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ABSTRACT
Direct carrier multiplication (DCM) occurs when a highly excited electron-hole pair decays by transferring its excess energy to the electrons
rather than to the lattice, possibly exciting additional electron-hole pairs. Atomistic electronic structure calculations have shown that DCM
can be induced by electron-hole Coulomb interactions, in an impact-ionization-like process whose rate is proportional to the density of
biexciton states GXX. Here we introduce a DCM “figure of merit” R2(E) which is proportional to the ratio between the biexciton density of states
GXX and the single-exciton density of states GX, restricted to single-exciton and biexciton states that are coupled by Coulomb interactions.
Using R2(E), we consider GaAs, InAs, InP, GaSb, InSb, CdSe, Ge, Si, and PbSe nanocrystals of different sizes. Although DCM can be affected
by both quantum-confinement effects (reflecting the underly electronic structure of the confined dot-interior states) and surface effects, here
we are interested to isolate the former. To this end the nanocrystal energy levels are obtained from the corresponding bulk band structure
via the truncated crystal approximation. We find that PbSe, Si, GaAs, CdSe, and InP nanocrystals have larger DCM figure of merit than the
other nanocrystals. Our calculations suggest that high DCM efficiency requires high degeneracy of the corresponding bulk band-edge states.
Interestingly, by considering band structure effects we find that as the dot size increases the DCM critical energy E0 (the energy at which R2(E)
becomes g1) is reduced, suggesting improved DCM. However, whether the normalized E0/εg increases or decreases as the dot size increases
depends on dot material.

I. Introduction. Phenomenology of Carrier Multiplication
in Nanocrystals. One of the proposed routes to increase the
efficiency of solar cells over the Shockley-Queisser limit1 is
to utilize high-energy photons from the blue end of solar
spectrum to produce multiple electron-hole pairs.2 In
conventional solar cells, each absorbed photon generates only
one electron-hole pair, and the excess photon energy ∆E
) pω - εg (where ω is the photon frequency and εg is the
semiconductor band gap) is lost to heat. If the excess photon
energy could instead be used to generate additional carrierssin
a process known as direct carrier multiplication (DCM)sthe
solar-cell current could be increased without reducing the
open-circuit voltage, thereby increasing the solar-cell ef-
ficiency.

Carrier multiplication has been observed in bulk semi-
conductors,3-6 where it occurs via impact ionization. In this
process (Figure 1a), a high-energy electron-hole pair,
created by photon absorption, decays toward the band edges
by transferring its excess energy to the creation of additional
electron-hole pairs. However, the efficiency of DCM in bulk
semiconductors3-6 is too low to be beneficial for solar-cell
applications, because the cross section for DCM is low on
account of the stringent momentum conservation rule it needs
to fulfill,2 and because competing processes, such as phonon-
assisted decay (Figure 1b), are very efficient in bulk

semiconductors.7 Hopes were recently expressed that impact
ionization might be more efficient in semiconductor nanoc-
rystals,2 because momentum conservation rules would be
relaxed by the lack of translational symmetry. Furthermore,
it was suggested2,8 that the competing process of phonon-
assisted carrier relaxation (Figure 1b) might be inhibited in
nanocrystals, due to the sparse density of electronic levels.

Carrier multiplication has been recently reported in a
variety of semiconductor nanocrystals: PbSe9-13 PbS,10,13

PbTe,14 CdSe,11,12 InAs,15,16 and Si.17 The quantum efficiency
(QE) of the DCM process is conventionally expressed in
percent as QE(pω) ) 100Neh(pω),11 where Neh(pω) is the
average number of electron-hole pairs generated per ab-
sorbed photon of energy pω. Phenomenologically, Neh(pω)
was found to follow a linear scaling law above a certain
energy threshold Eth:

Neh(pω)) θ(pω- εg
dot)+ λCM(pω-Eth)θ(pω-Eth) (1)

The first term on the right-hand side represents the conven-
tional photogeneration process, where an absorbed photon
of energy pω > εg

dot creates a single electron-hole pair,
and the second term corresponds to the DCM process, where
each absorbed photon of energy pω > Eth produces, on
average, λCM(pω - Eth) additional electron-hole pairs.
Energy conservation dictates that the maximum value of Neh

is given by the steplike function
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Neh
max(pω)) [pω ⁄ εg

dot] (2)

where the square bracket denotes the integer part of pω/
εg

dot. If we extract Eth and λCM from the energy-conservation
function of eq 2 by taking the lower edge of each step, we
obtain the simple expectation that Eth ) 2εg

dot and λCM )
1/εg

dot.
Experimentally,10,12,16,17 the DCM energy threshold Eth and

the DCM coefficient λCM were found to be material depend-
ent, but for a given material to be nearly independent of the
nanocrystal band gap εg

dot, or, equivalently, of the nanocrystal
size. Table 1 summarizes the values of the scaled quantities
Eth/εg

dot and λCMεg
dot obtained from experiment. Surprisingly,

the experimentally determined values of λCM for PbSe, PbS,
CdSe, and Si (Table 1) are larger than those predicted by
the energy-conservation rule (eq 2), although the condition
Neh(pω) < Neh

max(pω) is satisfied by virtue of the relatively
large values of Eth. The coefficients Eth and λCM of eq 1
provide a measure of the efficiency of the DCM process in
different semiconductor nanocrystals. Recent experiments
have questioned the existence of DCM in CdSe18 and InAs19

nanocrystals. Tuan Trinh et al.20 recently confirmed the
occurrence of DCM in PbSe nanocrystals, although with
much lower efficiency than previously reported.10,12

We wish to isolate in this work bulk band structure effects
from surface effects. Thus, we will model here the electronic
levels of the dot by an approach that eliminates surface
effects. The questions we wish to address are as follows: (i)
Is the lack of translational symmetry in nanocrystals the
reason for high carrier-multiplication efficiency and is strong
quantum confinement necessary for efficient carrier multi-
plication? (ii) Competing processes: Can impact ionization
outperform the inverse process of Auger recombination
(Figure 1c), thereby creating a net carrier multiplication
effect? Can DCM be faster than competing decay processes,
such as phonon-assisted relaxation? (iii) Which property of

the band structure of a bulk material is most conducive to
DCM in dots made of such a material?

In order to address these three issues, we introduce a DCM
“figure of merit” R2(E) which is proportional to the ratio
between the biexciton density of states FXX(E) and the single-
exciton density of states FX(E), restricted to single-exciton
and biexciton states that are coupled by Coulomb interac-
tions. Thus, R2(E) is proportional to the ratio between the
impact ionization rate and the Auger recombination rate
(inverse process).23 Using R2(E), calculated via the atomistic
pseudopotential method, we screen different dot materials
and sizes for those that have the largest DCM figure of merit.
We find that (i) lack of translational symmetry in dots does
not play an important role in enhancing DCM relative to bulk.
(ii) For 2εg

dot < E < 3εg
dot (the energy window most useful for

DCM), we find that dots made of PbSe, Si, GaAs, CdSe, or
InP have a significantly higher (2-3 orders of magnitude) DCM
figure of merit than other dot materials, such as GaSb, InSb,
InAs, or Ge. (iii) For a given material, we find that R2(E) trends
to decrease with decreasing size, suggesting that the DCM rate
may actually become smaller upon quantum confinement. We
conclude that any increases in the DCM efficiency in nano-
crystal versus the corresponding bulk materials should be
attributed to the suppression of competing relaxation mecha-
nisms for the photoexcited carriers, rather than the rate of the
intrinsic DCM process itself.

In order to provide a rigorous definition of the figure of
merit R2(E), we next move from a phenomenological
description to a microscopic description of the DCM process.

II. Microscopic Scaling of Carrier Multiplication Rates.
Different theoretical models have been proposed in the
literature to explain the high efficiency of DCM in semi-
conductor nanocrystals.8,10,11,21,23 Ellingson et al.10 and Sha-
baev et al.8 proposed a coherent multiexciton model in which
absorbed photons instantaneously generate a coherent su-
perposition of excited single-excitons and biexcitons. The
efficiency of the DCM process is then determined by the
dephasing rates of the excited single-exciton (γ1) and the
biexciton (γ2) and by the coupling U between single-exciton
and biexciton states. In the model of refs 8 and 10, efficient
DCM requires that γ1 , γ2 and that γ1 , U/p. In the strong-
coupling limit U/p > γ2, the model predicts quantum beats
in the bleaching of the first absorption peak, which however
have never been observed experimentally,10,11 suggesting that
strong coupling may not be realized. In the opposite weak-

Figure 1. Schematic diagram of carrier relaxation and excitation processes in semiconductor nanocrystals. (a) Impact ionization (II) process:
An absorbed photon of energy pω > 2εg

dot creates an excited electron-hole pair. The hot carrier transfers its excess energy to excite
another electron-hole pair. (b) Phonon-assisted decay (PAD): The hot carrier (electron) relaxes by emitting phonons. (c) Auger recombination
(AR): One of two electron-hole pairs recombines and transfers its energy to excite a carrier (electron) to higher energy.

Table 1. Experimental Values of the Carrier
Multiplication Threshold Energy Eth/εg

dot and the
Multiplication Factor λCMεg

dot (eq 2)
material Eth/εg

dot λCMεg
dot

PbSe 2.9a, 2.1b 1.14a

PbS 2.9a 1.1a

CdSe 2.5a, >3.1c 1.12a

Si 2.4d 1.6c

InAs 2.0e, >3.7f 0.35d

a Reference 12. b Reference 10. c Reference 18. d Reference 17.
e Reference 16. f Reference 19.
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coupling limit U/p < γ2, the model of ref 8 still predicts
efficient DCM, provided that γ1 , γ2. However, the
underlying condition γ1 , U/pswhich according to ref 8 is
a prerequisite to have efficient DCMshas not been verified
experimentally.11 Indeed, it is not clear that the “window of
opportunity” γ1 , U/p < γ2 required by the coherent
superposition model exists in real systems.

Schaller et al.11 proposed a second-order perturbation-
theory approach, where multiexcitons are directly formed
upon light absorption via transitions to virtual single-exciton
states. Using a model consisting of a single virtual exciton
state coupled with a biexciton state, they showed that DCM
efficiencies of the order of 130% can be achieved for U ≈
Γx, where Γx is the line width of the excitonic transition.

Both theoretical models of “coherent multiexciton super-
position”8,10 and “generation via virtual single-excitons”,11

have not attempted a microscopic calculation for actual
nanocrystals, so their quantitative predictions and ap-
propriateness remain unknown. Recently, using atomistic
modeling, Allan and Delerue21,22 and Franceschetti, An, and
Zunger23 presented actual electronic structure calculations
of the rates of several exciton-decay processes in nanocrys-
tals. These calculations are in substantial agreement and
showed that the impact-ionization mechanismswhich had
been previously dismissed as the source of carrier multiplica-
tion in nanocrystals10,11,17sleads to very fast (much less than
picoseconds) DCM rates.

Atomistic calculations21 showed that, for sufficiently large
excitation energy, the impact ionization rate of PbSe nanoc-
rystals is comparable to that of bulk PbSe. This result
suggests that the superior impact ionization efficiency in
nanocrystals is not due to the relaxation of the momentum-
conservation rule, as initially proposed,2 but instead to the
ineffectiveness of competing relaxation mechanisms (e.g.,
phonon-assisted decay, Figure 1b) for the photoexcited
electron-hole pair. Indeed, Allan and Delerue21 showed that
the number of electron-hole pairs Neh(E) generated by
impact ionization decreases rapidly as the phonon-assisted
decay rate increases. Thus, the competition between impact
ionization (Figure 1a) and phonon assisted decay (Figure 1b)
determines the net efficiency of carrier multiplication: In bulk
solids phonon-assisted decay wins, whereas in nanocrystals
impact ionization could be more effective.

Using atomistic pseudopotential calculations, France-
schetti, An, and Zunger23 showed that in PbSe nanocrystals
the impact ionization rate (Figure 1a) is much faster than
the Auger recombination rate (Figure 1c), despite the fact
that the Coulomb matrix elements that describe the two
processes are the same. This asymmetry is due to the much
larger density of final states in the impact ionization process
(single-excitonf biexciton) than in the Auger recombination
process (biexciton f single-exciton). Specifically, ref 23
showed that for energies E > 2.3εg

dot the density of biexciton
states FXX(E) becomes larger than the density of single-
exciton states FX(E).

The impact ionization rate was calculated in refs 21 and
23 using the Fermi golden rule, which is valid if U/p < γ2.
This weak-coupling scenario is consistent with experimental
results, namely, the absence of quantum beats in the
bleaching of the absorption peak.10,11 Note that in the impact
ionization model the DCM rate is proportional to the product
|U|2FXX(E), so even for relatively small values of U the DCM
process can be very efficient, if FXX(E) is large. As the size
of a nanocrystal increases, U becomes smaller in magnitude,

but FXX(E) increases, thereby compensating for the reduced
Coulomb interaction between carriers. This may explain why
efficient DCM has been observed in nanocrystals as large
as two times the bulk exciton Bohr radius,17 suggesting that
strong quantum confinement is not required to achieve
efficient DCM.

III. Method.
A. DCM Figure of Merit. From the above discussion, it

is apparent that the ratio

R1(E))FXX(E) ⁄ FX(E) (3)

is an important parameter in determining the efficiency of
carrier multiplication in nanocrystals. According to ref 23,
large values of FXX(E) indicate a large density of final states
for the DCM process, while small values of FX(E) indicate
a small density of final states for the Auger recombination
process. In addition, small values of FX(E) may lead to a
reduced efficiency of phonon-assisted carrier relaxation,
which is the main competing process for carrier multiplica-
tion.21 However, it is important to take into account that,
for a given energy E, not all single-exciton and biexciton
states of that energy are coupled. The reason is that the
Coulomb potential only couples X and XX states that differ
by no more than two particles. Thus, a more relevant quantity
is the ratio FXX(ε,E)/FX(ε,E) between the biexciton and single-
exciton densities of states when one particle (electron or hole)
is fixed in a single-particle level of energy ε. This leads us
to introduce the following DCM “figure of merit”:

R2(E)) 1
N(E)∫εmin(E)

εmax(E)
F(ε)

FXX(ε, E)

FX(ε, E)
dε (4)

Here F(ε) is the single-particle density of states (DOS) of
the nanocrystals:

F(ε))∑
n

δ(ε- εn
dot) (5)

If ε ) εv is in the valence band, then:

FX(εv, E))F(εv)∫εF

∞
dεcF(εc)δ(E- εc + εv) (6)

and

FXX(εv, E))F(εv)∫-∞

εF
dεv′F(εv′)∫εF

∞
dεcF(εc) ×

∫εc

∞
dεc′F(εc′)δ(E- εc - εc′ + εv + εv′) (7)

Similar expressions apply if ε is in the conduction band. The
integration limits εmin (E) and εmax (E) in eq 4 are the
minimum and maximum single-particle energies of a carrier
belonging to an electron-hole pair of energy E > εg

dot:

εmin(E)) εVBM -E+ εg
dot (8)

and

εmax(E)) εCBM +E- εg
dot (9)

where εCBM and εVBM are the energies of the conduction-
band minimum (CBM) and valence-band maximum (VBM),
respectively. Finally, N(E) in eq 4 is a normalization factor
given by

N(E))∫εmin(E)

εmax(E)
F(ε) dε (10)

B. Calculating Dot Energy Levels from the Truncated
Crystal Approximation. The figure of merit R2(E) is a
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functional of the single-particle density of states F(ε), so a
correct determination of F(ε) is crucial to accurately deter-
mine R2(E). As shown by eqs 6 and 7, the calculation of
R2(E) may require a very large number of nanocrystal energy
levels εn, if the multiexciton energy E is large. Thus, a direct
calculation of R2(E) using first-principles methods or atom-
istic semiempirical methods (such as tight-binding or pseudo-
potential) would be costly. Here we want to calculate R2(E)
for several nanocrystal materials and nanocrystal sizes. So
we resort to an approximation for calculating the nanocrystal
energy levels.

Although DCM can be affected by both quantum-confine-
ment effects (reflecting the underlying electronic structure
of the confined dot-interior states) and surface special effects,
we are interested in isolating the former.

To do so, we use here the truncated-crystal approximation
(TCA) to calculate the single-particle DOS (eq 5), the single-
exciton and biexciton densities of states (eqs 6 and 7), and
the DCM “figure of merit” R2(E) (eq 4). The idea behind
the TCA24-28 is to obtain the single-particle energy levels
of a nanocrystal (containing many atoms) from the energy
bands of the corresponding bulk material (containing only a
few atoms per cell), calculated at special kj points in the bulk
Brillouin zone, such that the envelope function F(r) ) ∑kjeikj·r

vanishes at the surface of the nanocrystal (Figure 2). This
approach was used over 30 years ago to predict the energy
levels of finite graphene strips from the band structure of
(infinite periodic) graphite or boron nitride24,25 and to
approximate the levels of finite slabs of Si from the Si bulk
band structure.26,28 The TCA approach was later refined and
improved27 to include the effects of a finite potential barrier.
While this does bring about an improvement, we judge that
in the present survey of many materials the trends are not
affected much by this correction. Indeed, the valence-band
and conduction-band offsets between semiconductors and its
the surrounding organic molecules are large in colloidal

nanostructures,29 and the effective mass discontinuity at the
dot surface further enhances the electronic states localiza-
tion.30 Consequently, for a rapid screening of materials, we
will use the infinite-barrier TCA described above instead of
the finite-barrier TCA.27 Also note that the TCA includes
multiple band edge valleys (e.g., Γ, X, and L) but not their
coupling. The inclusion of the effect of higher valleys on
the density of states has been shown27 to be important.

In the TCA the DOS of a nanocrystal is given by

FTCA(ε)) ∑
n)1

Nbands

∑
k

δ(ε- εn,k
bulk

) (11)

where εn,k
bulk

is the energy of the bulk band n calculated at the
special TCA point kj (Figure 2). In this work we consider
cubic nanocrystals, a choice that simplifies the use of the
TCA, compared to other nanocrystal shapes. As shown in
Figure 2 for a cubic nanocrystal of edge L, the set of special
kj points is given by

ki,j,k ) k0 +
π
L

(i, j, k) (12)

that are located inside the bulk Brillouin zone. Here k0 is
the k point of the band edge (CBM or VBM) and i, j, k are
positive integers. For direct-gap III-V semiconductors, such
as GaAs and InP, both the VBM and the CBM have k0 ) Γ.
In the case of Ge, k0 ) Γ for the VBM and k0 ) L for the
CBM. In the case of Si, k0 ) Γ for the VBM and k0 ) ∆0

(0.85X) for the CBM.
As is evident from eq 11, the truncated-crystal approxima-

tion assumes that the nanocrystal introduces no new physics
with respect to the bulk, except the discretization of the
energy levels stemming from quantum confinement. It serves
therefore to map the properties of a given bulk band
structuresdegeneracy of band edges, effective masses, and
detailed electronic structuresinto the properties of the
nanocrystal electronic structure.

The TCA based on EPM is an approximation to the direct
solution of the Schrödinger equation using the same pseudo-
potential, and is not recommended here as a substitute for
the latter. In this paper we use the TCA to isolate DCM
effects in different dot materials due to differences in their
underlying bulk band structure (degeneracies, band topology,
effective masses, etc.).

C. Calculation of the Bulk Band Structure. Since the
TCA requires the solution of the Schrödinger equation for a
small bulk unit cell (albeit for many k points in the Brillouin
zone), first-principles methods, as well as semiempirical
atomistic methods, can be used to calculate the density of
states. The band structure of the infinite, periodic bulk crystal
is calculated here using (i) the empirical pseudopotential
method (EPM) and (ii) density-functional theory in the local-
density approximation (LDA). Figure 3 shows a comparison
of the TCA electronic structure of InP nanocrystals calculated
using EPM and LDA. The EPM pseudopotentials were fitted
to experimental transition energies, deformation potentials,
and effective masses of bulk InP.30 The LDA calculations,
including spin-orbit interaction, were performed using the
VASP code with the projector augmented wave (PAW)
pseudopotentials.31 The LDA calculation (including spin-orbit

Figure 2. Illustration of truncated-crystal approximation (TCA) to
calculate the single-particle density of states (DOS) of a cubic InP
nanocrystal (c). The single-particel energy levels of a InP nano-
crystal (b) is obtained from the energy bands of the corresponding
bulk InP (a), calculated at special kj points (indicated by vertical
dashed lines) in the bulk Brillouin zone, such that the envelope
function vanishes at the surface of the nanocrystal. In the figure
we show only the special kj points located on the Γ-L line in the
Brillouin zone.
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interaction) underestimates the band gap by ≈60% and the
conduction band effective mass by ≈40%. The approach
followed here is to shift the LDA conduction band up to
correct for the band gap error. However, this does not solve
the entire problem because the LDA effective masses are
still incorrect. As a result, the LDA band gap (Figure 3a)
and DOS (Figure 3b) are systematically shifted relative to
EPM. Furthermore, the LDA-predicted band gaps of narrow-
gap semiconductors (e.g., InAs, InSb, GaSb, and Ge) are
negative, so the band-edge states are spuriously coupled. This
significantly complicates the use of LDA within the TCA
approximation. Therefore, in the following we will use EPM/
TCA rather than C-LDA/TCA. The EPM calculated single-
particle density of states as obtained from TCA is given in
Figure 4 for a few materials and a few sizes.

IV. Results: DCM Figure of Merit.
A. Initial Material Choice. Figure 5 shows the experi-

mentally determined band gaps of 27 III-V,33,34 II-VI,34,35

IV,32 and IV-VI32 bulk semiconductors. For each III-V,
II-VI, or IV semiconductor, we show the direct Γ-Γ gap,
as well as the indirect Γ-X and Γ-L gaps. For each IV-VI
semiconductor, we show the lowest L-L gap, as well as the
E1(Σ-Σ) and E2(∆-∆) gaps. In the following, we will
consider representative nanocrystals made of GaAs, InAs,
InP, GaSb, InSb, CdSe, Ge, Si, and PbSe, for which accurate
semiempirical pseudopotentials are available.31,36,37

B. Direct-to-Indirect Band Gap Transition vs Dot Size.
The TCA-calculated band gaps of the nanocrystals consid-
ered in this work are shown in Figure 6 as a function of the
nanocrystal effective radius. We observe that nanocrystals
that have a direct band gap at large sizessnamely, GaAs,
InP, GaSb, InAs, InSb (Γ point band gap), and PbSe (L-
point band gap)sbecome indirect at small sizes, as indicated
by the vertical red arrows in Figure 6. For example, the band
gap of GaAs nanocrystals becomes indirect below R ) 40
Å, while the band gap of GaSb nanocrystals becomes indirect
below R ) 90 Å. Such direct/indirect transition occurs
because the effective mass of the conduction-band Γ valley
is lighter than the effective mass of other valleys such as X
and/or L, and the energy difference between the Γ level and

those higher-energy valleys is relatively small (see Figure
5). Because TCA is a single-band method which neglects
interband and intraband interaction effects, the direct/indirect
transition may be different from all band calculations. In the
case of GaAs, we predicted a Γ-to-X transition at R ) 16 Å
via direct semiempirical pseudopotential calculations.35 The
existence of such high-energy conduction-band valleys is
important for DCM efficiency (even when the nanocrystals
are sufficiently large that the band gap is direct), because
the presence of states derived from the bulk X and L valleys
tends to significantly increase the single-particle DOS, due
to the high multiplicity and large effective mass of those
valleys.

C. Selecting nanocrystals via R2(E). The calculated DCM
figure of merit R2(E) of the nine nanocrystal semiconductors
considered here is shown in Figure 7 as a function of the
reduced energy E/εg

dot. In each case we give in the heading
the CBM and VBM valley degeneracies. For each material,
we show the results for three different dot sizes described
as N × N × N multiples of the bulk cubic unit cell. The
effective dot radius is related to N via39 R ) (3/4π)1/3 × N × a0.

We see from Figure 7 that for all nanocrystal materials
and sizes, R2(E) increases monotonically with energy E. The
steepness of the figure of merit R2(E) correlates well with
the experimentally measured values of λCM (see Table 1).
For example, we find that Si and PbSe nanocrystals, which
have a large λCM, also have a large R2(E), while InAs
nanocrystals, which have a small λCM, also have a rather flat
R2(E). According to ref 12, PbSe and CdSe nanocrystals have
a similar values of λCM, 1.14 and 1.12 (see Table 1),
respectively. Their R2(E) values are also very close. Figure
8 shows the value of R2(E) calculated at E ) 2.6εg

dot for
nanocrystals of the same size but different materials. Larger
values of R2(E) indicate larger DCM efficiency.

Interestingly, the figure of merit R2 of eq 4 (Figure 7) is
rather similar to the DOS ratio R1 of eq 3 (Figure 9), which
does not consider the Coulomb selection rule.

D. DCM Critical Energy E0. The value R2(E) ) 1 is
relevant to DCM because it establishes the threshold E0 above
which the impact ionization rate becomes faster than the
Auger recombination rate.21,23 Furthermore, according to the
multiexciton superposition model of refs 8 and 10, if R2(E)
> 1, it is more likely that a superposition of photogenerated
single-excitons and biexcitons of energy E will decay into a
biexciton rather than into a single-exciton. Thus, the lower
the value of E0, the more efficient DCM is. We find that the
DCM critical energy E0 depends on both the nanocrystal size
and the nanocrystal material, ranging from ∼2.2εg

dot for PbSe
nanocrystals (R ) 3.7 nm) to ∼3.2εg

dot for InAs nanocrystals
(R ) 2.2 nm) (Figure 10b). E0 should not be confused with
the DCM threshold Eth of eq 1. Eth is determined by the
optical absorption spectrum of the nanocrystals. In fact, we
can write Eth ) max(E0, Eopt), where Eopt is the minimum
photon energy such that the photogenerated electron or the
photogenerated hole have sufficient excess energy to initiate
the carrier multiplication process.23

Figure 10a shows, for all of the nanocrystals considered
here, the calculated value of the DCM critical energy E0 as

Figure 3. Comparison of the electronic properties of cubic InP
nanocrystals as obtained from the truncated crystal approximation in
conjunction with the empirical-pseudopotential bulk band structure
(EPM/TCA) and the corrected LDA bulk band structure (C-LDA/
TCA). The nanocrystal size is denoted as N × N × N (in units of the
lattice constant a0), where N ) 6, N ) 8, and N ) 10. (a) Nanocrystal
energy gap, (b) single-particle density of state (DOS).
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a function of the nanocrystal band gap εg
dot showing three

sizes for each dot. There is an overall linear increase of E0

with the band gap, which is evident from Figure 10a. To
remove this linear background, in Figure 10b, we show E0/
εg

dot as a function of the band gap εg
dot. We see from Figure

10b that PbSe, Si, GaAs, CdSe, and InP nanocrystals have
a significantly lower DCM critical energy than GaSb, InSb,
Ge, and InAs nanocrystals. Figure 10a shows that as the dot
size increases, E0 decreases, so larger dots are better than
smaller dots. Figure 10b shows that the normalized E0/εg

dot

sometimes increases (e.g., Si) and sometimes decreases (e.g.,
InAs) as the dot size increases.

The application of nanocrystals as light absorber in solar-
cell devices requires a good match of the nanocrystal
absorption spectrum with the solar spectrum.40 Using a
detailed balance model, Hanna and Nozik41 found that, in
the presence of carrier multiplication, the optimal value of
the nanocrystal band gap is around 0.7-0.9 eV. We find
that PbSe nanocrystals, having sufficiently small band gaps
and sufficiently low DCM threshold, are the best candidates
for DCM-based solar-cell applications. Although Si has low
DCM critical energy and large DCM figure of merit, its

absorption spectrum for small nanocrystal size does not
match the solar spectrum.40

V. Conclusions. The DCM process involves the creation
of two or more electron-hole pairs as a result of exciting a
nanostructure by one photon with energy at least two times
larger than the band gap εg

dot. We explained high carrier-
multiplication efficiency in nanocrystals as follows: (i) The lack
of translational symmetry is not the reason for high carrier-
multiplication efficiency. Strong quantum confinement is not
necessary for efficient carrier multiplication. (ii) If the biexciton
DOS is larger than the single-exciton DOS, impact ionization
outperforms the inverse process of Auger recombination. (iii)
Efficient DCM requires a reduced phonon assisted relaxation
rate, which may be realized in nanocrystals.

Using the TCA approach to the electronic structure of
nanocrystalssbased on the atomistic, semiempirical pseudo-
potential approachswe calculated the DCM figure of merit
R2(E) of GaSb, InAs, InP, GaSb, InSb, CdSe, Ge, Si, and
PbSe nanocrystals. We found that PbSe, Si, GaAs, CdSe,
and InP nanocrystals have larger DCM figure of merit than
the other nanocrystals. We explained these results as follows:

Figure 4. Calculated single-particle density of states of cubic nanocrystals of size (N × N × N)a0 for N ) 6 (green), N ) 8 (blue), and N
) 10 (red). Vertical arrows indicate the CBM and VBM energies of the nanocrystals.

Figure 5. The bulk band gaps of 12 III-V semiconductors (GaAs, AlAs, InAs, GaP, AlP, InP, GaSb, AlSb, InSb, GaN, AlN, and InN),33,34

9 II-VI semiconductors (CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, and HgTe),34,35 3 IV semicondutors (Ge, Si, and Sn),34 and 3
IV-VI semicondutors (PbS, PbSe, and PbTe).34 For zinc blende III-V and II-V and diamond IV semiconductors we show three band
gaps: εg(Γ-Γ) (blue circle), εg(Γ-X) (red circle), and εg(Γ-L) (green circle). For IV-VI semiconductors with the NaCl crystal structure
have band gaps εg(L-L) (green circle), E1(Σ-Σ) (blue circle), and E2(∆-∆) (red circle). The right-hand side panel shows the solar spectrum.40

The black solid line indicates the maximum band gap for efficient DCM process.
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(i) The degeneracy of the CBM and VBM is the most
important factor for DCM efficiency. Not including spin
degeneracy, the conduction-band is nondegenerate at Γ,
3-fold-degenerate at X, and 4-fold-degenerate at the L-point.
PbSe (Figure 7i), for which both the CBM and VBM are
located at the L-point, has the highest DCM figure of merit
among the semiconductors calculated here.

(ii) The energy spacing between the Γ-, X-, and L-valleys
is also important for direct Γ-Γ semiconductors. Although
the CBM state of bulk GaAs (Figure 7a), InSb (Figure 7e)
and GaSb (Figure 7b) is Γ-derived, the electron states of
the corresponding small nanocrystals derive from the 4-fold
L-point Bloch state, because in these materials there is an
electronic Γ-to-L transition (Figure 6) due to the small Γ-L
valley-spacing in the bulk (Figure 5). Notably, from this point
of view InAs is worse for DCM because there is no Γ-to-L
transition at any nanocrystal size on account of the very large
Γ-L spacing in bulk InAs (Figure 5).

Figure 6. Calculated TCA band gap of nanocrystals as a function
of effective radius for the semiconductors GaAs, GaSb, InAs, InP,
InSb, Si, Ge, and PbSe. Vertical red arrows indicate direct-indirect
electronic phase transitions.

Figure 7. The DCM figure of merit R2 (eq 4) of cubic nanocrystals
of size (N × N × N)a0 for N ) 6 (green), N ) 8 (blue), and N )
10 (red) for different semiconductors as a function of the reduced
photon energy. The insets give the nanocrystal band gap (in eV).

Figure 8. The DCM figure of merit R2(E) at photon energy E )
2.6εg

dot for different nanocrystals of size N ) 6.

Figure 9. Same as Figure 7 but using the figure of merit R1 of eq
3, which does not consider the Coulomb selection rule.
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(iii) Relative to properties (i) and (ii), the importance of
the effective masses for the DCM process is small.

We see from Figure 7 that for all nanocrystal materials
and sizes, R2(E) increases monotonically with energy E. The
“steepness” of the figure of merit R2(E) correlates well with
the experimentally measured values of λCM (see Table 1).
For example, we find that Si and PbSe nanocrystals, which
have a large λCM, also have a large R2(E), while InAs
nanocrystals, which have a small λCM, also have a rather flat
R2(E). Larger values of R2(E) indicate larger DCM efficiency.

Interestingly, by considering band structure effects we find
that as the dot size increases the DCM critical energy E0

(the photon energy at which R2(E) becomes g1) is reduced,
suggesting improved DCM. However, whether the normal-
ized E0/εg increases or decreases as the dot size increases
depends on dot material.
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Figure 10. The DCM critical energy E0, i.e., the photon energy at
which R2(E) ) 1, is shown as a function of nanocrystal band gap.
In (a) we show E0 in absolute units (eV), while in (b) we show
E0/εg

dot. For each material we show three points corresponding to
three sizes (the smaller the nanocrystal gap, the larger the dot size).
Part a shows that as the dot size increases E0 decreases, whereas
part b shows that the normalized E0/εg

dot sometimes increases (e.g.,
Si) and sometimes decreases (e.g., InAs) as the dot size increases.
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