell methods and pseudopotentials

We calculate the total energy via the pseudopotential-
momentum-space formalism,69 using projector-augmented-
wave �PAW� potentials,70 as implemented in the VASP code.71

Exchange and correlation effects within DFT are treated in
the LDA or the GGA, using the parameterizations of Refs.
24 and 72, respectively. Since the GGA is generally consid-
ered more accurate for molecules and surfaces,73 we used in
Ref. 6 the GGA for ZnO, where the elemental reference state
of oxygen is the O2 molecule. We find, however, that GGA
and LDA give rather similar results for intrinsic defects in
ZnO �Refs. 6 and 7� under the growth conditions that support
formation of these defects �see also Sec. III E�. Further, in
order to calculate large supercells of up to 576 atoms in ZnO
and up to 1728 atoms in GaAs, we employ pseudopotentials
�PPs� which are particularly suitable for such large systems:
For oxygen in ZnO, we use a particularly soft PP, which
requires an energy cutoff of only 283 eV. In calculations
using the typical supercell size of 72 atoms, we use the stan-
dard PP �400 eV� for O. Testing the soft PP against the stan-
dard PP for such small supercells, we found good agreement
in formation energies, atomic relaxations, and single-
particle-energies for VO in ZnO.74 For calculations in GaAs,
where the effect of the Ga 3d electrons is very small,75 we
used a PP where the 3d shell is omitted from the valence.

2. LDA+U calculations

A computationally expedient post-LDA method is LDA
+U,76–78 which was originally developed to improve the
LDA description of Mott insulators76 by introducing
Hubbard-type interactions into LDA via an adjustable Cou-
lomb parameter U. In conventional �band-�semiconductor
systems, we first applied LDA+U for partial band-gap cor-
rection in the photovoltaic chalcopyrite CuGaSe2,79 where
the valence band has strong Cu d character and lies too high
in energy in LDA.80 By applying LDA+U on the Cu d shell,
the self-interaction within the d shell is approximately cor-
rected, thereby lowering the d-band energy and opening the
band gap. When used only for the metal d states, a full band-

gap correction is generally not achieved for physically mean-
ingful values of U.81 A full band-gap correction can be em-
pirically achieved, however, when LDA+U is used for the
cation d states and, simultaneously, for anion s �Refs. 82 and
83� or cation s �Ref. 84� states. The band-gap correction of
ZnO by simultaneous applications of LDA+U on Zn d and
Zn s orbitals was recently independently employed by Pau-
del and Lambrecht44 within a linear-muffin-tin-orbital
�LMTO� method.

Since the LDA+U method requires adjustable parameters
for the Coulomb and exchange energies U and J, physically
meaningful values for these parameters have to be found.
�Note that the decisive parameter is actually the difference
U−J.85� Possible strategies to determine suitable parameters
are the adjustment of Ud so to reproduce experimental pho-
toemission spectra,79,86 constrained LDA calculations,76,87

thermochemical considerations,81,88 or a self-consistency re-
quirement between U and the orbital �partial�
occupancies.89,90 The Hubbard U energy of a free atom
�which can be directly calculated in LDA� is reduced in a
semiconductor due to electronic screening.76,91 Since, how-
ever, the d electrons are considerably localized within the
typical screening length �on the order of 1 Å�, the screening
is incomplete. Therefore, dividing the free-atom U value by
the dielectric constant of the solid40 most likely underesti-
mates the appropriate value of U. Indeed, finite values for U
are generally used even in metals, e.g., U=2–6 eV in me-
tallic Fe,89,92 where the division by the dielectric constant
yields U=0.40 For Zn d orbitals in II-VI semiconductors, we
found U=7 eV �for J=0� �Refs. 7 and 79� by comparison
with photoemission experiments �a similar value of U
=7.5 eV was used by Erhart et al. in Ref. 39�. Concerning
this strategy, it should be noted that generally in DFT calcu-
lations the single-particle energies ei do not represent excita-
tion energies as measured by photoemission �cf. Eq. �5�,
Sec. II B�. However, the approximate correction of self-
interaction effects within the d shell in LDA+U re-
establishes a physical meaning for the single-particle ener-
gies of these states in the sense of the Koopmans theorem of
HF theory, where the ionization energy �IE� is approximately
equal to the respective eigenvalue, IEi�ei �note close rela-
tion between LDA+U and HF theory78,89�. Therefore, the
adjustment of U to photoemission data is a justified ap-
proach.

We further note that there exists an additional complica-
tion with the LDA+U method for defect formation energy
calculations because of the need to calculate elemental ref-
erence energies �cf. Eq. �1�, Sec. II A�, e.g., of the Zn metal
and of the O2 molecule in the case of ZnO: On one hand the
appropriate U value for the Zn d states should be smaller in
the metallic element than in the semiconductor ZnO, due to
stronger screening. On the other hand, total energies should
in practice be compared only for the same U.90,93 Thus, the
LDA+U-calculated heat of formation may not be accurate,
whether same or different values of U are taken for the semi-
conductor and the metal. In the specific case of a binary
compound where LDA+U is used only for one constituent,
one can, of course, use the experimental heat of formation to
determine defect formation energies under both the metal-
rich and the anion-rich conditions, which is done here for
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those results in Sec. III E that rely on LDA+U. Since we
used in Refs. 6 and 7 LDA+U only to determine the band-
edge shifts �see Sec. III B� but not to calculate supercell en-
ergies, these results did not suffer from the problem of an
undefined heat of formation in LDA+U.

D. “Postprocessor” corrections to supercell energies

In Secs. III and IV below, we assess corrections for defect
supercell energies that are related to the band-gap error
�BGE� and to supercell-size effects �SSEs�. While various
approaches for such corrections have been suggested and
used in the previous literature,5,9,31,34,39,40,45,48–50,52,54,94 we
give here a summary for the specific formulation of the set of
corrections used by us, as introduced before �except Sec.
II D 5 below� in the Appendix of Ref. 5.

1. Shifting the individual band-edge energies of the host (BGE)

Due to the band-gap problem of the approximate LDA
and GGA functionals �see Sec. III A�, one needs to determine
the corrections �EV for the VBM and �EC for the CBM such
that the experimental band gap is recovered, Eg�expt�= �EC
+�EC�− �EV+�EV�. In the case of charged defects, these
corrections increase the range of possible formation energies,
as �H depends linearly on the Fermi level EF inside the gap
�see Eq. �1��. The determination of the required shifts of the
band-edge energies is discussed in Sec. III B.

2. Shifting shallow levels with the respective host bands (BGE)

Once the band-edge states are corrected, the question
arises as to how defect levels would be affected by the band-
gap correction. While it is common practice to refer donor
states to the CBM and acceptor states to the VBM, it is
important to realize in which situations this procedure is jus-
tified and in which it is not. A lattice defect in a semiconduc-
tor generally creates a primary, defect-localized state �DLS�.7
If this DLS occurs in the gap, the defect is deep. In contrast,
the hallmark of shallow defects is that their DLS occurs as a
resonance inside the continuum of host bands; e.g., the DLS
of a shallow donor lies inside the conduction band. In this
case the introduced electron relaxes from the DLS to the
band edge, occupying a secondary, delocalized perturbed-
host state �PHS�,7 which is essentially the electronic state of
the CBM of the host, perturbed only by the screened Cou-
lomb potential of the charged dopant ion. Thus, in the case of
shallow defects, the occupied donor �acceptor� states can be
expected to shift along with the CBM �VBM� during the
band-gap correction, leading to an energy correction of
ze�EC �−zh�EV� for �H when the donor �acceptor� state is
occupied by ze electrons �zh holes�. This correction is ap-
plied, e.g., to the shallow TeAs donor in GaAs �see Sec.
IV B�. In the case of deep defects, the primary defect state,
i.e., the DLS, occurs as a state inside the gap. The gap cor-
rection for this class of defects cannot be directly linked to
the behavior of the host-band edges. In Sec. III, we discuss
methods of determining corrections for such deep defects
and propose a general classification scheme for distinguish-
ing the cases that need different treatment for LDA correc-
tion.

3. Band-filling correction (SSE)

Due to the high defect concentrations implied by typical
supercell calculations, Moss-Burstein-type band-filling
effects32 are present in the case of shallow defects where the
carriers occupy the strongly dispersive PHS. In order to re-
cover the dilute limit for �HD, we eliminate these band-
filling effects by a correction; e.g., for shallow donors,

�Ebf = − �
n,k

	�en,k − ẽC��wk
n,ken,k − ẽC� . �6�

Here en,k are the band energies in the defect calculation, ẽC is
the CBM energy of the pure host after potential alignment
with the defect calculation �see below�, 	 is the Heaviside
step function, wk is the k-point weight, and 
n,k is the band
occupation. In Sec. IV B, we study the convergence of band-
filling effects with supercell size for TeAs in GaAs.

4. Potential-alignment correction for supercells with a net charge
(SSE)

While the total energy of a periodic, charge-neutral sys-
tem is well defined, the total energy of a periodic system
with a net charge in a unit cell diverges. Even though the
total-energy expression69 of the pseudopotential momentum-
space formalism has been derived under the explicit assump-
tion of charge neutrality �see Eq. �21� of Ref. 69�, it is usu-
ally applied without change also for charged defects. In this
formalism, the average Hartree and ionic potentials VH and
Vi are individually set to zero, i.e., VH�G=0�=Vi�G=0�=0.
In the charge-neutral case, this procedure is justified by the
exact cancellation of the respective electron-electron and
ion-ion contributions.69 In the charged calculation, the omis-
sion of the G=0 terms can be viewed as an effective com-
pensation for the net charge by a homogeneous �jellium�
background charge. �Note, however, that the compensation
charge is generally not explicitly introduced in calculations
of charged supercells.� The total energy is no longer a well-
defined quantity in a charged system:5 When evaluated with
the total-energy expression of Ref. 69, charged supercell en-
ergies exhibit the same arbitrary shifts as the Kohn-Sham
eigenvalues, which are defined only up to a constant. Indeed,
when we calculate the energy of a hole in the semiconductor
valence band, EV=EH�0�−EH�+1�, we find that EV converges
in the limit of a dilute hole gas toward the Kohn-Sham
single-particle energy eV of the VBM.5 Thus, we use a
potential-alignment technique5,95,96 to ensure that the
“charged energies” ED,q and EH�+� entering Eq. �1� are
treated consistently, and we use EV=eV in Eq. �1�. The
potential-alignment correction energy for a defect D with in
the charge state q is

�EPA�D,q� = q�VD,q
r − VH

r � , �7�

where the reference potentials Vr in the charged-defect �D ,q�
and pure-host �H� calculations are determined from the �lo-
cal� atomic-sphere-averaged electrostatic potentials97 at
atomic sites farther away from the defect.
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5. Charged supercells without a reference point for potential
alignment (SSE)

As we demonstrate in Sec. IV A, the potential-alignment
correction described above is an essential part of our robust
scheme for correcting supercell finite-size effects for �H of
charged defects. However, this method is not applicable in a
situation where there is no hostlike reference point far from
the perturbation by the defect. Consider, for example, the
case of an alloy where one adds electronic charge which is
supposed to be compensated by a jellium background. Due
to the compensating background, the system as a whole is
charge neutral, so the total energy should be well defined.
Our finding that the total energy of charged systems shows
the same arbitrary offsets as the single-particle energies5 im-
plies that the energy evaluated with the usual expressions in
Ref. 69 does not represent the energy of the �overall neutral�
charge+jellium system. The energy contribution due to this
interaction between the additional electronic charge and the
jellium background can evidently occur only in the G=0
terms. On the other hand, in an overall charge-neutral system
one can set the average electrostatic potential to zero �see
above�, in which case the only G=0 contribution arises due
to the “Z�” term.69 Thus, this term has to be modified to
account for the electron-jellium interaction.

The deviation of the local part of the atomic pseudopoten-
tials Vi

PS�r� from the bare ionic Coulomb potential Zi /r
causes an offset of the average potential in the cell with
volume �,

�PS =
1

�
�

i
	

�

�Vi
PS�r� + Zi/r�d3r , �8�

by which the electronic single-particle energies are down-
shifted when the average electrostatic potential is set arbi-
trarily to zero, as conventionally done in plane-wave calcu-
lations. As discussed in Ref. 69, this shift needs to be
compensated by an energy contribution

EZ� = �PS�
i

Zi. �9�

This expression of the original work69 was, however, derived
by considering an uncharged system, where the sum of the
ionic charges equals the number of electrons, �iZi=N. Since
this energy contribution represents an electron-ion interac-
tion, the respective term should actually read EZ�=N�PS for
a charged system. In order to compensate for the common
implementation �Eq. �9��, we apply a correction

�Eq� = − q�PS �10�

to the supercell energies. Note that this contribution depends
on the supercell volume �see Eq. �8�� and therefore changes
in general the equilibrium lattice constant. Comparing with
the “potential-alignment correction,” we emphasize that only
either �EPA or �Eq� can be applied. The potential alignment
is more appropriate for defect systems where one is inter-
ested in the dilute limit and where one generally keeps the
equilibrium volume of the host crystal constant, whereas the
�Eq� correction is more appropriate for charged systems

where the nonhostlike perturbation is dispersed, such as, e.g.,
in the case of charged alloy systems.

6. Image charge correction for charged defects (SSE)

Makov and Payne31 suggested an image charge correction
to O�L−5� in the linear supercell dimension L=VSC

−1/3 �super-
cell volume VSC�,

�EMP =
q2�M

2�L
+

2�qQr

3�L3 , �11�

where �M is the �supercell� lattice-dependent Madelung con-
stant, � is the static dielectric constant of the host, and Qr is
the second radial moment of the electron-density difference
̃D,q�r�=D,q�r�−H�r� between the defect+host and pure-
host systems,

Qr = 	
VSC

d3r̃D,q�r�r2. �12�

In Sec. IV A, we test this correction method by studying the
scaling behavior of several charged defects in GaAs super-
cells of up to 1728 atoms.

III. CORRECTION OF BAND-GAP ERRORS

A. Manifestation of the band-gap problem in the quasiparticle
gap

The arguably greatest shortcoming of LDA or GGA for
defect calculations in semiconductors is the underestimation
of the band gap, typically by about 50%. ZnO is a particular
severe case, where the experimental gap is Eg=3.45 eV at
low temperature but the calculated Kohn-Sham single-
particle gaps eKS=eC−eV are only 0.80 eV in LDA and 0.73
eV in GGA at the respective equilibrium lattice constant. Of
course, the Kohn-Sham single-particle energies are not
physical quantities98,99 and the “true” �quasiparticle� band
gap EQP is defined as the difference between the ionization
potential I and the electron affinity A, both being ground-
state quantities, EQP= I−A. In the case of the “exact” DFT
functional, the difference � between the quasiparticle and
single-particle gaps, �=EQP−eKS, equals the derivative dis-
continuity exhibited by the exact exchange-correlation
functional.98,99 Note that the actual magnitude of this discon-
tinuity and, hence, of � for semiconductor systems in the
exact functional is subject of a unresolved debate.100,101

The fact that even the exact DFT functional shows a dif-
ference between the single-particle and quasiparticle band
gaps is frequently viewed as an argument that the band-gap
problem does not reflect the approximation of the DFT func-
tional but is inherent to the DFT formalism.30,100,102 This
view, however, may easily lead to the misinterpretation that
the band-gap problem is only an apparent problem caused by
the nonphysical meaning of the Kohn-Sham eigenvalues.
Since the exact functional would certainly give the correct
quasiparticle gap EQP= I−A, we illustrate the LDA and GGA
band-gap problem by calculating the quasiparticle gap
EQP

GGA=EH�−1�+EH�+1�−2EH�0� in GGA for the example of
ZnO, shown in Fig. 2�a� as a function of the number N of
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atoms �cell size� over which the additional electron or hole103

is distributed, i.e., as a function of the carrier density. We see
in Fig. 2�a� that EQP converges to the single-particle gap at
the Brillouin-zone center, eKS���=eC���−eV���, in the limit
of a dilute gas of free electrons and holes. Thus, for approxi-
mate functionals such as LDA or GGA, the quasiparticle gap
EQP

LDA shows the same band-gap error as the single-particle
gap eKS

LDA. For finite carrier densities, the apparent band gap
is larger than the direct ZnO gap at the � point, due to band-
filling effects �see Sec. II D 3, Eq. �6��. When comparing the
quasiparticle gap with the appropriate Brillouin-zone average
�BZ av� of the single-particle energies,

eg�BZ av� = �
k

wk�
C,keC,k
� − 
V,keV,k

� � , �13�

we see in Fig. 2�a� that the quasiparticle and single-particle
gaps are still practically identical in GGA except for ex-
tremely large electron and hole densities. �As in Sec. II B,
the asterisks in Eq. �13� denote that the eigenvalues eC

� and
eV

� are determined with the wave functions of the initial neu-
tral state.�

Considering that I=−eV�q�+�V+�V and A=−eC�q�+�C
+�C �see Eq. �5� in Sec. II B� and the fact that � and �
approach zero in the limit of very delocalized wave
functions,66 the equality EQP= I−A=eKS can actually be ex-
pected for band semiconductors in general when the band-
edge states eV and eC are extended over all N atoms. It is
interesting to note that in cases where carriers are more lo-
calized, such as, for example, the self-trapped hole polarons
in halides,104 the quasiparticle gap would be even smaller
than the Kohn-Sham gap: Since, in this case the localized
polaronic hole state must be lower in energy than the delo-
calized bandlike state, i.e., EH

loc�+1��EH
deloc�+1�, it follows

that Iloc� Ideloc=eV and, hence, EQP�eKS. Note, however,
that due to residual self-interaction in LDA or GGA, these
functionals generally tend to find delocalized hole states
lower in energy than localized states, which in some cases
leads to a qualitatively wrong description, such as, e.g., in
the case of the AlSi impurity in SiO2.105

The finding that the LDA or GGA description of the qua-
siparticle and the single-particle energy gaps is equally poor
in extended periodic systems such as ZnO may be surprising
in view of the fact that in isolated small systems, such as free
atoms, the total-energy differences describe rather accurately
the atomic ionization energies.106 Indeed, when we calculate
the QP band gap, for example, for an isolated F atom, we
obtain I−A=E�F+�+E�F−�−2E�F0�=13.95 eV in GGA,107

in very good agreement with the experimental value of 14.02
eV and much larger than the single-particle gap, which is
calculated as eKS=0.74 eV in the symmetry-broken solution
of the F atom. However, when we consider a periodic array
of F atoms, the calculated quasiparticle gap EQP= I−A is
strongly reduced with the number N of F atoms per addi-
tional electron and hole, as shown in Fig. 2�b� �due to the
separation of the F atoms,107 there is no band dispersion and,
hence, no N dependence of the single-particle gap eKS, as in
the case of ZnO�. Since the additional electron �hole� delo-
calizes over the array of F atoms, EQP converges to eKS in the
limit of large N, as expected from the considerations above.
Note that this delocalization occurs due to energy minimiza-
tion and is not an artifact of periodic boundary conditions.

As discussed in recent literature,108,109 the delocalization
of electrons and holes in an array of distant atoms is a result
of the incorrect convex behavior of LDA and GGA energies
between integer occupation numbers in separated open sys-
tems. Whereas I−A should be invariant with respect to the
system size N, LDA or GGA incorrectly finds the delocalized
electron �hole� state that is distributed over all N atoms lower
in energy than the state in which the wave function is local-
ized on just one atom. Comparing the results in Figs. 2�a�
and 2�b�, it appears that the band-gap problem has a different
character in the ZnO solid-state system and in the F atom
separated open system: Whereas in the free-atom case, the
band-gap error can easily be avoided by enforcing the “cor-
rect” localization �one electron or hole per atom�, the amount
of localization needed to significantly increase the quasipar-
ticle band gap in the case of a semiconductor �cf. Fig. 2�a�� is
incompatible with the physically correct delocalized nature
of the free-electron and free-hole quasiparticle states. Thus,
in contrast to atomic systems, the correction of the band gap
Eg �quasiparticle gap� in solid-state systems requires gener-
ally information from outside the LDA or GGA, such as,
e.g., from post-LDA methods or from experiment.

B. Host band-edge corrections and their effect on defect
energies

Figure 3 illustrates for the case of a single donor the effect
of the band-gap correction on the defect formation energy
�H. For the ionized donor D+, where the donor state is un-
occupied, the primary effect of the band-gap correction is to
extend the range of Fermi levels within the gap to EV

LDA

+�EV�EF�EC
LDA+�EC. Here �EV and �EC are the indi-

vidual band-edge corrections for the VBM and the CBM,
respectively, needed to recover the experimental band gap,
Eg�expt�= �EC

LDA+�EC�− �EV
LDA+�EV�. As seen in Fig. 3 and

in Eq. �1�, the lowering of the VBM by �EV results in lower
formation energies of D+ for Fermi levels low in the gap,

E
n
e
rg
y
[e
V
]

N (atoms per e/h)

Electron/hole density [cm-3]

N (atoms per e/h)

(a) (b)

QP

KS
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FIG. 2. �Color online� �a� The quasiparticle gap EQP= I−A
=EH�−1�+EH�+1�−2EH�0� and the Kohn-Sham single-particle gap
eKS �Brillouin-zone average� of ZnO in GGA as a function of the
number N of atoms per additional electron/hole. �b� The quasipar-
ticle and single-particle gaps for a separated open system of F
atoms.
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whereas the upward shift of the CBM by �EC causes in-
creased �H�D+� for Fermi levels high in the gap, thereby
increasing the range of possible formation energies. One
component in the VBM shift �EV is due to self-interaction
effects in occupied metal d shells whose orbital energies are
generally too high in LDA and GGA. If such d states occur
in the LDA calculation close to the VBM, e.g., in the case of
Zn in ZnO �Refs. 6, 7, 39, and 40� or Cu in CuInSe2 �Refs. 5,
8, and 79� or Cu2O,83,86,110 the VBM energy can be expected
to lie too high in energy as well, due to p-d repulsion80

between the metal d states and the anion p states in the
valence band. Therefore, we used in Refs. 6, 7, 79, 83, and
110 the LDA+U �or GGA+U� method for the metal d states
to determine the correction �EV for the VBM.

We emphasize here that the individual band-edge shifts
�EV and �EC, which determine the corrections for the
charged-defect formation energies �see Fig. 3�, need to be
determined with respect to a bulk-internal potential refer-
ence. When �EV and �EC are determined, a constant shift of
the potential due to a bulk-external source �e.g., the capaci-
torlike potential step due to a surface or interface dipole�
needs to be avoided. This is because a constant shift of the
external potential does not only shift the band-edge energies
EV and EC but also the electrostatic energy of the charged
defect, e.g., E�D+� in Eq. �1�, so that the charged-defect for-
mation energy �H�D+�, in fact, remains invariant. Such an
undesired shift of the external potential can occur when, as
done in Ref. 111, a ZnO�LDA� /ZnO�LDA+U� interface is
constructed that can lead to the development of an interface
dipole. Since the ensuing potential step causes a contribution
to the VBM shift, it affects, e.g., �H�D+� in Eq. �1� via the
term EV, and an error in �H�D+� is introduced when the
corresponding change in E�D+� due to the potential step is
neglected.

Using a self-consistent method such as LDA+U, it is dif-
ficult, in principle, to determine the change in the band-edge
energies with respect to an internal potential reference, since
this reference can change during the self-consistent calcula-
tion as well. Therefore, we determined in Refs. 6 and 7 the

change in the VBM energy in ZnO relative to the deep anion
s state �1v, which has a1 symmetry �in zinc-blende
notation112� and does not directly couple to the eg and t2
symmetries of the metal d states on which the LDA+U
method was used. Also, we confirmed that the results were
very similar when the anion-site average potentials �see Sec.
II D 4� were used as a potential reference. Our finding of
�EV between −0.8 eV �LDA� and −0.7 eV �GGA� for U
=7 eV �J=0� �Refs. 6 and 7� is consistent with the GW
result of �EV=−0.5 eV.12 �Note that in this GW calculation
the band gap and the too shallow Zn d band energies were
not completely corrected.� Indeed, even though the GW
method is presently not applicable in calculation of total en-
ergies for host+defect systems, it can be a useful augmenta-
tion to LDA for the purpose of determining �EV and
�EC.11,12,29 Given the observation113 that, with respect to an
internal potential reference, defect levels are often invariant
under the band gap correction, the relative contributions of
�EV and �EC to the band gap correction are very important,
as they largely determine the position of the defect levels
inside the gap after the gap correction �cf. Fig. 3, example
�1��. Our previously published VBM shifts of �EV=
−0.37 eV in CuInSe2 and CuGaSe2 �Refs. 7 and 79� and
�EV=−0.32 eV in Cu2O �Ref. 83� have been shown to be
consistent with GW calculations, which yield �EV=
−0.38 eV and �EV=−0.22 eV for CuInSe2 and Cu2O,
respectively.114

C. Determining defect level shifts by the perturbation-
extrapolation method

In the case of the charge-neutral donor D0 in Fig. 3, where
the donor state is occupied, there is a contribution to �H if
the donor level shifts to higher energies during the band-gap
correction. The degree to which the donor level follows the
band-edge correction �EC determines the amount of correc-
tion in �H, as illustrated in Fig. 3. While shallow
conduction-band-like donor states can be expected to fully
track the CBM during band-gap correction �Sec. II D 2�,5,9

the magnitude of correction needed for deeper donor states is
not generally known.

One way to determine the shift of a donor state during
band-gap correction is the extrapolation of a band-gap-
opening perturbation toward the experimental band
gap.34,37,39,40,115 This method employs the notion that the de-
fect �donor� state �D�r� can be expanded in terms of the
Bloch functions �n,k�r� of the defect-free host, which form a
complete basis:

�n,k�r� = eikrun,k�r� , �14�

�D�r� = �
n,k

An,k�n,k�r� . �15�

Here, n is the band index, k is a wave vector in the Brillouin
zone corresponding to the host unit cell, and un,k�r� is the
lattice-periodic part of �n,k�r�, where the periodicity is that
of the underlying host lattice, not that of the supercell in
which the defect is calculated. If a �physical� band-gap-
opening perturbation �HP is added to the pure-host Hamil-

Eg(LDA) ∆EC∆EV

EC(LDA)EV(LDA)

EV EC

ε(+/0)
EC(LDA)

EV(LDA)

EC

EV

(1)

(2)

(1)

(2)

D+
D0

∆EV

∆EC

FIG. 3. �Color online� Schematic illustration of the effect on the
formation energies �left� and single-particle energies �right� when
the valence- and conduction-band edges in LDA are corrected by
�EV and �EC toward the experimental gap Eg=EC−EV. Solid lines
correspond to situation before correction and dotted lines to the
situation after correction. The scale is chosen so as to illustrate the
magnitude of corrections needed in ZnO. In general, the defect
levels can be affected by the correction in varying degrees, as illus-
trated by examples �1� and �2�.
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tonian HH via a multiplier 0���1, the host-band �single-
particle� energies en,k are moved into direction of the correct
experimental energies:

en,k��� = 
�n,k�HH��n,k� + �
�n,k��HP��n,k�

= en,k�0� + �
�en,k���

��
. �16�

If the same perturbation is applied to the “host+defect” sys-
tem �HH+�HD�, one finds the �single-particle� energy eD of
the defect state as

eD��� = 
�D�HH + �HD��D� + �
�D��HP��D�

= eD�0� + �
�eD���

��
. �17�

Within first-order perturbation theory �unchanged wave func-
tions �D upon application of �HP�, Eq. �17� is equivalent to

eD��� = eD�0� + ��
n,k

An,k
2 �en,k���

��
�18�

by the definition of �D�r� �Eq. �15��. Thus, upon phasing in
the perturbation, the energy of the defect state follows the
corrections of the host states en,k in proportion to the respec-
tive squared coefficients An,k

2 of expansion �15�.
Once a value of �=�ex has been determined for the pure-

host case from Eq. �16� such that the experimentally correct
host-band energies en,k are recovered, the corrected defect
energy eD can be obtained in two ways: either from Eq. �17�
when �eD /�� is determined by calculation of eD in the pres-
ence of the perturbation or from Eq. �18� when the coeffi-
cients An,k of expansion �15� are determined by projection of
the defect state onto host bands.116 Note that the defect en-
ergy eD in Eq. �18� depends on the type of perturbation only
through the respective shifts of the host-band energies en,k.
Thus, all perturbations that extrapolate the host states en,k to
correct experimental band energies will give the same result
for the extrapolated defect energy eD��ex�. Under the as-
sumption that the expansion of �D in Eq. �15� is unaffected
by the perturbation, the defect energy eD is then also extrapo-
lated correctly. Of course, the success of the perturbation-
extrapolation scheme requires two conditions: �a� All host
bands �n ,k� which significantly contribute to expansion �15�
of the defect state must be “correctly corrected” by the per-
turbation �HP when � is extrapolated to �ex. �b� The first-
order perturbation theory arguments applied must be valid;
i.e., the coefficients An,k must not change significantly during
the band-gap correction.

Since a physical perturbation that corrects all host bands
simultaneously toward their experimental energies is not
known, practical perturbation-extrapolation methods use
rather technical perturbation parameters for band-gap open-
ing, such as, e.g., the energy cutoff of the plane-wave basis34

or the parameter U in LDA+U,37,39,40 which are then ex-
trapolated to generally unphysical values such that the ex-
trapolated band gap coincides with the experimental gap. In
such schemes, only the difference eg=eC−eV is, in fact, cor-
rected, whereas host-band states other than the CBM and the
VBM are extrapolated to uncontrolled energies.

Employing the notion that a defect level is constructed in
some relative proportions from both conduction- and
valence-band states �cf. Eq. �15��, one can expect,40 subject
to condition �b� above, that by applying a perturbation that
shifts the valence and conductions bands relative to each
other, the defect level shifts according to these proportions.
For illustration, consider a defect state that is constructed
from only the VBM and CBM,

�D�r� = AV�V�r� + AC�C�r� . �19�

In this case, the extrapolated defect level eD��ex� follows the
band-edge corrections �EV and �EC in proportion to the
squares of the coefficients AV and AC �cf. Eq. �18��,

�D��ex� = �D�0� + AV
2�EV + AC

2 �EC. �20�

In this rather idealized case, the use of an unphysical per-
turbation parameter appears to be justified, as all band-gap-
opening perturbations would lead to the same result for the
defect energy relative to the VBM because the gap correction
�Eg=�EC−�EV is the same by construction. However, if
the defect state is constructed mostly from states other than
the VBM and the CBM, the use of an unphysical extrapola-
tion parameter can lead to uncontrolled errors in the defect
level energy because in this case the correction of the defect
level in Eq. �18� is based mostly on the behavior of host
states en,k, which are extrapolated to uncontrolled and possi-
bly incorrect energies. As we show in Sec. III E 2 for the
example of VO in ZnO, two different perturbations param-
eters, which superficially may seem equally justified, lead to

FIG. 4. �Color online� Left: The charge-neutral O vacancy VO
0 in

ZnO introduces two defect-localized states: An occupied a1 sym-
metric state deep in the gap and an unoccupied t2 level resonant
inside the conduction band. Right: Isosurface plot �green� of the
wave-function square of the a1 gap state. Bottom: Angular momen-
tum decomposed contributions to the occupied a1 level from the
vacancy site, the NN Zn shell, and the next-nearest-neighbor
�NNN� O shell. R is the atomic-sphere radius used for the projection
�touching spheres�.
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entirely different predictions for the defect level of VO. Thus,
it is essential to choose a perturbation that reproduces a
physically correct band structure after extrapolation, not just
a correct band gap �cf. condition �a� above�. Indeed, the lim-
ited expansion in Eq. �19� is severely incomplete for local-
ized states such as that of VO in ZnO, shown in Fig. 4,
because the construction of localized defect states from host-
band states generally requires the superposition of a very
large number of host Bloch functions �cf. Eq. �15�� from the
entire Brillouin zone of the host.117 Since the projections AV
and AC of a localized state onto the delocalized band-edge
states �V and �C �cf. Eq. �19�� vanishes in the limit of large
supercells �due to negligible overlap between defect and host
wave functions�, we conclude that the shift of the localized
defect level eD upon gap correction is not directly connected
with the shifts of the band-edge states eV and eC, in contrast
to the assertion made in Ref. 40.

D. Self-consistent band-gap corrections via LDA+U

It was recognized by Christensen118 that a band-gap cor-
rection can be achieved through the addition of empirical
external potentials in the self-consistent LDA calculation.
This method has been applied, e.g., to improve the descrip-
tion of the p-d coupling in Mn chalcogenides119 and to pre-
dict band-structure properties of ordered III-V alloys.120 A
modification of this method with nonlocal �angular
momentum–dependent� external potentials was used to de-
scribe defect states due to substitutional nitrogen in the con-
duction band of GaAs.121 Such l-dependent potentials can
also be created by the LDA+U method when applied to
cation s orbitals �Ref. 44 and present work� or to anion s
orbitals.82,83 The latter requires a negative value for U and
opens the gap essentially by reducing the dispersion of the
conduction band, which, however, leads often to an overes-
timation of the electron effective mass.

LDA+U creates an attractive potential for occupied orbit-
als �e.g., LDA+Ud for Zn d� but a repulsive potential for
unoccupied orbitals �e.g., LDA+Us for Zn s�, which be-
comes apparent when considering the simplified LDA+U
description of Dudarev et al.,85 in which the “+U” part of the
potential is

Vm,�
+U = �U − J�1

2
− nm,�� �21�

in the diagonal representation. Here, nm,� is the occupation
�partial charge� 0�nm,��1 of the m sublevel of spin �.
Thus, LDA+Us moves the conduction-band states toward
higher energies when applied to the Zn s states that mainly
contribute to empty conduction-band states in ZnO.44 Due to
hybridization, however, there is also a Zn s contribution to
the valence-band states. leading to a nonzero Zn s partial
charge of 0.48e in LDA �nZn s=0.24�. In contrast, LDA+Ud
lowers the energy of the VBM �see Sec. III B�, but after
application of LDA+Ud �UZn d=7 eV� alone the ZnO gap is
still underestimated by �50%. In a combined LDA+Us/d
approach, the full band-gap correction is achieved with a
smaller �downward� correction of the VBM ��EV�
−0.7 eV� due to the lowered Zn d energy, and a larger �up-

ward� correction of the CBM ��EC� +2.0 eV�, due to the
increased Zn s energy, in accord with the general finding of
GW calculations that the band gap is usually corrected
mostly by an upshift of the conduction bands.11,12,29 Using
the LDA+Us/d method, the experimental band gap of ZnO is
recovered for the values Us=38 eV and Ud=4 eV for Zn s
and Zn d, respectively. Here, the value for Ud required to
achieve agreement with photoemission data is smaller than
in the conventional LDA+Ud method7 because LDA+Us ad-
ditionally lowers the Zn d energy. The reason for the lower-
ing of the Zn d energy is that the s-repulsive potential re-
duces the Zn s partial charge �0.18e in LDA+Us/d� and,
hence, reduces the screening of the Zn ionic charge. In con-
trast to Ud, which, within some bounds, has a physical mean-
ing as the Coulomb-interaction parameter, Us should be re-
garded instead as an empirical parameter for the repulsive
Zn s potential chosen such that the experimental band gap is
reproduced.

A considerable shortcoming of the LDA+Us/d method is
that it does not reproduce the experimental wurtzite lattice
structure of ZnO. When the cell-external lattice parameters
are relaxed, we obtain the hexagonal BN structure with five-
fold coordination and nearest-neighbor distances of 2.07 Å
�in plane� and 2.17 Å �along the c axis�, similar to the meta-
stable hexagonal modification of MgO found in Ref. 122.
The relaxation to a structure with higher coordination num-
ber is probably caused by the exaggerated depletion of the
Zn s partial charge from 0.48e in LDA to only 0.18e in
LDA+Us/d, which renders ZnO more ionic than it should be
�for comparison, the Mg s partial charge in MgO is 0.14e�.
This spurious increase in the ionicity can in some cases in-
fluence the energy of defect levels �see below�. Considering
these shortcomings of LDA+U applied to s states, we con-
clude that LDA+Us/d may not generally be a quantitative
total-energy method for band-gap-corrected defect calcula-
tion. We recently developed an alternative method for cor-
recting the band gap within the self-consistent calculation
which is based on nonlocal external potentials �NLEPs�.123

In contrast to the LDA+U potential, the NLEPs do not de-
pend on the partial charge �sublevel occupation� and provide
a general and flexible method for empirically fitting the band
structure as well as structural parameters for targeting values,
e.g., taken from experiment. Applied to ZnO, we achieved
with the NLEP method a good description of the ZnO band
structure while reproducing the correct wurtzite ground-state
structure.123

E. Comparison of different correction schemes for the case of
VO in ZnO

In this section, we discuss and compare different band-
gap correction schemes for a specific example, namely, the
oxygen vacancy in ZnO, a case which has been subject of
considerable controversy and debate in literature.6,7,33–40,42,44

A wide range of formation energies have been proposed for
VO, as illustrated in Fig. 1. Since, �H�VO

0 � in the uncorrected
GGA calculation is hardly affected by supercell-size effects,
as shown in Fig. 5, the spread of literature results originates
mainly from the way the band gap was corrected. Therefore,
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we now compare and assess the results of different band-gap
correction schemes.

1. “Band-edge-only” correction

Considering that the appropriate correction for the energy
levels of localized defect states is generally independent of
the band-edge corrections �EV and �EC of the host, as dis-
cussed in Sec. III C, and taking into account the general ob-
servation that localized defect states do not respond as
strongly to external perturbations �e.g., pressure� as do the
host band-edge states,124 one can expect that the strongly
localized defect state of VO �cf. Fig. 4� is much less affected
by the band-gap problem than the band edges of the ZnO
host. Accordingly, the most conservative correction approach
is to avoid an explicit correction to the defect state of VO and
to correct only the band edges EC and EV which exhibit the
band-gap error. This “band-edge-only” approach, as em-
ployed in our previous works,6,7 corresponds to example �1�
in Fig. 3. Here, the LDA or GGA formation energy of the
charge-neutral VO

0 state is not changed by the gap correction.
In contrast, the position of the corrected defect level depends
strongly on the relative contributions of �EV and �EC to the
gap correction. For example, the single-particle energy of the
a1 level of VO

0 lies at EV+0.1 eV in the uncorrected GGA
calculation and moves to EV+0.8 eV after application of the
VBM shift �EV=−0.7 eV �Fig. 5�. Here it is important that
the band-edge shifts �EV and �EC are determined with re-
spect to the �internal� potential reference of the GGA calcu-
lation, so as to maintain consistency between the position of
the defect level in the supercell calculation and the band-
edge energies EV and EC which are obtained by applying
corrections in the defect-free pure-host calculation �see Sec.
III B�. Additional justification for the band-edge-only correc-
tion method can be deduced from the recent observation that
many defect levels, in particular those with localized wave

functions, align between a GGA and an approximately gap-
corrected hybrid-DFT calculation.113

The band-edge-only correction method was very success-
ful in describing the anion-vacancy-related optical transition
levels in ZnO �Refs. 6 and 7� and other II-VI systems.79 The
low formation energy �H�VO

0 �=0.8 eV in GGA �Table I and
Fig. 5� explains the formation of high VO concentrations un-
der Zn-rich conditions, which is further supported by recent
experiments �see Sec. V�. �Note that under the decisive Zn-
rich growth condition, LDA and GGA yield similar forma-
tion energies for VO �see Table I�.� Very recently, additional
theoretical support for low VO formation energies was drawn
from the self-interaction-corrected calculations by Pemma-
raju et al.,42 and by Oba,43 both finding a formation energy
close to that in the GGA.6

2. Ambiguity of the perturbation-extrapolation scheme

Before the band-gap correction, the occupied a1 symmet-
ric defect level of VO

0 in ZnO lies just above the VBM, e.g.,
at EV

GGA+0.1 eV in GGA �Fig. 5�, when determined from the
appropriate Brillouin-zone average �see Sec. IV B 2�. If,
upon band-gap correction this level follows the upward shift
of the CBM, then it can be expected that the formation en-
ergy will increase �Fig. 3�, since, on an absolute scale, most
of the band-gap correction occurs in the conduction band �cf.
Secs. III B and III D�. As described above, the perturbation-
extrapolation method provides a prediction of the extent to
which a defect state follows the respective band edges during
the correction. However, as we pointed out in Sec. III C, the
result of the extrapolation may not be unique if a perturba-
tion parameter is used that yields only the correct band gap
after extrapolation but not the correct full band structure. In
order to test whether the prediction for the VO level in ZnO is
affected by this uncertainty, we calculate the equilibrium
transition levels of VO in ZnO with an extrapolation based on
two different perturbation parameters: First, when the LDA
+U method is applied on the Zn d orbitals �Ud�, the band gap
is increased mainly via the reduced p-d repulsion lowering
the VBM energy. Second, LDA+U applied on Zn s orbitals
�Us� mainly causes an upshift of the conduction band �see
Sec. III D�.

While both methods open the band gap and, by construc-
tion, give the same band-gap correction �Eg=�EC−�EV, the
extrapolated transition levels of VO lead to entirely different
predictions, as shown in Table I: In the Ud-extrapolation
scheme, the equilibrium transition energy ��2+ /0�=EV
+1.9 eV lies in the upper part of the band gap, whereas in
the Us-extrapolation scheme, it moves to EV−0.6 eV even
below the VBM, which indicates that the 2+ state is unstable
for all Fermi levels within the ZnO band gap. Also, the ex-
trapolated single-particle energies of the occupied a1 level of
VO

0 differ considerably, by �1 eV. Similarly, large differ-
ences occur when comparing the extrapolated results based
on LDA+Ud �Ref. 37� with those using the energy cutoff of
the plane-wave basis as perturbation parameter.34 As noted
by Vlasenko and Watkins,125,126 the two extrapolation
schemes in Refs. 34 and 37 favor different possible interpre-
tations about the ��0 /+� level of VO in optically detected

∆H(VO
0)

a1'(Γ )

a1(Γ )

a1(BZ-av.)

EC(GGA)

∆
H
[e
V
]

e
s
p
−
E
V
[e
V
]

∆EV

FIG. 5. Formation energy �squares� and single-particle energies
esp �circles� of the neutral O vacancy in ZnO as a function of su-
percell size, determined in GGA. Shown is esp for the a1 symmetric

defect state of the charge-neutral VO, obtained either at �̄, the center
of the Brillouin zone of the supercell, or as an average over the
Brillouin zone �BZ av� with appropriate weights. Also shown is

a1���̄�, the first unoccupied conduction-band state at the zone-center.
The single-particle energies are given relative to the corrected en-
ergy of the VBM, EV�GGA�+�EV.
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magnetic-resonance �ODMR� experiments �see also below,
Sec. III E 3�.

According to the discussion in Sec. III C, the reason for
the large differences between the Ud- and Us-extrapolation
schemes lies in the fact that in either case only the difference
eC−eV is corrected, whereas the energies of states other than
the CBM and the VBM, including those with large contribu-
tions to expansion �15�, are extrapolated to different and not
necessarily physically correct energies. Indeed, in the
Ud-extrapolation scheme, the Coulomb parameter for Zn d
was extrapolated to an unphysically large value of U
=17.4 eV in Refs. 37 and 40, leading to an extrapolated
energy of the Zn d band at EV−10 eV, considerably deeper
than the experimental position between EV−7.5 eV �Ref.
127� and EV−8.8 eV.128,129 Apart from the d-band energies,
other materials properties are also extrapolated to unphysical
values; e.g., the extrapolated lattice constant is more than 7%
smaller than the experimental one.37,40

In Ref. 40, Janotti and van de Walle suggested that defect
levels follow the corrections of the VBM and of the CBM in
proportion of the fractions VB and CB=1−VB, respectively
�cf. the coefficients AC

2 and AV
2 in Eq. �20��, which are inter-

preted as measures of the valence- and conduction-band
characters. This assumption led them to speculate,40 “The
assumption that the transition levels associated with the oxy-

gen vacancy do not shift when the conduction band is cor-
rected is equivalent to saying that the a1 state has purely
valence-band character.” However, as we showed in Sec.
III C, localized defect states cannot be decomposed into just
two contributions from the valence- and conduction-band
states. Due to the incompleteness of the limited expansion in
Eq. �19�, the correction of the defect state cannot be directly
linked to the corrections of either the VBM or the CBM, or a
combination thereof in fractions VB and CB=1−VB. Since
localized deep levels are constructed from valence- and/or
conduction-band states from throughout the Brillouin zone
�see Sec. III C�, their behavior during the band-gap correc-
tion depends on the detailed behavior of the entire band
structure upon applying the perturbation. Indeed, it is the
different behavior of states other than the VBM and the
CBM that leads to the extremely different predictions of dif-
ferent perturbations �e.g., LDA+Ud versus LDA+Us� for the
extrapolated energy of the VO defect level in ZnO �see Table
I�.

In the Ud-extrapolation method, our calculated transition
energy of the ��2+ /0�=EV+1.9 eV level lies somewhat
lower in the gap than in Ref. 37, despite the nominally iden-
tical parameters used here �see Table I�. This difference is
mainly due to the application of image charge corrections in
the present work, which, as we show in Sec. IV A, yield

TABLE I. Comparison of different methods for determining the band-gap-corrected transition levels and
formation energies of VO in ZnO: LDA+UZn d+extrapolation �Ud extr.�, LDA+UZn s+extrapolation �Us

extr.�, LDA+UZn s+UZn d �Us/d�, and LDA or GGA+band-edge-only correction ��EV+�EC�, as published in
Refs. 6 and 7. The Ud- and Us-extrapolation methods are based on calculations with Us=Ud=0 and Ud

=4.7 eV, as in Refs. 37 and 40, and Us=10 eV, which then are extrapolated. Given are the U parameters, the
��2+ /0� and ��+ /0� equilibrium transition energies, the single-particle energy esp of the a1 gap state of VO

0 ,
and the formation energy of VO

0 under Zn-rich ���Zn=0� and O-rich ���O=0� conditions. All numbers are in
eV and correspond to the band-gap-corrected situation, Eg=Eg�expt�. Image charge and potential-alignment
corrections were applied to charged supercell energies. Single-particle energies were determined from the
appropriate Brillouin-zone average �cf. Fig. 5 and Sec. IV B 2�.

Ud extr.
�LDA�a,b

Us extr.
�LDA�b

Us/d
�LDA�c,d

�EV+�EC
e

�LDA�d
�EV+�EC

f

�GGA�b

Ud 17.2 4.0 7.0 7.0

Us 37.3 38.0

��2+ /0�=EV+ 1.93 −0.61 0.61 1.60 1.30

��+ /0�=EV+ n/ag n/ag 0.79 0.94g n/ag

esp�VO
0 −a1�=EV+ 1.3 0.3 1.0 0.9 0.8

�Hf�VO
0 �, Zn rich 3.23h 1.16h 1.98h 1.14 0.83

�Hf�VO
0 �, O rich 6.86 4.79 5.61 4.67 3.76

aCalculation comparable to that in Refs. 37 and 40.
bTheoretical �relaxed� host lattice constants.
cCalculation comparable to that in Ref. 44.
dExperimental host lattice constants.
eReference 7.
fReference 6.
gThe energy of VO

+ cannot reliably be determined in LDA, GGA, or their +Ud extensions because the a1 level
lies above the calculated CBM in this charge state �see Sec. III E 3�. In Ref. 7, the ��+ /0� transition energy
was deduced from an interpolation in the configuration coordinate diagram.
hSince the elemental Zn-metal reference energy is not well defined in LDA+U, the experimental heat of
formation �Hf =−3.63 eV of ZnO was used for the Zn-rich condition.
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important contributions to the defect formation energy. Omit-
ting these corrections,40 we would extrapolate the transition
level to ��2+ /0�=EV+2.3 eV, close to the result of Refs. 37
and 40. Thus, the present theoretical analysis suggests that
the high energy of the ��2+ /0� donor transition in the
Ud-extrapolation scheme of Janotti and van de Walle37,40 re-
sults mostly from an exaggerated lowering of the VBM en-
ergy relative to the VO level, due to extrapolation of Ud to an
unphysically large value of Ud=17 eV �cf. Table I�, but, to a
lesser extent, also from the neglect of image charge correc-
tions.

We further give in Table I the absolute formation energies
�H�VO

0 � obtained by application of the Ud- and
Us-extrapolation schemes directly to �H �analogous to the
extrapolation of defect levels, as discussed above�. Since the
use of the LDA+U method for Zn precludes the use the
calculated total energy of Zn metal as a reference state �see
Sec. II C 2�, we used in these cases the experimental heat of
formation �Hf =−3.63 eV �Ref. 130� of ZnO to determine
�H under Zn-rich conditions ���O=�Hf�. The formation
energy �H=3.2 eV in the Ud-extrapolation method is close
to the value of 3.7 eV found by Janotti and van de Walle.40

�Note, however, that they did not extrapolate �H directly but
rather reconstructed �H�VO

0 � and �H�VO
+ � by using the ex-

trapolated transition levels and assuming that �H�VO
2+� is

correct for EF=EV in the nonextrapolated situation for U
=4.7 eV in the LDA+U calculation.� However, similarly as
for the transition levels, we again observe large differences
between the two choices of the perturbation parameter, Ud
versus Us, the latter predicting a much lower formation en-
ergy of only �H=1.2 eV �Table I�. These findings corrobo-
rate our conclusion that perturbation-extrapolation schemes
that require the extrapolation of the perturbation parameter
toward unphysical values to sufficiently open the band gap
are arbitrary as to the choice of the perturbation parameter
and cannot reliably be used to predict corrected defect levels.

3. VO in the self-consistently gap-corrected LDA+UsÕd

approach

In the combined LDA+Us/d approach, the corrected VO
defect levels can be determined within the self-consistent
calculation, which is particularly advantageous for the singly
charged VO

+ state, which we discuss now in more detail: Ex-
perimentally, the g factor observed for VO

+ in electron para-
magnetic resonance �EPR� is close to the free-electron value,
implying a localized deep gap state.131 In contrast, the energy
of the a1 state lies above the CBM in LDA and in LDA
+Ud, which implies a shallow effective-mass-like state.7

While in small supercells, band-filling effects �cf. Secs. II D
and IV B� lead to a partial occupation of the a1 resonance in
the conduction band, in the limit of large cells the electron
will eventually occupy the CBM; i.e., increasing the cell size
leads to the gradual transition VO

+ →VO
2++e �a1

1→a1
0+e�. As a

result, the calculated �H�VO
+ � is not unambiguously defined

and depends on the actual supercell size used �cf. Sec. IV B�.
Thus, the VO

+ state cannot be realistically described in LDA
or LDA+Ud. In order to avoid the problem of spurious hy-
bridization of the a1 level with the conduction band, we de-
termined in Ref. 7 the formation energy of VO

+ by an inter-

polation of the configuration coordinate diagram �see Sec.
III F�. These difficulties can be avoided in the self-
consistently band-gap-corrected LDA+Us/d method where
the singly occupied a1 level of VO

+ occurs correctly inside the
band gap.

In Refs. 125 and 126, Vlasenko and Watkins gave two
possible interpretations of their ODMR experiments, one of
which placed the ��+ /0� transition energy of VO at EV
+0.9 eV, whereas the second would require an energy much
higher in the gap at EV+2.5 eV. Notwithstanding the above
discussed ambiguous energy of the VO

+ state, Janotti and van
de Walle40 interpreted their result of ��+ /0�=EV+2.0 eV in
the Ud-extrapolation scheme as supporting the second possi-
bility. In contrast, both our published7 value of ��+ /0� and
the value obtained here with the Us/d method �see Table I� are
close to the experimental ��+ /0� level in the first interpreta-
tion, which was also supported by the recent Us/d calculation
of Paudel and Lambrecht,44 as well as by the band-gap-
corrected hybrid-DFT calculations of Patterson23 using the
B3LYP �Refs. 21 and 132� functional.

Regarding the �2+ /0� equilibrium transition level, LDA
+Us/d finds ��2+ /0�=EV+0.6 eV �EV+0.8 eV in Ref. 44�,
notably even lower in the gap than in the band-edge-only
correction method �EV+1.3 eV, see Table I�. Comparing
with the results of self-interaction correction �EV+1.1 eV,
Ref. 42� and hybrid-DFT �EV+2.2 eV, Ref. 43�, we see that
different self-consistently gap-corrected methods still give a
large range of predictions for the position of the VO defect
level even though they do not rely on a posteriori correc-
tions. Also, the formation energies under O-poor conditions,
�H�VO

0 �=0.7 eV in SIC �Ref. 42� and 1.0 eV in hybrid-DFT
�Ref. 43�, are close to the GGA result of 0.8 eV �Table I�, but
�H�VO

0 �=2.0 eV in LDA+Us/d is considerably larger than in
GGA. Considering the expectation that the relative contribu-
tions of the band edge corrections �EV and �EC to the gap
correction will be decisive for the position of the defect lev-
els in the corrected gap �see Sec. III E 1�, a particular con-
cern is the relative magnitude of �EV and �EC in different
self-consistently gap-corrected approaches. Indeed, it was
found in Ref. 29 that screened exchange �which, similar as
some hybrid-DFT variations �Refs. 43 and 133� includes HF-
exchange via a model screening function� increases the band
gap primarily by lowering EV, whereas GW primarily raises
EC.11,12,29 Thus, the accuracy of the shifts �EV and �EC in
e.g., the different variations of hybrid-DFT should be ad-
dressed in future band-gap corrected defect calculations.

4. Prediction of persistent photoconductivity due to VO in
different correction methods

Finally, we consider the optical transitions that were pre-
dicted to lead to persistent photoconductivity �PPC� in Refs.
6 and 7. After two successive optical excitations, VO

0 →VO
+

+e �a1
2→a1

1+e� and VO
+ →VO

2++e �a1
1→a1

0+e�, the doubly
charged vacancy is formed with two electrons being excited
to the CBM. This VO

2++2e state was predicted7 to exist as a
metastable state; i.e., the electron capture process that leads
back to the VO

0 ground state requires the activation of an
energy barrier. We here address two related issues that re-
main unsettled or controversial, comparing the trends of dif-
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ferent band-gap correction methods including also recent
hybrid-DFT results by Patterson23 and the self-interaction-
correction calculations by Pemmaraju et al.42 First, the ex-
perimental assignment of the excitation energy for the VO

0

→VO
+ +e transition remains ambiguous, as discussed in detail

in Sec. V. Theoretically such optical excitation energies can
be calculated from total-energy differences according to Eqs.
�3� and �4�. For the sake of comparability with the data given
for hybrid-DFT and SIC in Refs. 23 and 42, however, we
here regard the respective single-particle energies. Indeed,
we found before6,7 that the difference �see Eq. �5�� is small in
this specific case; i.e., the optical transition energy is only
about 0.2 eV larger compared to the estimate based on the
single-particle energy of the a1 state of VO in the gap �the
difference is expected to be even smaller in hybrid-DFT or
SIC calculations; cf. Sec. II B�. Notably, the result of our
previous band-edge-only correction method of an excitation
energy �O�0 / + ;e�=2.8 eV,7 corresponding to a single-
particle energy of the a1 state of VO

0 at EV+0.9 eV �Table I�,
is very closely reproduced by all the self-consistently band-
gap-corrected methods. That is, the a1 state lies at EV
+1.0 eV in the present LDA+Us/d result �Table I�, in agree-
ment with the finding of Paudel and Lambrecht,44 at EV
+0.7 eV and 1.0 eV in the hybrid-DFT calculations of Refs.
23 and 43, respectively,134, and at EV+0.8 eV in the SIC
calculation.42 �The extrapolation methods based on Ud and
Us give somewhat higher and lower energies for the a1 state,
respectively; see Table I�. Thus, the agreement among these
different theories strongly supports the assignment7 of the
photoluminescence excitation threshold for the green lumi-
nescence, observed at 3.1 eV �see also Sec. V�, to the first
excitation of the O vacancy, VO

0 →VO
+ +e.

The second open issue related to the PPC phenomenon is
the energy of the empty a1

0 level in the doubly charged VO
2+

state. The emergence of an energy barrier, which protects the
conductive metastable state from spontaneous relaxation into
the nonconductive VO

0 ground state by electron capture, re-
quires the empty a1

0 level of VO
2+ to be located as a resonance

inside the conduction band, rather than to occur as a gap
state. In the uncorrected LDA calculation, the a1 resonance
of VO

2+ lies far inside the LDA conduction band, suggesting
that it would still be resonant when the CBM is corrected by
a rigid shift.7 In contrast, as pointed out by Paudel and
Lambrecht,44 the a1

0 level of VO
2+ lies inside the band gap

around EV+2.0 eV in the LDA+Us/d method, which contra-
dicts the PPC model for O vacancies in ZnO. However, this
behavior is not present in hybrid DFT �Refs. 23 and 43� and
SIC,42 which do not show a �single-particle� defect state in-
side the band gap for the VO

2+ state. There, the lowest unoc-
cupied state in the VO

2+ defect calculation is a strongly disper-
sive band, which has to be identified with the perturbed-host
state that is formed due to the interaction between the host
conduction band and the resonant a1 state at higher energies
�see Sec. IV B 2�. Similarly, no gap state is created when the
upshift of the CBM in LDA+Us/d is achieved by applying Us
on the O s orbitals instead of the Zn s orbitals �cf. Secs.
II C 2 and III D�. Thus, the appearance of the a1 defect level
inside the gap for the VO

2+ state appears to be a peculiarity of
the LDA+U method when applied to Zn s orbitals, which is
probably related to the artificially increased ionicity of ZnO

in LDA+Us/d �cf. Sec. III D�. Indeed, we found before135,136

that in the more ionic oxides, such as MgO, CaO, and TiO2,
the VO gap level has a much less pronounced tendency to
shift to higher energies upon ionization, compared to the
oxides ZnO and In2O3, which have a significant covalent
character. Accordingly, O vacancies are expected to cause
PPC in ZnO and In2O3 �Refs. 6 and 7� but not in MgO, CaO,
or TiO2.135,136

F. Classification scheme for defect level corrections

Since, as discussed in Sec. III E, current schemes for
LDA correction do not represent a universal cure for the
band-gap problem in defect calculations, we now turn to de-
veloping a general classification of different defect behaviors
that require different treatments when the band edges are
corrected. These defect behaviors are characterized by the
energies of the single-particle defect levels relative to the
band edges: When a defect is introduced into a semiconduc-
tor host lattice, it generally creates defect-localized states
�DLS�, which can either fall inside the gap or occur as reso-
nances inside the host bands.7 These DLS typically originate
from the orbital interaction between the atomic orbitals of
the impurity atom and the dangling bonds of the host.137 In
case of vacancies, these DLS are created due to the interac-
tion between the dangling-bond orbitals. For example, the
four Zn-site-centered dangling bonds around VO in ZnO
originate from the Zn �s / p�-O p atomic orbital interaction
�Fig. 4� and combine to form a lower-energy a1 symmetric
level and a triply degenerate t2 symmetric level resonant in-
side the conduction band �Fig. 4�.112 As discussed in Ref. 7,
the DLS can, as a function of the defect potential, either
anticross with the host-band edge �in case the DLS and band
edge have the same symmetry representation� or cross the
band edge �in case the DLS and band edge have different
symmetry representations�. Thus, the energy of the defect-
induced DLS relative to the host bands determines whether a
defect behaves as deep or shallow7 and, hence, in which way

LDA corrected

Type I: Shallow-shallow

DLSDLS

PHS

PHS

LDA corrected

Type III: Shallow-deep

DLS

DLS

PHS

LDA corrected

Type II: Deep-deep

DLS
DLS

∆EV

∆EC

FIG. 6. �Color online� Schematic illustration three qualitatively
different behaviors of defect level during band-gap correction. If the
primary defect level, i.e., the defect-localized state �DLS, red� is
resonant inside the conduction band, the electron is released to a
secondary, conduction-band-like perturbed-host state �PHS, blue�.
In this case, the defect exhibits shallow behavior. If the DLS lies
inside the gap, the defect exhibits deep behavior. Type I: Shallow in
LDA, shallow after correction. Type II: Deep in LDA, deep after
correction. Type III: Shallow in LDA, deep after correction.
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corrections should be applied to the defect formation energy.
For example, a shallow-donor state is formed when the pri-
mary DLS occurs as a resonance inside the conduction band
and releases the electron into the host conduction band. The
resulting unoccupied �ionized� charged donor leads to the
formation of a shallow, effective-mass-like secondary state,
i.e., the perturbed-host state �PHS�.7 Since, however, the do-
nor concentrations corresponding to usual supercell sizes on
the order of �100 atoms correspond normally to the case of
degenerate doping, the PHS does not appear as a gap state in
the calculation. Instead, Moss-Burstein-type band-filling ef-
fects raise the Fermi level above the CBM. These band-
filling effects are associated with a considerable and strongly
supercell size-dependent increase in the donor formation en-
ergy, and need to be corrected to obtain the formation energy
for the situation of dilute doping. In the case of deep defects
where the primary defect state �i.e., the DLS� occurs inside
the band gap, such size-dependent band-filling effects do not
exist �see Sec. IV B 1�.

In Fig. 6, we distinguish three general types of defect
behaviors which require different treatments when the band
gap is corrected. The VO defect in ZnO is a remarkable de-
fect in the sense that it assumes all three behaviors when the
charge states is increased from 0 to 2+.

Type I: Shallow behavior before gap correction and shal-
low behavior after gap correction �Fig. 6, left�. If the pri-
mary DLS lies so high in energy that it exceeds the energy of
the CBM even after the shift of the CBM by �EC �Fig. 6,
left�, it can be expected that it is still resonant inside the
conduction band after the band-gap correction. Since, the
PHS that carries the donor electron is derived from the host-
band structure, it can be expected that PHS-like donor levels
follow the correction of the CBM. Therefore, the “shallow-
donor correction”5 �see Sec. II D 2� should be applied; i.e.,
the formation energy is to be corrected by ze�EC, where ze is
the number of electrons occupying the PHS �e.g., ze=1 for
the shallow TeAs donor in GaAs in its charge-neutral state;
see Sec. IV B 1�. This situation corresponds to example �2�
in Fig. 3. Due to the defect-to-host �DLS-to-PHS� charge
transfer, the occupied donor state �D has a large overlap with
the CBM state of the pure host, i.e., AC

2 �1 in Eq. �19�, and
the prediction in Eq. �20� of the extrapolation scheme �Sec.
III C� yields the same result for the donor transition energy
as the shallow-donor correction ze�EC. Type-I behavior is
assumed by VO in ZnO in the metastable shallow state �VO

2+

+2e�, where the atomic configuration is that of the ionized
q= +2 state and where two electrons occupy the PHS �see
Sec. III E 4 above�.

Type II: Deep behavior before gap correction and deep
behavior after gap correction �Fig. 6, center�. If the primary
DLS occurs inside the uncorrected gap, the defect state ex-
hibits deep and localized behavior. In this case, the formation
energy is not affected by the Moss-Burstein shift, and the
band-filling correction Eq. �6� vanishes. Thus, the formation
energy of type-II defects such as VO

0 in ZnO �see Sec. III E 2
above� converges typically very quickly with supercell size
�Fig. 5�, with no further finite-size corrections needed in the
case of the neutral charge state �see also Sec. IV B 1�.

Due to the localized nature of type-II defects, it cannot be
expected that the donor state follows the CBM correction

�EC, and practical perturbation-extrapolation schemes that
correct only the band gap but not the entity of all host-band
states will generally fail to correctly predict how the energy
of the defect level changes upon band-gap correction �see
Sec. III C�. Fortunately, however, the defect states of type-II
defects are often rather well described in LDA, so that no
defect-specific LDA correction is needed, i.e., the band-edge-
only correction is often sufficient �see Sec. III E 1�. This situ-
ation corresponds to example �1� in Fig. 3. It is still impor-
tant to correctly determine the correct band-edge shifts �EV
and �EC with respect to the original LDA potential reference
�see Sec. III B� and, hence, with respect to the defect level.
Some defects may, however, require additional corrections.
For example, the DLS of transition-metal impurities lies usu-
ally at too high energy138 due to self-interaction effects in
strongly localized occupied levels. In this case, defect-
specific corrections can often be applied via the LDA+U
method.

Type III: Shallow behavior before gap correction and
deep behavior after gap correction �Fig. 6, right�. The most
difficult situation occurs when the DLS is located above the
LDA-calculated CBM but inside the gap after the correction
of the CBM �Fig. 6, right�. In this case, the character of the
donor state �D changes from hostlike and delocalized to de-
fectlike and localized. Therefore, the first-order perturbation
requirement �condition �b� in Sec. III C� for the perturbation-
extrapolation method is violated. Thus, the extrapolation
scheme would fail even if a perturbation were found that
corrects all host states and not just the VBM and the CBM
�Sec. III C�. The formation energy in LDA is generally too
low for type-III defects because the electron erroneously re-
laxes into the host conduction-band states located at too low
energy. Ironically, the LDA description of type-III defects
may worsen with increasing supercell size �see also Sec.
IV B�, since a larger fraction of the donor electron relaxes
into these host states as the host conduction-band density of
states is increased with supercell size. On the other hand, the
application of the shallow-donor correction ze�EC �see Sec.
II D 2� would also lead to a wrong result, i.e., to overcorrec-
tion, since defect level shift is smaller than that of the CBM
�see Fig. 6, right�.

An example for type-III behavior is the singly charged
state VO

+ of the O vacancy in ZnO �see Sec. III E 3 above�.
Since, in this specific case, VO transforms from type I to type
II along the reaction coordinate connecting the equilibrium
configurations of VO

2+ and VO
0 , respectively, we could obtain

�H�VO
+ � in Ref. 7 by interpolation of the configuration coor-

dinate diagram. More generally, one needs to modify the
host-band structure during the self-consistent calculation
such that the position of the DLS within the gap is uncovered
and the correct orbital configuration is obtained.123 Here, the
LDA+Us method �see Sec. III D� may be helpful in achiev-
ing at least a qualitative picture about the energy of the de-
fect level in the corrected gap.

IV. CORRECTION OF FINITE-SIZE EFFECTS IN
SUPERCELL CALCULATIONS

There are several distinct causes of finite-size effects in
supercell calculations, i.e., in particular, those concerning the
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convergence of elastic energies, potential-alignment effects,
image charge interactions, and band-filling effects. Defects
with large lattice relaxations have a considerable contribu-
tion to their formation energy due to elastic energies, which
depend on the supercell size. However, such elastic energies
can usually be explicitly converged in supercells of afford-
able sizes. For example, �H of the fully relaxed neutral O
vacancy in ZnO differs by only 0.05 eV between a 72-atom
and a 576-atom supercell �Fig. 5�, despite the large lattice
relaxation of this defect. Similarly, in the case of the triply
charged VAs

3+ defect in GaAs �see below� which also exhibits
large lattice relaxations,139 we find convergence of the elastic
energy within 0.06 eV for 128-atom and larger supercells.
Therefore, we focus here on the slower-converging size-
dependent effects that in general cannot be converged by
simply calculating large enough cells. These slow-
converging finite-size effects are, in particular, the electro-
static image charge interaction in the case of charged defects
�Sec. IV A� and the Moss-Burstein-type band-filling effects
in the case of occupied shallow levels that are caused, e.g.,
by charge-neutral shallow donors �Sec. IV B�.

A. Image charge interactions

The treatment of charged supercells and the question of
whether or not the image charge corrections proposed by
Makov and Payne31 are appropriate have been subjects
of considerable discussion and debate in
literature.5,9,39,40,44–57 In particular, concerns were
raised44,48,57 that the “defect charge,” i.e., the charge differ-
ence between the “host+defect” and “pure-host” systems,
may be too delocalized, so that the point-charge model un-
derlying the �first-order� image charge correction in Ref. 31
may not hold. Therefore, we assess here the validity of the
image charge correction �Eq. �11�� by calculating a dense
series of supercell sizes for a highly charged test case, i.e.,
the 3+ state of the As vacancy in GaAs, and compare the
results of the image charge correction with the prediction of
the finite-size scaling method.50,54,56

1. Image charge correction versus finite-size scaling

Finite-size scaling methods provide, in principle, accurate
formation energies for the limit of infinite dilution provided

that sufficiently many terms are taken into account in the
expansion and that sufficiently many and sufficiently large
supercells are calculated, so as to be able to accurately fit the
expansion coefficients. It was found50,56 that within an ex-
pansion in powers of the reciprocal linear supercell dimen-
sion �1 /L, where L=VSC

1/3 is the cubic root of the supercell
volume VSC�, the first- and third-order terms dominate,

�HD�L� = �HD��� +
�1

L
+

�3

L3 . �22�

The finite-size scaling method requires the calculation of a
set of different supercell sizes with the largest the size of at
least a few hundred atoms, preferably on the order of a thou-
sand atoms.54,56 After the fit according to Eq. �22�, the ex-
trapolated formation energy �HD��� for infinite supercell
size should be accurate, irrespective of the validity of the
analytic form for �1 and �3 as given by Makov and Payne,31

according to Eq. �11�. More simplified scaling methods con-
sider only either the 1 /L term �e.g., Refs. 34 and 55� or the
inverse volume 1 /L3 term.44,48,51 Another modification of the
finite-size scaling method was proposed by Erhart et al.,39

who assumed that the analytic expression for the factor �1
according to Eq. �11� fully accounts for the 1 /L contribution
to the scaling, and fitted the remaining size dependence only
through the parameter �3 in the 1 /L3 term in Eq. �22�.

We here present several showcase examples of charged
defects in GaAs which are calculated in very large supercells
of up to 1728 atoms �Table II� and which are chosen such
that there exist no size-dependent band-filling effects �Sec.
II D 3� that may convolute the finite-size scaling. In order to
eliminate the size dependence of the elastic energies, the
formation energies are calculated with the same nearest-
neighbor atomic relaxation determined in a 64-atom cell,
while all other atoms remain at their ideal lattice positions.
�In separate calculations where we relaxed all cell-internal
degrees of freedom, we determined for VAs

3+ the residual re-
laxation energy as 0.51 eV in the limit of large cells, which
was reached within 0.15 eV in the fully relaxed 64-atom cell
and within 0.06 eV in cells of 128 atoms or larger.� In order
to accurately determine the exact scaling behavior for the
highly charged test case VAs

3+, we use a dense series of 15
different cells representing the GaAs zinc-blende lattice in
simple cubic �sc�, face-centered-cubic �fcc�, or body-

TABLE II. Supercell-size dependence of the charged-defect formation energies �H�EF=EV� of VAs
3+, VGa

3−,
AsGa

2+, and TeAs
+ in GaAs under As-rich conditions ���As=0�. Given are �H for the 1728- and 64-atom

supercells at different levels of corrections for finite-size effects: our present method of “potential
alignment+image charge” corrections �PA+MP�, uncorrected �UC� supercell energies, and “potential-
alignment-only” �PA� corrected energies. The formation energies are in eV and include only the NN relax-
ation as determined in the 64-atom cell.

�H�1728�
�PA+MP�

�H�64�
�PA+MP�

�H�1728�
�UC�

�H�64�
�UC�

�H�1728�
�PA�

�H�64�
�PA�

VAs
3+ 4.15 4.15 3.88 3.68 3.86 3.30

VGa
3− 4.32 4.36 4.01 3.06 4.03 3.51

AsGa
2+ 1.28 1.29 1.15 0.73 1.16 0.92

TeAs
+ 0.20 0.19 0.17 −0.03 0.17 0.09
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centered-cubic �bcc� supercells �see Ref. 140 for the justifi-
cation of combining the different cell symmetries in the
finite-size scaling�.

Figure 7 shows the size dependence of �H of VAs
3+ as a

function of the inverse linear supercell dimension 1 /L for
three different levels of corrections, along with a respective
fit according to Eq. �22� �the fit includes all supercells with
64 or more atoms�: �1� �diamonds� uncorrected supercell en-
ergies, with fit of �1, �3, and �H���; �2� �squares� supercell
energies after the potential-alignment correction �Eq. �7��,
with fit of �1 and �H���; and �3� �circles� supercell energies
after potential-alignment and image charge corrections �Eqs.
�7� and �11��,141 with fit of �H��� only �i.e., �H��� is the
average �H for the cell sizes between 64 and 1728 atoms�.
Comparing the three different finite-size scaling data sets, we
see that very similar extrapolations to infinite cell size are
obtained; i.e., the values of �H��� obtained by the three fits
agree within 0.04 eV. It is notable that even the result of the
32-atom cell �bcc� is rather well converged within only 0.06
eV, whereas the supercells in fcc symmetries �e.g., 16, 54,
and 128 atoms� yield somewhat slower convergence �see
Fig. 7�.142

After applying both the potential-alignment correction
�Eq. �7�� and the analytic form of image charge correction
�Eq. �11�� including the first- and the third-order terms
�circles in Fig. 7�, we find that the formation energy of VAs

3+

becomes size independent for cells of 64 atoms and larger,
and the �H��� obtained by the fit of the corrected energies
�circles� agrees within 0.01 eV with the respective �H���
obtained from the finite-size scaling of the uncorrected ener-

gies �diamonds�. Also, we find that the corrected �H�VAs
3+�

for the relatively small 64-atom cell is converged within 0.03
eV compared to �H���. Thus, the combination of potential
alignment plus image charge correction including the third-
order term enables the calculation of formation energies with
essentially the same accuracy as finite-size scaling, but re-
quires the calculation of only one relatively small supercell,
e.g., of 64 atoms, thereby reducing the computational effort
dramatically. Our results demonstrate that finite-size errors
can be corrected to high accuracy if finite-size effects of
different physical origins are deconvoluted and treated sepa-
rately, despite the expectation54,56 that it would be difficult to
obtain a general analytic correction method for finite-size
errors. Also, we find no indication of significant contribu-
tions to the finite-size scaling from terms other than the 1 /L
and 1 /L3 terms in Eq. �22� �at least when excluding the 16-
and 54-atom fcc supercells�, which account for electrostatic
interaction and potential-alignment effects. The sporadic
observation50,56 of scaling behaviors in deviation from Eq.
�22� are possibly related to band-filling effects �cf. Secs.
II D 3 and IV B� which do not follow the functional form of
Eq. �22�.

Some previous works44,48,51 used an approximate 1 /L3

scaling, found empirically within some range of supercell
sizes, to extrapolate uncorrected supercell energies to the in-
finite limit. We emphasize here that the potential-alignment
correction does scale as 1 /L3. Therefore, the uncorrected for-
mation energies may give the impression of inverse-volume
scaling if potential-alignment effects are pronounced. Indeed,
when we plot the uncorrected energies in Fig. 7 as a function
of inverse volume, we find approximate linearity with a posi-
tive slope �lower �H for larger cells� up to cell sizes of 216
atoms. For even larger cells, however, the image charge in-
teraction becomes more important and changes the sign of
the slope �cf. the nonmonotonic behavior of the uncorrected
energies in Fig. 7�. Note that this change in slope may not be
noticed if cells up to only few hundred atoms are considered.
Thus, when we use the formation energies calculated for the
216-atom and smaller cells for linear extrapolation to infinity
in the 1 /L3 plot, we obtain an error as large as 0.9 eV com-
pared to the converged formation energy of VAs

3+. This ex-
ample shows that the extrapolation based on inverse-volume
scaling44,48,51 can lead to errors that are even larger than the
errors of the uncorrected energies �excluding the small 16-
atom cell, the largest error of about 0.5 eV occurs at the
fairly large cell size of 216 atoms; see Fig. 7�.

We further tested the present correction scheme for few
additional defects in GaAs, i.e., the 3− charge state VGa

3− of
the Ga vacancy, the 2+ state of the EL2-related AsGa

2+ antisite
defect,143 and the singly charged TeAs

+ as a prototypical ion-
ized shallow donor �see also Sec. IV B�. Here, we did not
repeat the full series of supercells calculated for VAs but sim-
ply compare in Table II the corrected and uncorrected forma-
tion energies for 64-atom and 1728-atom supercells. In order
to exclude the cell-size dependence of elastic energies, we
again consider nearest-neighbor �NN� relaxation only. As
seen in Table II, our “potential alignment+image charge”
correction method consistently removes the supercell-size
dependence of �H, whereas uncorrected energies show large
discrepancies of up to �1 eV between the 1728- and 64-

(VSC/Vunit)
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FIG. 7. �Color online� Scaling of the formation energy �H�EF

=EV ,�As=�As
0 �, of the VAs

3+ defect in GaAs as a function of
�VSC /Vunit�−1/3, which is proportional to the reciprocal linear super-
cell dimension 1 /L �VSC: supercell volume; Vunit: volume of the
two-atom GaAs unit cell�. Shown are different levels of total-energy
corrections and their respective finite-size scalings �dashed lines�,
as determined by a fit using the data points between 64 and 1728
atoms. Diamonds: No correction, 1 /L+1 /L3 scaling. Squares:
Potential-alignment correction, 1 /L scaling. Circles: Potential
alignment+image charge correction, no size dependence.
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atom cells. Large errors occur also if potential-alignment
effects are considered but no image charge corrections are
applied, as done, e.g., in the recent ZnO defect calculations
by Janotti and van de Walle.40 In the examples shown in
Table II, such potential-alignment-only corrected energies for
the typical cell size of 64 atoms deviate from the converged,
i.e., the fully corrected energies by up to 0.9 eV, highlighting
the importance of taking into account image-charge and
potential-alignment corrections simultaneously.

2. Unexpected scaling of the image-charge correction

A surprising observation in Fig. 7 is that the data set in-
cluding only the potential-alignment corrections �squares�
but not the image-charge correction can be well fitted with
only the first-order parameter �1, i.e., with the setting �3=0.
This means that after the potential alignment �which scales
as 1 /L3�, no significant third-order contribution remains, de-
spite the nominal 1 /L3 scaling of the second term in Eq. �11�,
and that the image-charge correction effectively scales as
1 /L. Indeed, when we plot for the case of VAs

3+ the third-order
correction �EMP

3 �second term in Eq. �11�� as a function of
the respective first correction �EMP

1 �first term in Eq. �11��,
we find a clear proportionality, shown in Fig. 8,

�EMP
3 = f�EMP

1 , �23�

which strongly deviates from the behavior that would be
expected from the nominal 1 /L3 scaling of the third-order
term �EMP

3 , as illustrated by the dashed line in Fig. 8. Addi-
tionally, from calculation of defects with different charge
states in GaAs �Table II� we find that the proportionality
factor f =−0.35 is essentially independent of q. Thus, �EMP

3

scales effectively in the same way as �EMP
1 , i.e., as q2 /L,

which indicates the implicit dependency Qr�qL2 for the
second moment of the defect density ̃D�r� �cf. Eqs. �11� and
�12��. Notice that the effective 1 /L scaling of �EMP

3 implies

that a significant error can be introduced in the scaling
method of Erhart et al.,39 where it is assumed that after ap-
plying the first order correction �EMP

1 , the remaining finite-
size dependence scales solely as 1 /L3.

In order to study the origin of the dependency Qr�qL2

and, hence, of the unexpected scaling behavior of the third-
order term �EMP

3 , we calculated the �all-electron� defect-
induced electron-density difference ̃D�r� �cf. Sec. II D 6�
due to the ionized SeAs

+ donor in a 1000-atom supercell of
GaAs. Thus, Fig. 9�a� shows the defect-induced charge den-
sity −̃D, which is the negative of the electron-density differ-
ence ̃D �due to the negative charge of electrons�. SeAs is a
shallow donor, similar to TeAs �cf. Sec. IV B� but is particu-
larly suited to studying the defect charge, since there is no
contribution due to additional core electrons. Also, in order
to avoid the large positive and negative contributions to the
defect charge due to lattice relaxation, we use here the ideal
lattice positions for all atoms �atomic relaxation increases the
Se-Ga NN distance only moderately by 0.09 Å compared to
the As-Ga distance�. As seen in the integrated defect charge
QD�r� �Fig. 9�b��, the net q= +1 charge stemming from the
nuclear charge difference between Se and As is screened to
about 1 /� at a distance d�3 Å from the site of the donor.
The charge −q�1−1 /�� needed for this screening is drawn
more or less uniformly from throughout the supercell, as
evident from the approximately homogeneous positive defect
charge −̃D�d� beyond d�7 Å in Fig. 9�a� �which is not to
be confused with the compensating jellium background that
is not explicitly introduced in the calculation; see Sec.
II D 4�.

Considering that the third-order term �EMP
3 of the image

charge interaction is designed to describe the interaction of
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FIG. 8. �Color online�. The third-order term �EMP
3 of the image

charge correction as a function of the respective first-order term
�EMP

1 �cf. Eq. �11��, calculated for VAs
3+ in GaAs in supercells with

between 16 and 1728 atoms. The observed proportionality �EMP
3

��EMP
1 demonstrates the unexpected effective 1 /L scaling of

�EMP
3 . For comparison, the dashed line illustrates the behavior that

would be expected from the nominal 1 /L3 scaling of �EMP
3 relative

to the calculated image charge energy for the 64-atom supercell.
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FIG. 9. �a� The spherically averaged defect-charge density ̃D�r�
caused by the ionized SeAs

+ donor in GaAs, obtained in a 1000-atom
supercell, shown as a function of the distance d from the donor
�jellium background charge is not included�. For graphical clarity,
the density is amplified by a factor of 10 000 beyond d=3.3 Å. The
contribution due to the different nuclear charges of Se and As is
represented by a Gaussian distribution with width �=0.05 Å. �b�
Integration QD�d�=−�0

dD�r�dr of the defect charge shown in �a�.
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the �background-compensated� point charge with the delocal-
ized part of the defect charge,31 the following physical pic-
ture emerges for the unexpected proportionality between
�EMP

3 and �EMP
1 : The delocalized part of the defect density

̃D�r� arises due to the dielectric screening response of the
host upon introduction of a defect with charge q. This delo-
calized defect density is proportional to q and is essentially
constant in the regions farther away from the defect, i.e.,
those regions that primarily contribute to the second radial
moment Qr of the defect charge. Thus, by the definition of Qr
�Eq. �12�� it follows the proportionality Qr�qL2, which ex-
plains the observed 1 /L scaling of �EMP

3 . Since, �EMP
3 is

determined by the screening response of the host, rather than
by any defect-specific property, the proportionality factor f in
Eq. �23� should be independent of the specific defect, so that
Eq. �11� can be simplified to

�EMP = �1 + f�
q2�M

2�L
, �24�

where f =−0.35 is determined from the data shown in Fig. 8,
in agreement with the previous observation that the third
30% of the order term is about monopole correction.5 We can
now explain this empirical observation by considering that in
a semiconductor material with typically ��1, the screening
charge which accumulates close to the defect is approxi-
mately −q, leading to a change of the charge density by
q /VSC throughout the supercell, except the region close to
the defect �which hardly contributes to the second radial mo-
ment, cf. Eq. �12��. Using −̃D,q=q /VSC in Eq. �12�, we ob-
tain f =−0.37, −0.34, and −0.34 for the sc, fcc, and bcc su-
percell geometries, respectively. Thus, our present analysis
suggests that Eq. �24� with �1+ f��2 /3 can serve as a gen-
eral, simple and reasonably accurate correction formula for
the image charge interaction.

Finally, the present showcase of SeAs
+ explains also why

the delocalization of the defect charge cannot serve as an
argument against the image charge correction �Eqs. �11� and
�24��: The total defect charge ̃D�r� of SeAs

+ stems from two

distinct contributions, i.e., first, the localized point-charge-
like contribution due to the ionic substitution �solely the dif-
ference in the nuclear charge in case of SeAs

+ � and, second,
the delocalized contribution due to the screening response of
the host. Thus, the underlying physical picture of the leading
term of �EMP, i.e., that of a point charge in a dielectric
medium, is essentially correct. In contrast, the model of Se-
gev and Wei48 for the Coulomb interaction between delocal-
ized periodic test charges, which is sometimes cited as evi-
dence against the Makov-Payne correction,44,57 ignores the
point-charge-like ionic contribution to the defect charge and
neglects dielectric screening. This simplified model, there-
fore, does not capture the underlying physics of the electro-
static interaction between charged point defects in a semi-
conductor.

B. Finite-size effects due to host and impurity band dispersion

1. Total-energy contributions due to band filling

In charge-neutral defect calculations, strong finite-size ef-
fects usually occur only if occupied shallow defect levels are
present, leading to band-filling effects �see Sec. II D 3�. �This
situation may, of course, also occur for charged states, e.g.,
for the shallow Zn interstitial Zni

+ in ZnO. In this case the
charge-related and band-filling-related corrections have to be
treated separately.� In the case of type-I behavior �see Fig. 6,
Sec. III F�, the DLS remains unoccupied, as it releases the
electron into the hostlike delocalized PHS, which usually has
a large dispersion. Due to the high defect concentration im-
plied by typical supercell sizes on the order of 100 atoms, the
occupation of the PHS can lead to large band-filling
effects,5,64 in particular when the respective host band has a
small effective mass �large dispersion�. These band-filling
effects are illustrated in Fig. 10 for the case of the TeAs in
GaAs �full atomic relaxation is included�, which is a well-
established shallow donor.144 We find that the uncorrected
formation energy is strongly cell-size dependent and the data
points are somewhat jagged, despite the relatively dense
k-mesh used in the calculations shown in Fig. 10 �smooth
behavior is expected in the limit of a dense k mesh.� After
application of the band-filling correction, Eq. �6�, the forma-
tion energies are smooth and almost independent of the cell
size. Note that a fairly large band-filling correction of 0.6 eV
is necessary for a typical supercell size of 64 atoms, and
considerable corrections are still needed even for large su-
percells, e.g., 0.3 eV at a cell size of 1000 atoms.

The successful removal of the size dependence of the for-
mation energy of the shallow TeAs

0 by the band-filling correc-
tion contrasts with the finding in Ref. 54 that the “dispersion
correction” studied there leads to worse �H even for shallow
defects. �Note that this dispersion correction �cf. also Ref.
52� should have a similar effect as our band-filling correc-
tion, Eq. �6�.� The origin of this discrepancy may be the
convolution of finite-size effects of different physical origins
�and different scaling behaviors; see Sec. IV A� and/or the
convolution of finite-size and band-gap errors. When we also
apply the shallow-donor correction originating from the
band-gap error �Sec. II D 2�, which increases the formation
energy of the TeAs

0 donor by �EC �ze=1 due to the singly
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FIG. 10. �Color online� Scaling of the formation energy
�H��As=�As

0 ,�Te=�Te
0 � of the TeAs

0 defect in GaAs as a function of
the supercell size. Shown are the uncorrected �H �diamonds�, �H
after the band-filling corrections �squares�, and �H after the band-
filling and shallow-donor corrections �circles�. The numbers n next
to the uncorrected energies indicate the use of a n�n�n k mesh in
the respective supercell calculation.
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occupied donor state; see also Sec. III F�, we see in Fig. 10
that at small cell sizes the band-filling and shallow-donor
corrections partly cancel each other. As a result, the uncor-
rected formation energy is closer to the corrected �H at
small cell sizes than at large cell sizes. This cancellation
effect is exploited in a method to calculate formation ener-
gies and transition levels by determining the band-edge en-
ergies of the host as the �supercell� Brillouin-zone average
instead as the band energy at the extremal points �e.g., ��,9,94

while no band-filling corrections are applied to the defect
state. Of course, correcting band-gap errors and band-filling
effects separately yields more accurate energies and does not
depend on the actual supercell size used.

Notably, a slight increase in the formation energy with
cell size is still observed in Fig. 10 after application of the
band-filling and shallow-donor corrections. This increase can
be explained by a residual image charge interaction, consid-
ering that an ionic +1 quasipoint charge is created by replac-
ing the As+5 ionic core with a Te+6 ionic core, which is
compensated by the donor electron in a shallow, delocalized
state �PHS�. Since the shallow-donor states overlap with
their periodic images, even the formally charge-neutral TeAs

0

donor can be regarded as a �screened� point charge in a com-
pensating background. Since, however, the compensation
charge, i.e., the electron in the shallow-donor state, is not
strictly homogeneous as the compensation jellium back-
ground in the case of the ionized TeAs

+ donor, the effect is
smaller, i.e., only �40% of the magnitude expected by the
respective correction �EMP for TeAs

+ according to Eq. �11�.
The strong supercell-size dependence of the uncorrected

�H of the shallow TeAs
0 donor in GaAs is in stark contrast

with the behavior of the deep VO
0 donor in ZnO, in which

case the formation energy is practically independent of the
size of the supercell �see Fig. 5� and there is no need for
correction of size effects. Due to the deep and localized do-
nor state of VO �cf. Fig. 6, center�, the electrons occupy the
DLS, i.e., the primary defect state, and not the host-band-
derived PHS �cf. Sec. III F�. Accordingly, no finite-size ef-
fects associated with band filling in the strongly dispersive
host conduction band occur. Thus, the independence of
�H�VO

0 � from the cell size corroborates our argument �see
Sec. III E 1� that the donor state of VO

0 does not have the
character of the host conduction band and should not expe-
rience a shift with the CBM during band-gap correction.
Since the deep level of VO

0 is formed below the CBM of LDA
or GGA, the band-filling correction, as formulated in Eq. �6�,
automatically vanishes despite the large dispersion of the im-
purity band within the LDA or GGA band gap, thereby cor-
rectly reflecting the size independence of �H�VO

0 �. Thus, we
agree with the conclusion by Castleton et al.54 that the dis-
persion correction is not appropriate for deep defects.

A more difficult situation arises if a deep-donor level oc-
curs below the experimental CBM energy but above the
CBM in the LDA calculation �type-III behavior; see Sec.
III F and Fig. 6�. In this case, the simultaneous application of
the band-filling and shallow-donor corrections would incor-
rectly predict a shallow level after correction. On the other
hand, in the limit of large supercells, the introduced donor
electron would relax to the energy of the LDA-calculated
CBM which is lower than the appropriate defect level energy

�Fig. 6, right�. Thus, type-III behavior can lead to the unsus-
pected situation that the uncorrected energies are more accu-
rate for small cell sizes than for large sizes �cf. Sec. III F�
because the band-filling effect causes the �correct� occupa-
tion of the defect level inside the LDA conduction band.
Such convolutions of band-gap errors due to LDA and finite-
size errors may be the origin of the conclusion obtained in
Ref. 54 that the appropriate band-gap correction method de-
pends on the supercell size used in the respective calculation,
whereas, in principle, band-gap and finite-size errors are of
fundamentally different origins. In order to avoid the convo-
lution between both types of errors, it can be very useful to
correct the band edges within the self-consistent calculation
through additional potentials,123 which, at the same time, re-
moves the spurious hybridization between the defect state
and the host-band states, and enables the calculation of tran-
sition levels inside the corrected band gap.

2. Convergence of single-particle energies

Regarding the convergence of single-particle defect
states, we find pronounced finite-size effects for the a1 gap

level of VO
0 �Fig. 4� if it is determined at �̄, i.e., the center of

the Brillouin zone corresponding to the supercell; see

“a1��̄�” in Fig. 5. A similar observation was recently made
by Li and Wei,145 who calculated the �single-particle� gap
level of the isovalent OTe defect in ZnTe, and found slow
convergence with the size of the supercell considering cells
up to 4096 atoms in non-self-consistent calculations. We find
here, however, that the Brillouin-zone average “a1�BZ av�”
�Fig. 5� of VO is already well converged in a 72-atom cell,
which explains the insensitivity of the formation energy on

the cell size, considering the small relative weight of the �̄ k
vector in case of the 72-atom supercell. Thus, deep �i.e.,
type-II� defect states �Fig. 6, center� in small supercells are
generally much more accurately described by an average

over the Brillouin zone than at the zone center �̄, as was also
shown for the P antisite defect in GaP.53 Figure 5 shows that

the slow convergence of the a1��̄� state of VO is caused by
the concentration-dependent repulsive interaction with the

host conduction band a1���̄� at the zone center, as evident by

the fact that a1���̄� converges to the CBM of the defect-free
bulk in the limit of large supercells �small VO concentra-

tions�, whereas a1��̄� converges toward the Brillouin-zone
average a1�BZ av� of the VO defect state. Thus, the disper-
sion of the impurity band is not due to direct defect-defect
interaction between different images, which should decay ex-
ponentially with the defect-defect distance,50 but arises from
a concentration-dependent hybridization between the defect
state and the host conduction band. This hybridization is

strongest at �̄ because at this k vector the energy difference
between the defect state and the conduction band is minimal.

A different situation arises for shallow defect states
�type-I behavior�, in which case the DLS forms a resonance
inside the host-band continuum. This situation occurs for the
doubly charged vacancy state VO

2+ in ZnO, where the order of
the a1 �DLS� and a1� �PHS� states in Fig. 5 is inverted7 �see
also Sec. III E 4�. Thus, the interaction between the higher-
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energy DLS and the lower-energy PHS reduces the energy of

the a1���̄� state, i.e., of the CBM-derived PHS, which occurs

below the CBM at the zone center �̄. However, the Brillouin-
zone average of the dispersive PHS a1� remains above the
CBM for typical cell sizes, as observed, e.g., in the gap-
corrected defect-bandstructure for VO

2+ in Ref. 43. �Note that
the Brillouin-zone average of a PHS is size dependent,
whereas that of a DLS is essentially size independent, be-
cause the number of available host states increases with the
cell size, whereas that of the defect states does not.� With
increasing supercell size, the PHS a1� of VO

2+ converges to-
ward the host-conduction-band-like shallow effective-mass
level just below the CBM.7

V. EXPERIMENTAL SITUATION ON O VACANCIES IN
ZnO

Due to the theoretical controversy about O deficiency in
ZnO,6,7,37,40 we summarize here briefly the experimental situ-
ation on this issue: While O vacancies are frequently consid-
ered to be an abundant defect in ZnO, a conclusive analysis
of the ZnO stoichiometry is still lacking in ZnO, unlike the
case of the related oxides In2O3 �Ref. 61� and SnO2,62 for
which O deficiency up to the percent range has been rather
directly shown by thermogravimetric analysis. Note that in
the case of In2O3, we showed in Ref. 6 that our method of
band-gap correction gives good agreement with these ther-
mogravimetric experiments, when the VO concentration is
calculated with first-principles thermodynamics methods.
Significant equilibrium concentrations of F-centers �O va-
cancies� have also been measured in MgO after thermo-
chemical reduction �i.e., Mg-rich treatment�.63 Recently, pos-
itron annihilation experiments provided the first step toward
an unambiguous experimental proof of the existence of VO in
as-grown ZnO.58,146 Also, an S=1 spin-triplet signal ob-
served by optically detected magnetic resonance in the ubiq-
uitous green luminescence of ZnO, has tentatively been as-
signed to VO.147 Further support for the existence of VO in
O-poor grown or treated ZnO can be drawn from the pro-
nounced coloration effects, i.e., the fact that ZnO becomes
successively yellow and red under Zn-rich treatment:60,146

Such effects are typical for F centers in various II-VI
materials59,63,148 and are explained by our calculated absorp-
tion levels of anion vacancies in ZnO, ZnS, and ZnSe.7,79

The assignment of these coloration effects to O vacancies
was recently further corroborated by Evans et al.,149 who
found that the respective absorption bands are identical with
those observed after high-energy electron irradiation, where
the existence of VO can be directly observed in electron para-
magnetic resonance �EPR�.

An argument against the existence of O vacancies in ZnO,
brought forward in Ref. 40, is the fact that the well-known
EPR signal of the spin-singlet �S=1 /2� VO

+ state131 is not
observed in as-grown ZnO but only after artificial creation of
vacancies by high-energy electron irradiation. However, the
classic experiments of Soriano and Galland,150 as well as
those of Locker and Meese,151 already showed that the S
=1 /2 EPR is not observed in insufficiently compensated
samples, even though O vacancies were created by the elec-

tron irradiation. Thus, the S=1 /2 EPR of VO
+ is not observed

in n-type ZnO even if O vacancies exist. Indeed, one can
expect7 that a photoexcited VO

+ binds free electrons in n-type
ZnO, so that the excited S=1 triplet state of VO

0 is
observed147 instead of the S=1 /2 state. �VO

+ and the electron
can also couple to an excited S=0 state, which is not ob-
served and decays through optical recombination very
quickly into the ground state of VO

0 .7�
Based on our calculated optical absorption energies,7 we

suggested that in ZnO the first excitation VO
0 →VO

+ +e occurs
at 2.8 eV, consistent with the yellow color, and that the sec-
ond excitation VO

+ →VO
2++e occurs at 2.4 eV, which could

explain the red coloration observed under strongly reducing
conditions �high VO concentrations�. No theoretical explana-
tion besides that of VO exists to date for these coloration
effects. Note that Soriano and Galland150 already observed
yellow coloration in their classic experiments after they se-
lectively produced O vacancies by electron irradiation below
the Zn-displacement threshold. After an early suggestion34

that O vacancies may be involved with the phenomenon of
persistent photoconductivity �PPC�, we developed in Ref. 7 a
detailed configuration coordinate model for VO and predicted
that PPC should arise from a double excitation mechanism.
While PPC in ZnO is indeed frequently observed, it is often
associated with oxygen adsorption and desorption at the
surface.152 Interestingly, however, pronounced PPC effects
were recently observed in ZnO that were correlated with two
optical absorption levels at 2.15 and 2.5 eV,153 close to our
calculated optical levels of VO �Ref. 7� �which, however,
correspond to the vertical excitation threshold, not to the
maximum�. Considering that the concentration of extrinsic
donors, such as hydrogen, should not dramatically increase
during the high-temperature thermochemical reduction
process,59,60,146 PPC caused by oxygen vacancies is presently
the only model6 that can explain the apparent paradoxical
coexistence of coloration �indicating a deep level in the op-
tical range� and high electron concentrations above
1018 cm−3 �requiring a shallow level� observed after such
reduction treatment. Further experimental verification is,
however, desirable.

Regarding the optical excitation threshold for excitation
of VO

0 , it should be noted that there appears to be a discrep-
ancy between high-energy electron-irradiated ZnO and
samples where O vacancies are formed during the growth
process: In high-energy electron-irradiated ZnO, where O
and Zn vacancies are generated simultaneously, the VO

+ state
can be excited by photon energies of around 2 eV.149,151 In
contrast, in as-grown samples, the photoexcitation threshold
for the creation of the excited spin-triplet �S=1� state of
VO,147 which should correspond to the VO

0 →VO
+ +e

excitation,7 is much larger at 3.1 eV.154 As we discussed in
Ref. 7, the generation of multiple defects due to high-energy
irradiation may create different channels for the photoexcita-
tion of VO

+ , so that the excitations energies around 2 eV may
not necessarily correspond to the VO

0 →VO
+ +e transition. We

here suggest that further experiments with electron irradia-
tion below the Zn-displacement threshold150 should provide
an opportunity to more unambiguously determine the optical
excitation energies of VO.
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VI. SUMMARY AND CONCLUSIONS

A. Band-gap correction

By calculating the quasiparticle band gap from total-
energy differences, we demonstrated that the well-known
band-gap problem is a real deficiency of the approximate
LDA and GGA functionals, not just a fallacy caused by the
nonphysical meaning of the Kohn-Sham single-particle ener-
gies. Given that accurate self-consistently band-gap-
corrected total-energy calculations for large-scale defect sys-
tems remain challenging, we assessed current schemes for ex
post facto band-gap corrections for the conventional LDA
and GGA functionals. We demonstrated that extrapolation
schemes, in which a band-gap-opening perturbation is ex-
trapolated toward the experimental gap, depend in general
very sensitively on the type of perturbation applied. Thus,
such methods are arbitrary as to the choice of the perturba-
tion parameter except in the case of a perturbation that cor-
rects all host bands and not just the energy gap �of course, if
such a perturbation were known, it could be directly applied
without the need for extrapolation�. A direct band-gap cor-
rection can be achieved by means of the LDA+U method
when applied to s states in addition to the more conventional
application to cation d orbitals. While this method may con-
vey some qualitative insight on how defect levels react on
band-gap correction, we find that it is not a general quanti-
tative method for band-gap-corrected defect calculation. For
example, the application of LDA+U on the Zn s orbitals for
the purpose of band-gap correction leads to a wrong ground-
state structure of ZnO.

Since a universal method that would avoid the band-gap
problem and at the same time could accurately predict defect
formation energies and transition levels remains elusive at
the present, we defined a general qualitative classification
scheme, describing different defect behaviors with regard to
the energy of their �single-particle� defect states relative to
the band edges. This classification scheme provides general
guidelines on how band-gap corrections should be applied
for the different behaviors. Since the primary defect levels,
which can occur either in the gap or as resonances inside the
host-band continuum, are typically less affected by LDA de-
ficiencies than the band-edge energies and the gap, it is a
well-defined and often reasonably accurate assumption to
correct only the band-edge energies, but to retain the LDA
description of the genuine defect states. In order to ensure
consistency between the band-gap correction and the defect
calculation, it is important that the shifts in the individual
band-edge energies are determined with respect to an internal
potential reference in the respective uncorrected LDA calcu-
lation. Further improvements upon this band-edge-only cor-
rection can be achieved through physically motivated defect-
specific corrections, if such are known, e.g., by the LDA
+U method for transition-metal impurities.

B. Correction of supercell finite-size effects

In order to assess finite-size effects in defect supercell
calculations, we calculated highly charged test cases in GaAs
supercells of up to 1728 atoms. Our results highlight the
benefit of treating finite-size effects of different physical ori-

gins separately, whereas in finite-size scaling methods,
simple functional forms for the scaling may not accurately
account for all size-dependent effects that may exist simul-
taneously. In particular, we find that when error sources other
than the electrostatic image charge interaction are eliminated,
the image charge correction up to the third-order term, as
proposed by Makov and Payne,31 affords fast convergence
and excellent formation energies even for small supercell
sizes, such as the typical 64-atom cell of the zinc-blende
structure, whereas uncorrected energies can show large er-
rors on the order of 1 eV. Thus, the individual treatment of
size effects of different physical origins should generally
serve to dramatically reduce the computational effort associ-
ated with finite-size scaling methods, without sacrificing the
accuracy. Specifically, we demonstrated that both image-
charge interactions and potential-alignment effects need to be
corrected simultaneously.

Notably, we found that the third-order term in the Makov-
Payne correction is proportional to the first-order term and,
thus, effectively scales as �q2 /L despite its nominal �q /L3

dependence. This behavior results from implicit q and L de-
pendencies in the second radial moment of the defect charge
that also enters the third-order term. We explained the suc-
cess of the image charge correction and the unexpected scal-
ing behavior based on the observation that the defect charge
has two distinct contributions: First, the difference in the
ionic charge �nuclear charge+core electrons� upon atomic
substitution creates an essentially point-charge-like localized
contribution to the defect charge, which equals the nominal
defect charge q. Second, the dielectric screening response of
the semiconductor host produces a contribution to the defect
charge which is delocalized throughout the supercell. Thus,
the underlying physical picture of the image charge correc-
tion, i.e., a point charge in a dielectric medium, is essentially
correct, and previous claims that the Makov-Payne formula
leads to overcorrection due to the delocalization of the defect
charge are not substantiated.

We further demonstrated that, in addition to the image
charge interaction in the case of charged impurities, large
and slowly convergent size-dependent energy contributions
also occur when shallow donors or acceptors release their
carriers into the dispersive conduction- or valence-band
states. The resulting Moss-Burstein-type band-filling effects
due to the high dopant concentration implied by the supercell
formalism necessitate corrections reaching into the order of 1
eV for common supercell sizes. Regarding the single-particle
defect energies, we demonstrated for the example of the VO
defect in ZnO the fast convergence of the Brillouin-zone-
averaged defect level energy with cell size, whereas the en-
ergy at the zone center converges very slowly. It is impor-
tant, however, to correctly discriminate between the primary
defect state �which may occur either inside the gap or as a
resonance inside the continuum of host band� and the sec-
ondary perturbed-host state. The impurity band dispersion
arises from a concentration-dependent hybridization between
defect and host states. Thus, the band-filling effect and the
deep-level impurity band dispersion which both are slowly
converging with cell size are distinctly different from the
effect of direct defect-defect interaction �wave-function over-
lap�, which would be expected to decay exponentially with
supercell size.
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