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The exact density functional for the ground-state energy is strictly self-interaction-free (i.e., orbitals demonstrably

do not self-interact), but many approximations to it, including the local-spin-density (LSD) approximation for
exchange and correlation, are not. We present two related methods for the self-interaction correction (SIC) of any
density functional for the energy; correction of the self-consistent one-electron potenial follows naturally from the
variational principle. Both methods are sanctioned by the Hohenberg-Kohn theorem, Although the first method
introduces an orbital-dependent single-particle potential, the second involves a local potential as in the Kohn-Sham

scheme. We apply the first method to LSD and show that it properly conserves the number content of the exchange-
correlation hole, while substantially improving the description of its shape. We apply this method to a number of
physical problems, where the uncorrected LSD approach produces systematic errors. We find systematic
improvements, qualitative as well as quantitative, from this simple correction. Benefits of SIC in atomic calculations
include (i) improved values for the total energy and for the separate exchange and correlation pieces of it, (ii)

accurate binding energies of negative ions, which are wrongly unstable in LSD, (iii) more accurate electron densities,

(iv) orbital eigenvalues that closely approximate physical removal energies, including relaxation, and (v) correct long-

range behavior of the potential and density, It appears that SIC can also remedy the LSD underestimate of the band

gaps in insulators (as shown by numerical calculations for the rare-gas solids and CuCl), and the LSD overestimate
of the cohesive energies of transition metals. The LSD spin splitting in atomic Ni and s-d interconfigurational

energies of transition elements are almost unchanged by SIC. We also discuss the admissibility of fractional
occupation numbers, and present a parametrization of the electron-gas correlation energy at any density, based on
the recent results of Ceperley and Alder.

I. INTRODUCTION

A major problem of solid-state theory and quan-
tum chemistry is to understand the behavior of
many electrons interacting via Coulomb's law:

n(r) =Q n „(r),

where

(All equations are in atomic units, if=m = e'= I.)
In the earliest quantum-mechanical theory, Thom-
as and Fermi replaced the expectation value ( „)
by the direct Coulomb energy, a functional of the
electron number density n(r):

is the density of an orbital with quantum numbers
n and a, and a=+-'(i) or ——,'(w) is the spin. In
this approximation, the total interelectronic ener-
gy is given as a sum of direct and exchange con-
tributions:

where the exchange energy is

[ ] y g da n(gin(r )8 X X
j

(2)

As early as 1934, Fermi and Amaldi' observed the
failure of Eq. (2) to vanish for one-electron sys-
tems due to the spurious self-interaction inherent
in it, and proposed the first and crudest version
of self-interaction correction:

(8)

The o. '= ct terms in Eq. ( t) (the only ones retained
in the Hartree approximation) constitute a self-
exchange energy:

self-exchange .= —g U[n, ]

where N is the number of electrons in the system.
The mean-field Hartree-Fock (HF) approximation
introduced orbitals g„(r) with occupation numbersf, obeying Fermi statistics:

which correctly cancels the self-Coulomb energy
in U[n] on an orbital-by-orbital basis. Table I
(Ref. 2 shows how much of the exchange energy
in atoms is simply self-exchange.

Although the HF approximation produces only a
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TABLE L. Hartree-Fock total energy, exchange energy, and interelectronic exchange
energy (which omits self-exchange) for lighter inert gas atoms (from Bef. 2). The correla-
tion energy is from Bef. 62. Energies in eV.

Total energy Exchange

He
Ne
Ar
Kr

2
10
18
36

-77.9
-3497.8

-14334.7
-74 883.4

-27.9
-329.5
-821.3

-2561.9

0.0
-60.3

-203.5
-908.3

-1.1
-10.4
-19.9

very small relative error in the total energy of
atoms, it is not suitable for most solid-state and
many molecular applications. The total energy is
dominated by high-density inner-shell electrons
that are well described by Hartree-Fock theory,
but one is more usually interested in the low-den-
sity valence electrons, for which correlation (ne-
glected in HF theory) may be as important as ex-
change. In addition, the long range of the Cou-
lomb interaction produces unrealistic features in
the HF energy eigenvalues, e.g. , vanishing density
of states at the Fermi level in metals, ' unphysi-
cally large band gaps in insulators (sometimes by
a factor of 2-5),' etc. While correlation effects
can be addressed through configuration-interaction
corrections to HF, the complexity of these cor-
rections, their remarkable sensitivity to the choice
of basis functions, and the increase in effort re-
quired with the decrease in spacing between ener-
gy levels, preclude application to large systems.

The density-functional theory' ' provides an al-
ternative to this approach. This theory which is
exact in principle includes correlation explicitly.
in the total energy and one-body potential; typ-
ically in practice exchange and correlation are
treated together in the local-spin-density (LSD)
approximation. " This essentially statistical ap-
proximation works fairly well even for one-elec-
tron systems': In the hydrogen atom, the direct
(self-interacting) Coulomb energy U[n] is large
(3.5 eV), but about 93% of this spurious energy is
cancelled by the LSD exchange-correlation ener-
gy. Unlike HF theory where the self-interaction
is eomPLetely canceJed because the direct elec-
trostatic and exchange operators have the same
kernel 1/~r —r'

~, LSD achieves only a Partial
cancellation, assisted largely by spin-polarization
and correlation effects. Hence, in LSD a residue
of spurious self-interaction remains as the price
to be paid for a simple, local one-electxon poten-
tial. Clearly, this self-interaction vanishes for
orbitals delocalized over extended systems. We

wil. l see, however, that self-interaction l.eads to a
number of systematic errors for finite systems
and localized states in extended systems.

The quantitative successes of the LSD approxi-
mation have been impressive, particularly for
molecular bonding '0'x metallic magnetism x' x4

cohesion, "*"and the surface electronic properties
of metals"*" aIld semi-conductors. "-'0 Neverthe-
less, there remain some worrisome failures of
LSD, some of which have been revealed only re-
cently. These include the facts that:

(i) While the LSD total energy of a metal surface
is too Lose when compared with the exact value, ""
the LSD energy for atoms is Ioo high. " Further-
more~ the lowest-older correction to the LSD ex-
change-correlation energy predicted by many-body
theory, i.e., the density-gradient correction, " is
positive and so its inclusion can only worsen the
agreement between the calculated energies of
atoms and experiment.

(b) For atoms" the magnitude of the exchange
is consistently underestimated by 10-15% in LSD.
The magnitude of the correlation energy is over-
estimated by as much as 100-200 %%.

(iii) The experimentally stable negative ions
(e.g. , H, 0, F ) are predicted to be unstable in

LSD 25, 26

(iv) .Self-consistent LSD band-structure calcula-
tions systematically underestimate the one-elec-
tron energy gaps of insulators by as much as 40%
(e.g. , Refs. 27-31). More generally, the LSD one-
electron energy eigenvalues are not close to phy-
sical removal energies from bound states. There
are often large deviations from experiment when
I SD energy eigenvalues are identified with the
positions of surface states, deep defect levels in
solids, core bands in solids, etc.

(v) The long-range behavior of the LSD one-elec-
tron potential for ions of charge Q is -Q/r, rather
than the electrostatically correct limit of -(@+1)/

Among other problems, this leads to an erron-
eous description of charged point-defect states in
solids

(vi) The LSD calculated spin splitting of the en-
ergy bands in ferromagnetic metals fe.g. , Ni (Ref.
32)] is often much larger than the observed value.

(vii) LSD total energies unduly favor the d" 's'
configuration over the d" 's' configuration in sd'
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transition atoms. " In addition, the LSD ordering
of s and d levels in the d" 's' configuration of the
3d elements Sc to Mn is reversed relative to HF.

Much of the criticism of the LSD approximation
has been directed toward its incomplete descrip-
tion of many-body correlation effects. In this
paper we show that many of the problems indicated
above are interrelated and that a simple, phy-
sically transparent one-body correction to LSD—
the subtraction of spurious self-interaction —ac-
counts for and corrects most (but not all) of the
qualitative and quantitative discrepancies. Empir-
ical methods used previously for correcting some
of these discrepancies (e.g. , use of adjustable ex-
change coefficient a, empirical gradient terms,
etc. ) become unnecessary. A preliminary version
of our work has already appeared. "

II. FORMALISM

A. Spin4ensity-functional theory

We begin with a review of spin-density-functional
theory, ' ' including a synthesis of recent develop-
ments, following the simple and elegant approach
of Levy. " This formally exact theory will then
serve to introduce self-interaction corrections in

Sec. IIB.
Consider a system of N electrons with the Ham-

iltonian

a=i+ V'„+ Qv(r, .) —2([[ QB(r,}s,', (9)
S t

where v(r) and B(r) are external scalar and mag-
netic fields (the latter coupling to electron spin
s,'), and T is the kinetic energy operator. Let
n&(r) and n& (r) be up- and down-spin number densi-
ties, and define the universal functional"

Q[n&, n]] = min(T+ V„), (10)

which searches the set of all N-particle antisym-
metric wave functions producing the given spin
densities n, (r) = (n,(r )}, and delivers the minimum

I

expectation value. Then the usual variational
principle ((B}~ the ground-state energy E) implies
that for any choice of trial spin densities n& and n&

representing N electrons,

Q [n [,n &]+„cPrv(r)n (r) —2)u J
d'r B(r)g([n,(r}~ &,

where n=S~, n, . Furthermore, the true ground-
state spin densities are those which make Eq. (11)
an equality. (This is the generalized Hohenberg-
Kohn' theorem. Note that the argument does not
require a nondegenerate ground state, nor does
it require that the trial spin densities be v repre-
sentable. )

The variational principle (11) may be used to cal-
culate n&, n&, and 8, if the functional dependence
of Q on n& and n& is known. It is convenient to
break Q up into three parts as follows:

Q[n)], n&]= T[n[,n]]+ U[n]+&„,[n&, n]], (12)

(13)

We define

r[n~, n, ]=mm(L(„, (d„~ ——', v'ld )) (44)

where the minimum is over all possible f„and
g, yielding the given spin densities. (For further
discussion of this definition, see Appendix A. )
Following Janak, " the minimization of the left-
hand side of Eq. (11) can now be accomplished in

two steps:
(1) Assume a fixed set of f, and minimize

where T[n&, n, ] is the "noninteracting" kinetic ener-
gy defined below, U[n] is the direct Coulomb en-
ergy of Eq. (2), and E„,[n&, n&] is the exchange-
correlation energy.

The spin densities can always be written (nonun-
iquely) in terms of orthonormal orbitals [t),(r)
and occupation numbers in the interval 0 & f, & 1:

f
4' gf (4„]——'v'] =4,) +U„[,n] ~ z„[ ~. , nr]+ d r (r) (n) —n2 Vfd rBn(v)L nn(r)

[with n, given by Eq. (13)] with respect to the g,(r),
subject to the normalization constraint on the or-
bitals. The resulting Euler equation is

f„is a Lagrange multiplier. This leads
directly to the Kohn-Sham' one-electron self-con-
sistent equations:

with an effective one-body potential

v',s(r) = v(r) —2@crB(r)+ u([n]; r)

+ v„'.([n„n,];r),
where the direct Coulomb potential is

u([n]; r) = —U[n] = d'r ', , n(r'}
6n r I r —r'I '

(17)

(18)

(19)
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and the exchange-correlation potential is

v„',([nk, n, ];r) = ——,Z„,[nk, kk, ] . (20)

The significance of the eigenvalue q, can be seen
by an argument of Slater' and Janaksv: Differenti-
ation of Eq. (15) with respect to the occupation
number f~~ (wkth all ok'bitals fkxed) ykelds

cA 4*,(r) [ -'v'+ v',kk(r)]y, (r)

(21}

Since E has been minimized with respect to nor-
malization-preserving variations of the orbitals,
it follows that in any infinitesimal, normalization-
preserving variation of the occupation numbers
and orbitals,

i.e., the electron and its hole together constitute
a neutral object.

Spin-density-functional calculations would yield
exact results if the exact E„,[n&, n&] were known
and used. In practice one often makes the local-
spin-density (LSD) approximation"

E (2V)

is the density at r' of the hole around an electron
at r. +, is the ground state of a fictitious system
in which the electron-electron interaction is
A/If'-r'I and the spin densities are those of the
real system (A. = 1). The A integration appears be-
cause of the definitions of T[n&, n&] (e (7})and II[n]
+&„,[nk, n&] (e (V„)); the integrand of Eq. (25) at
the limit X=O is the exchange hole. From the def-
inition (25), one gets

d'~'p(r, r )=-1, (26)

(2) Now minimize E with respect to the f „sub-
ject to the particle-conserving constraint Q,f,=¹This is equivalent to the unconstrained" min-
imization of 8- pN, where p, is the chemical po-
tential [= —electronegativity]":

5(g ik~)=g(&.. P}5/.. O. (23)

E , d, , t + , kk(r)P(r r')
(24)

where

p(r, r') = dik(+,
I
[n(r) —n(r)]

x [n(r ) —n(r )]/&(&) —~(r —r }I+„&

(25)

From Eq. (23) we immediately find an "aufbau
principle"'": orbitals with &,& p have f,= 1,
and those with q ) ik have f =0. Fk'actiokkal oc-
cupation is found only for q, = p,. If it turns out
that all occupation numbers are O or 1, then the
ground-state spin densities of the real system are
also ground-state spin densities of a fictitious sys-
tern of noninteracting electrons moving in the po-
tential v',s(r), as was assumed in the original
Kohn-Sham' derivation of Eq. (17). This assump-
tion may not be universally true, and in the pres-
ent formulation it is unnecessary. If this assump-
tion is true, and if in addition the interacting
ground state is adiabatically connected to the non-
interacting one, then the exchange-correlation en-
ergy may be written as half the sum of the elec-
trostatic interaction of each electron with its pos-
itively charged exchange- correlation hole"'":

where &„,(n&, n&) is the exchange-correlation energy
per particle of an electron gas with uniform spin
densities g&, g&. In this way the results of many-
body calculations for the homogeneous system,
which have recently become quite reliable, 4'4' can
be folded into calculations for inhomogeneous sys-
tems. The functional derivative (20) gives the
LSD exchange-correlation potential

v„"""(r) = p'(n, (r), n, (r)), (28)

where ik„',(n&, n„)= s[ns„,(n&, n, )]/&n. .
By construction the LSD approximation becomes

exact when the spin densities vary slowly enough
on the scale of the local Fermi wavelength and
screening length, a formal validity condition that
is seldom satisfied in real systems. For xeasons
reviewed in Sec. G C, the I SD approximation is
still reasonably successful for real systems, while
inclusion of the next term in the density-gradient
expansion does not give the systematic improve-
ment that might naively be expected.

B. Self-interaction correction

From our definitions of the functionals Q, T, and
E„„ it follows at once that the exchange-correla-
tion energy of a single, fully occupied orbital must
exactly cancel its self-dixect Coulomb energy,
0l.e.y

fI[n..]+E„,[n...0]= 0, (29)

where n, ,=f..Iy..I' and f„.=1. (Note that a
single orbital is fully spin polarized, and note fur-
ther that the orbital density n, does not have to be
a possible ground-state density. ) Although Eg.
(29) is hardly surprising, this is the first proof
of it to our knowledge. By a suitable continuation
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of E„,to noninteger numbers of electrons, we can
also satisfy Eq. (29} for f,& 1. (Physical reasons
for doing so are presented in Appendix B.) Fur-
ther insight can be gained if we define the ex-
change energy E„[n&,n&] as the right-hand side of
Eq. (7), which is a functional of the spin densities
because the Kohn-Sham orbitals and occupation
numbers are. (This definition is obviously the
correct one for a single, fully occupied orbital. )
Then we find directly from the definitions of U and

E, that

U[n..]+Z„[n...O] = O. (30)

Z„'."=Z„",'""[n„n,]- g 6... (32)

where

6,= U[n, ]+E„[n„0] (33)

is the self-interaction of orbital o,'o. Unlike some
other schemes which have been previously pro-
posed (Sec. IV), this correction may be applied to
any spin-density functional for E„„when applied
to the exact one the correction vanishes.

In order to get some feeling for the behavior and

magnitude of the self-interaction correction, we

pause to estimate it within LSD. Gadre et gl."
have proved the general inequality [for n(r) ~ Oand
&= fd rn(r)]:

rr[3] 3 093dd f-d' . d'( )'. (34)

Defining the correlation energy as E,= E„—E„, we
find from Eqs. (29) and (30) that

z,[n,]=o.
Equations (29), (30), and (31) form the basis for
our self -interaction corrections.

Suppose now that we have some approximation
E'„",~ "[n&, n&] (such as LSD, the gradient expansion,
pseudopotential LSD screening, etc.) which does
not satisfy Eq. (29) but is useful otherwise. We
define our self-interaction corrected (SIC) version
of this approximation by

the rough cancellation between U[n, ] and

E, [n„,o] for a single occupied orbital is evi-
dent. The spurious residue of this incomplete
cancellation may, however, be non-negligible.

&.,-O.i6 a'rn~', r . (36)

Since (34) is usually close to an equality, " so is
(36). We see that, in the absence of correlation,
6, is positive and the self-interaction correction
to the LSD total energy [Eq. (32)] is negative.
Furthermore, the correction becomes more sig-
nificant as the localization of the orbital increases:
For a Is hydrogenic orbital, n, (r) = Z'e 'x"/7[ and
Eq. (36}becomes 6, ~ 0.047Z; as Z increases,
correlation becomes less important relative to
exchange and the inequality gets closer to a rel-
ative equality. On the other hand, for an electron
delocalized over a volume 0, n, is of order 0-'
so 5, is of order 0-'', which vanishes as 0-.
(In a metal the sum over orbitals contributes
another factor of 0, so the self-interaction cor-
rection to the total energy is of order 0'~'. ) It
follows that, for densities varying slowly enough
over space, the LSD and self-interaction-cor-
rected LSD (SIC-LSD) approximations both yield
the exact energy per electron.

In order to have a self-consistent self-interac-
tion correction, we now seek the orbitals T])„, and

occupation numbers f, which minimize E of Eq.
(16}, with E„,replaced by E„, . (Here we use a
bar to denote quantities which are self-consistent
with a self-interaction-corrected potential; else-
where our notation will not be so explicit. ) Follow-
ing the procedure of Eq. (16), we obtain a one-
electron Schrodinger equation like Eq. (17},

[ ', &'+v.f'f(r}]-V-..(r)= ~.".'t..(r},
but with an orbital-dependent potential:

Since the LSD approximation for exchange is

33, [ 1, i]= —0.9305fd'3[ ]"( )+ )'( )], (35)

v,ff(r) =(v(r) —2paB(r)+n([n]; r)+ v„'," ""([n[dn[];&)] —(v([n, ];r)+ v[,"~ ""([n „0];r)]. (38)

The self-interaction correction to the potential [the second curly brace in Eq. (38}]appears as a. natural
consequence of the correction to the energy. For a one-electron system, Eq. (38) correctly reduces to
the external potential v(r) —2i],oz(r). Equations (32) and (37) form the basis of the SIC approach.

When applied to an electron gas of uniform density n, Eq. (37) admits plane-wave orbitals as self-con
sistent solutions, for which the SIC-LSD total energy per electron is exact. Conceivably, however, there
might be another set of self-consistent solutions to Eq. (37), with localized orbital densities adding up to
a uniform total density, for which the SIC-LSD energy per electron lies helot the exact value. Since the
orbitals cannot be localized to a region of radius less than r, = (3/4m'n}'~', any resulting contamination of
the total energy from self-interaction correction should be minor if it occurs at all.

The energy eigenvalue &s[c of the SIC single-particle Eq. (37) is
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q', o = (q,.~

—-', v'+ v(r) —2 poB(r) + u([n]; r) + v'„,'""'"([ni, n}];r) ~ goo&

—(P„~u([n,];r)+v„,""'"([n „0],r) ~g„),
while the uncorrected energy eigenvalue is

q'}'('""=(g„~ —-', V'+ v(r) —2&oB(r)+u([n]; r)+v'„," "x([ni, n&]; r) ~g„) .

(39)

(40)

The first terms in Eqs. (39) and (40) are identi-
cal except that in Eq. (39) the SIC orbitals T}}„(r)
are used instead of the uncorrected orbitals g,(r).
Hence, SIC has not only a direct effect on the en-
ergy eigenvalue [the last term in Eq. (39)], but
also an indirect effect (change in energy due to
modification of the orbitals). Note that the direct
change is made of two contributions having oppo-
site signs: The self-Coulomb correction is nega-
tive while the self-exchange-correlation correc-
tion is positive. Much of the success of the LSD
approximation applied to localized configurations
is due to the fact that in many systems the indir-
ect SIC effect is small and the two contributions
to the direct term show large cancellation. The
SIC eigenvalues q»~ still have the significance of
Eq. (22), and the aufbau principle still applies,
as can be seen by repeating the arguments of Sec.
IIA.

A simple approximate relationship exists be-
tween the orbital energies of the LSD and SIC-LSD
approximations for exchange if one neglects the
difference between the orbitals 7(},and g, (i.e. ,
self-consistency effects). We find from Eqs. (39)
and (40) that

—(2V(n„}—0.9305(-}Jl d'inc(r})

—0.94 d'rn ',(r) .
4

(41)

Comparison of Eq. (41) with Eq. (36) shows how
the self-interaction error of the LSD total energy
gets magnified in the LSD orbital energy.

This SIC formalism can be regarded as a densi-
ty-functional approximation corrected for self-in-
teraction, or equivalently as the Hartree approxi-
mation corrected by an approximation for exchange
and correlation between different orbitals. Like
the Hartree approximation, it introduces an orbit-
al-dependent effective potential [Eq. (38)) which
makes the orbitals slightly nonorthogonal. If de-
sired, the optimum set of orthogonal orbitals
could of course be found by introducing off-diagon-
al Lagrange multipliers into Eq. (37), or by other
means. 44 As discussed in Sec. IIIB, we have found
for atoms that orthogonalization of the orbitals ob-
tained from the one-electron Schrodinger equation
has only negligible effect on the total energy.

Clearly, in an orbital-functional scheme such
as the present one, exchange could be treated ex-

I

actly via Eq. (7), leaving only correlation to be ap-
proximated by

@sIc QxPPxox[n n ] g QaPPxox[n 0] (42)

However, it is not clear that such an unsymmetri-
cal treatment of exchange and correlation is de-
sirable, since it would reproduce the well known
pathologies of the Hartree-Fock eigenvalues for
valence electrons in metals. '

p~sn(r, r')= px(n& (r), n&(r); ~r' —r ~), (43)

where p}}(n&,n&', ft) is the hole in a homogeneous
electron gas with spin densities n~ and n&-. Note
that the LSD hole around the electron at r is spher-
ically symmetric, i.e. , Eq. (43 depends on the ob-
servation point r' only through r' —r~ ~ This
spherical symmetry is incorrect, but introduces
no.error into E„„since the Coulomb interaction
1/ ~r' —r

~

samples only the spherical average of
the hole4'.

E„;——— d xn r dR 4pR p r, r+

Since p„satisfies the sum rule (26), so obviously
does p~».

The hole in SIC-LSD can also be found by in-
spection of Eqs. (24), (27), and (32):

ps'c(r, r') = p}}(nt(r),n&(r); ~r' —r ~)

—Q ™" [n,.(r')+p„(n, (r), 0;tP'-r ~)],

(45)
from which we find

C. Exchange-correlation hole

Gunnarsson and Lundqvist" have argued that the
LSD approximation (27) gives reasonable results
for realistic systems that are formally outside
its domain of validity because it exactly satisfies
the sum rule Eq. (26) on the number content of the
exchange-correlation hole. The density-fluctua-
tion wave-vector analysis of Langreth and Per-
dew ' supports this conclusion, and also shows
(at the risk of oversimplification) that the gradient
correction does not give the expected improvement
over LSD because it fails to satisfy this sum rule.

The LSD exchange-correlation hole" is easily
deduced from Eqs. (24) and (27):
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d'y'p~&(r r'}= — Q f n (r) n(r) . (46)

The right-hand side of Eq. (46) reduces to -I if
the occupation numbers f, are restricted to the
values 0 or 1, which will be the case under the
conditions for which the sum rule (26) was de-
rived; otherwise, the right-hand side of Eq. (46)
lies between 0 and -1. Note that p s'c(r, r ) is no
spherically symmetric about the point r, even
when the orbital densities n„,(r) have been spheri-
calized; it depends on n, (r') as well as on ~r' —r ~.
%'e will show below that the SIC-LSD exchange
hole agrees much better with the exact one then
the LSD hole does.

The exchange-correlation hole is not known very
a.ccurately, even for the uniform electron gas.
However, the exact exchange hole may be found
from Eq. (7):

p"(r, r')=- P gf, g*..(r)4 .(r') ' n(r). (47)

I 00

+
$a
$a

50
Q

I

~ 0

~ 0

0

..- ~ "f I

-0.2 -O. I

R (a.u. )
I

'

Ijl/$
I

(
r=0.39au.

[

t

0

~ ~

SIC

O. l

Note that for orthogonal orbitals we find

I

d'r'p"(r, r')=- Qf„n,(r) n(r), (48)

s&nx —x cosxI"~xp= 9 X3 0

The SIC scheme describes exchange exactly in
the He atom, since two electrons of opposite spin
experience only self-exchange. Our results for
the exchange hole in the Ne atom are shown in
Figs. 1 and 2. (Similar figures for the exact and
LSD hole have been given by Gunnarsson, Jonson,
and Lundqvist, ") The orbitals employed were the
analytic HF orbitals of Bagus. 46 Figure I shows

the same as the result (46) for the SIC-LSD
scheme. Note further that

p"(r, r) = -[ni2(F) + n', (r)]/n(r), (48)

an exact result which is also satisifed by the LSD
and SIC-LSD approximations for exchange. From
Eq. (47) the exact exchange hoie is strictly non-
positive, a condition which is also satisfied by
LSD but not by SIC-LSD. (The SIC-LSD hole is
positive only at large R, as shown in Fig. 1, so
this error has little effect on the total energy. )

In order to evajuate the exchange hole in LSD
and SIC-LSD, . we need to know the exchange hole
of the homogeneous electron gas. Using plane
waves as orbitals in Eq. (47), we find

p„"(n„n,;It ) = ', [(1+C)n, F(—I,'-ft)
+ (1 —g)n, r(a,'ft)], (60)

where the relative spin polarization is t = (n&-n, )/
n, the Fermi wave vector is k~ = (6v'n, }', and

0
R (a.u. )

FIG. 1. Exchange hole about an electron located at
distance y from the nucleus in the neon atom. The full'

curves are exact, while the dashed and dotted curves
represent the SIC-LSD and LSD approximations,
respectively. Parts (a) and (b) are for two different

w I
values of r, Note that the observation point r =r+8
lies on a line with the electron and the nucleus.

that SIC-LSD gives a much more realistic de-
scription of the shape of the ho1.e, which peaks up
strongly when the observation point r' is near the
nucleus, than does LSD. Figure 2 shows that SIC
also improves —R(p(r, r+ R))~q [the spherical av-
erage which by Eq. (44) yields the exchange ener-
gy] when the electron at r is close to the nucleus
[Fig. 2(a)], but not necessarily when the electron
is further out [Fig. 2(b)]. The improved descrip-
tion of the exchange-correlation hole in the SIC
scheme will show up as a substantial improvement
in the atomic exchange, correlation, and total en-
ergies, presented in Sec. III.

nEHF
i

HF
+ff uflre1

(52)

Relaxation effects upon removal energies can be
calculated in the HF theory by performing two
independent self-consistent-field (SCF) calculations

D. Eigenvaloes and removal energies

Much of the utility of the Hartree-I ock theory
lies in Koopmans's theorem, which states that the
change in HF total energy due to removal of an
electron from an unrelaxed orbital o.o is simply
related to the HF eigenvalue:
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to localized states (deep defects in insulators
and semiconductors, surface states, core excita-
tion energies in solids and molecules, etc, ), re-
laxation effects Z, are significant. We will dem-
onstrate, however, that for atoms the negative of
the SIC-LSD energy eigenvalue, -q»c, approx-
imately equals the relaxed excitation energy, due
to a remarkable near cancellation between the
negative relaxation energy Z, and the positive
non-Koopmans correction II, in SIC. Such an
effective cancellation does not appear in the LSD
approach. This cancellation allows the formula-
tion of a physically correct one-electron theory
based on the calculation of g~'c for the ground state.

Although many band calculations (pseudopoten-
tial or all-electron} now rely on one version of
density-functional theory or another, density-
functional theorists have always viewed the eigen-
values with suspicion. They appear first as purely
formal Lagrange multipliers, unredeemed by any
Koopmans's theorem. The relationship between
removal energy and eigenvalue can be found, how-
ever, by integrating Eq. (21):

0 0.5
R (a.u. )

I.O j.

df„e,(f,) ~ (54)

FIG. 2. . Spherical average of the neon exchange hole
times g for (a) y =0.09 a.u. and (b) r =0.39 a.u. The
full, dashed, and dotted curves are the exact, SIC-LSD
and LSD results, respectively. In part (a), the SIC-LSD
curve is almost indistinguishable from the exact one.

for the inital and final states ("&SCF"method);
the resulting energy difference is used to define
the orbital relaxation energy Zfg,":

d,EsF
~

-=ZE""
~

(53}

The relaxation energy Z"", is negative, since re-
laxation lowers the energy of the final state rel-
ative to a non-self-consistent estimate for the ion-
ized system.

The advantage of having Koopmans's theorem is,
of course, that fairly accurate removal energies
can be found from a single calculation of the
eigenvalues for the N-electron system, without
also calculating for the N-1 electron system as
in a 4SCF approach. (If the relaxation of the or-
bitals is small, of order g, the relaxation energy
is only of order q'. )

Koopmans's theorem has been a cornerstone of
energy-band theory for bulk solids, surfaces, de-
fects, and interfaces, in which much of the inter-
est is directed toward the energy eigenvalues. We
will see below that Koopmans's theorem does not
hold in the LSD approximation which is frequently
used in electronic-structure calculations. The
non-Koopmans correction to it, denoted as II „
is positive. Furthermore, in many applications

~E., ~, = g..(,'). (55)

Obviously, evaluation of Eq. (54) or even Eq. (55)
can be difficult, since the "transition state" may
lack the symmetry of the initial state.

Contrary to popular prejudice, Eq. (54) is also
true in HF theory once we admit fractional oc-
cupation numbers [with the exchange energy de-
fined by Eq. (7)]. An approximation to the integral
of Eq. (54), which avoids the need to calculate for
fractional occupation numbers, is

a.E", ~„,= --,'[e,".(1)+a",(0)]. (56)

Equation (56) was derived in a very different way by
Hedin and Johansson, "using the HF ' polarization
potential" .

In order to have an analog of Koopmans's theo-
rem, one would need c,(1) (the eigenvalue at full
occupancy) in place of e, (~) in Eq. (55). However,

Here it is the relaxed energy difference or physi-
cal removal energy that is obtained, but the eigen-
value must be calculated, using the relaxed orbit-
als, for occupation numbers f, between 0 and 1.
Clearly, the use of Eq. (54) would undermine the
simplicity of band theory, which seeks a descrip-
tion of excitations in terms of differences between
fixed energy levels. Equation (54}was first dis-
covered within XQ. theory by Slater, ' who pro-
posed approximating it via the "transition state "~'4'
of half-occupancy:



5056 J. P. PERDEW AND ALEX ZUNGER

Since the screening effect from the physical re-
laxation is often small, the inequality (57) is often
close to an equality, yielding a powerful if approx-
imate analog of Koopmans's theorem.

Closed-form expressions for the change in un-
relaxed total energy can be found by evaluating en-
ergy expressions such as Eq. (15) with fixed orbi-
tals for f„=1 or 0, and taking the difference.
Neglecting correlation terms for simplicity (in-
clusion of correlation terms poses no difficulty),
we find that the LSD and SIC-LSD approximations
for exchange yield the simple results:

(58)

SIC
~

SIC SIC
)unrel ~&fy ~any (59)

in the X& and LSD approximations, c, depends
strongly on f, and no analog of Koopmans's theo-
rem is possible. This result is an artifact of the
self-interaction error of the local approximation,
and not a general feature of density-functional
theory. Even in the hydrogen atom, the LSD
eigenvalue varies dramatically as f„is reduced
from 1 to 0, while the eigenvalue would be inde-
pendent of f„for the exact density-functional sat-
isfying Eq. (29). In a self-interaction-free calcu-
lation for a system with more than one electron,
the eigenvalue a, will depend only indi~ectly on

f~„ through the reflection back onto orbital no of
its self-consistent effect on the other orbitals,
i.e., through physical (rather than spurious) re-
laxation effects. Physical (interelectron) relaxa-
tion effects are easily described: %hen an elec-
tron is removed from an atomic orbital o'0, i.e.,
when f„-0, the remaining orbitals are drawn
closer to the nucleus, which becomes more effec-
tively screened. This makes c„(2)~ e„(1), i.e.,
in a self-interaction-free theory one expects that

(57)

(i) For a one-electron system, II, is clearly
zero as it must be, while II~, = 0.78f

d'rnite'.

(ii) When the orbital density n, contributes little
to the total spin density n„S, may be expanded
as

s„,=-; e', , „(., o)("-)*+o(".-'),

H~, = 1.09 d'snag+ S~, , (64)

II~, = 0.3l d'x n~+g'+ S~, . (65)

As in HF theory, the physical removal energies
include a relaxation energy Z, :

LSD LSD LSD+Ee.e ~rel: ++ac ~umel+ ~ue

and similarly

LSD LSD Z LSD
Nty CLQ + NV (66)

SIC SIC SIC&EN, ~,g = —E~, + II~~ + Z~~ . (67)

While Z, cannot be calculated analytically, its
scaling with simple energy terms in known:
Gopinathan" has found by numerical calculations
that

Z.".'= a,U [n..], (68)

with k, = -0.44 for atoms. (Better approximations
with a shell-dependent k, are possible but will not
concern us here. ) Equation (68) reduces via Eq.
(34) to

or simply neglected. In this case Koopmans's
theorem does not hold for localized orbitals in
either LSD or SIC-LSD, since the "non-Koopmans"
corrections are positive. Using Eq. (34) for esti-
mates, we find that in general

where the "non-Koopmans" corrections are

11."."=U[n. ,]+S... (60)
Z LsD ~~ —0.48 d3y n (69)

11 ', = -e Jl d'rn, c„(n „0)+S,, (61)

S,= d'x n, —n, e„n, —n „0
-n.e„(n., O)+ ~n .e„(n„O)]. (62)

All quantities in Eqs. (58)-(62) are to be evaluated
at full occupancy. The analogs of Eqs. (58) and

(60) within Xn theory were derived by Gopina-
than, "and less directly by Slater and Wood. '
Note that by Eq. (52), II", =—0.

Two cases are simple enough to be instructive:

By comparing Eq. (69) with Eqs. (64) and (65), we
see that Z~, can typically cancel less than half of
Ii~n, so that the physical removal energy &E,
is poorly approximated by the orbital energy

In contrast, in SIC-LSD. there is an effec-
tive cancellation between Z, and II, leading to a
generalized Koopmans scheme in which -& ',

forms a good approximation to the relaxed ioniza-
tion energy. Ironically, in the HF theory, which
is the only case where Koopmans's theorem holds,
no such generalized scheme can exist since there
is no "non-Koopmans" term to counteract relaxa-
tion effects. As a result, a 4SCF approach is of-
ten unavoidable in HF.
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E. Long-range behavior of the potential and density
in an atom; excited states

The LSD one-electron potential for an ion of
charge Q has erroneous long-range behavior due

to self-interaction, as is evident from inspection
of Eqs. (18) and (28): Far from the nucleus the
LSD exchange-correlation potential (28) decays
exponentially along with the density, leaving only
the long-range potentials v(r) and u([n]; r) which

sum to Qlr Ho-wever. , classical electrostatics

I.3

I.2—

- —bEI
lUhfel

—bE)
HEIf u

'~ it a (unrel
E X

"bE, ce Iree
Irel

0.9—

0.8
I SIC I LSD

FIG. 3. Relationships between the orbital-energy
eigenvalue e, the unrelaxed energy difference nE ( „~~~,
aud the relaxed energy difference nE ~' „,upon removal
of an electron, in the HF, SIC-LSD, and LSD approxi-
mations. In the example shown here, the electron is
removed from the 3s orbital in atomic Ar. The re-
laxation energy g has been taken from HF calculations.

From the relations (64)-(69) one can deduce the
ordering of terms

(70)

If Z~, is similar to Z~, , it will slightly overcancel
IIsic so

(71)

[in agreement with Eq. (57)]. These relationships
are illustrated graphically in Fig. 3. Numerical.
examples are given in Sec. III G. The striking re-
sult is that the negative of the SIC orbital energy
forms a good approximation io the relaxed re-
moval energy, in contrast to hotly LSD and HF.

Finally, we observe that a simple relationship
exists between the unrelaxed energy differences
in the LSD and SIC-LSD approximations for ex-
change when the difference between the LSD and

SIC-LSD orbitals is neglected. From Eq. (41) and

from Eqs. (58)-(61) we find that

(V2)

where 5, is the spurious self-interaction of Eqs.
(33) and (36). In general, however, higher-order
terms (i.e. , the self-interaction effects on the
orbitals) should not be neglected.

[n(f')]~'- kra'e (74)

where O' = Z* &/' - I, in agreement with the rigor-
ous asymptotic upper bounds of Morrell, Parr,
and Levy" and 'Tal."

Figure 4 illustrates the long-range behavior of
the SIC potential v,",,(x) [Eq. (38)]. We have plotted
the difference between the SIC-LSD potential and

the LSD potential, both multiplied by x, for the
Cu atom in the 3d"4s' configuration. At large x,
this quantity correctly approaches -1. Note,
however, that the self-consistently calculated
SIC potentials differ from the LSD potential not
only in their asymptotic limit but also at finite

to set the scale we define the quantities R„and
R~ which denote the muffin-tin radius of metallic
Cu and the Pauling tetrahedral radius, respective-
ly, while (r)„, indicates orbital moments. Clearly
the SIC potentials deviate substantially from the
LSD potential at distances from the origin which
are chemically and physically important.

We close this section with a comment on excited
states. The Kohn-Sham equations (17) have solu-
tions that look like states of particle-hole excita-
tion. Although several density-functional theorems

tells us that an electron which ventures out to
large r will not "see" its own charge, and so will
experience the potential -(Q+ 1)/r; this conclusion
is also supported by a detailed analysis of the be-
havior of the exchange-correlation hole." The
SIC-LSD potential (38), unlike the LSD potential,
clearly has the correct long-range behavior.
This is necessary for the successful description
of negative ions (Sec. IHE).

After the discussion of Sec. IID, there can be
little doubt that the eigenvalues of density-func-
tional theory have physical significance. 'This is
especially true of the eigenvalue c „of the least-
bound occupied orbital for an N-electron system
in its ground state, which by the arguments sur-
rounding Eq. (57) should be almost the negative of
the first ionization potential. (Here the initial and
final states are ground states of the N and N-1
electron systems, and the relaxation effects asso-
ciated with removal of this outermost electron
should be small. ) a,„controls the long-range be-
havior of the electron density. For example, in
an ion of charge Q the one-electron potential tends
to -Z"/v as v -~ (where Z*=Q+ 1 in a self-inter-
action-free theory), and the solution of the one-
electron Schrodinger equation tends to

(73)

where P =Z~/n —1 and & = (-2a,„)~'. In fact if we
define o."= (2I)~', where I is the first ionization
potential, we find from Eq. (57) that o."& o. and

hence from Eq. (73)
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ergy as a functional of orbitals and occupation
numbers, the SIC energy will be a functional of the
density if the orbitals and occupation numbers
are. The needed functional relationship is gener-
ated by the following rule: Given any pair of trial
spin densities n~(r) and n ~(r), consider all possi-
ble occupation numbers f, in the range 0~f„,
~ 1 and normalized orbitals P,(r) satisfying Eq.
(13). (The orbitals do not have to be orthogonal. )
The correct f, and g, (r) corresponding to these
trial spin densities are the ones which minimize

-0.9-

-1.0'
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Distance (a.u;)
FIG. 4. Orbital-dependent self-interaction correction

to the LSD one-electron potential in atomic Cu. The
cusps arise from nonanalyticity of n 3 (r) at nodes of
orbital o (T. All curves tend to —1 at large y.

have been proved about excited states, ' '"~'
there is usually little a Priori justification to in-
terpret the Kohn-Sham solutions as descriptions
of physical excitations. Nevertheless, only a
purist would discard these Kohn-Sham solutions.
While each excitation ought to require a separate
self-consistent calculation, in practice one can of-
ten just transfer an electron from an orbital oc-
cupied in the ground state to a "virtual orbital"
(one of the unoccupied eigenfunctions of the
ground-state self-consistent one-electron Hamil-
tonian). In view of our discussion of long-range
behavior, the potential used to calculate the vir-
tual orbital ought to be self-interaction free. If
we have an orbital-dependent potential as in Sec.
IIB, the natural way to achieve this is as follows:
For excitation of an electron from state Q, to
state c.'&, compute the virtual orbital g, (r) using
the potential v,ff(r). The HF analog of this pre-
scription was suggested by Hunt and Goddard. "

F. Relationship of SIC to the Hohenberg-Kohn
and Kohn-Sham theorems

In this section we will show that the self-consis-
tent SIC formalism of Sec. II 8 is protected by the
Hohenberg-Kohn theorem of Eq. (11) and so has
the same theoretical sanction as other self-consis-
tent density-functional schemes. We will also
show that this formalism does not fit into the
Kohn-Sham scheme of Eq. (17) (e.g. , it has an or-
bital-dependent potential), although it can be made
to fit by minor alterations. (These conclusions
apply with equal force to the self-consistent Har-
tree formalism. )

Since the SIC formalism specifies the total en-

with n, given by Eq. (5). Since the one-electron
Schrodinger equation with the orbital-dependent
potential (38) results from minimization of the en-
ergy over all orbitals, the Hohenberg-Kohn vari-
ational principle (11) is valid in the SIC formal-
ism of Sec. II B. (For further discussion, see
Appendix A. )

This self-consistent SIC formalism does not fit
into the Kohn-Sham scheme because, unlike the
Kohn-Sham scheme, it does not define a "kinetic-
energy" functional of the density which is indepen-
dent of the choice of E„'»"". As a result two unus-
ual and possibly unlikable features emerge:
(1) The minimizing orbitals that solve the one-
electron Schr'odinger equation are slightly but an-
noyingly nonorthogonal. (3) These orbitals belong
to an orbital-dependent potential which can break
the symmetry of the system. In a crystal, for ex-
ample, the core orbitals which minimize the SIC-
LSD total energy are localized, so that the one-
electron potential may not be periodic even when
the spin densities are, and Bloch's theorem (with
all its computational utility) is lost. (Note, how-
ever, that although individual orbitals may not
obey this theorem, the total wave function can
easily be constructed to have a Bloch periodicity. )
While in principle as well as in practice one may,
in a perfectly legitimate way, solve problems
such as core excitations in molecules or solids
using the SIC scheme with nonorthogonal orbitals
and broken symmetries, it may also be useful to
seek other methods.

These unlikable features could be avoided by

incorporating self-interaction corrections within
the Kohn-Sham scheme, in which the kinetic-en-
ergy density functional has the independent defini-
tion of Eq. (14). The simplest scheme which does
this is the following ': (1) To each pair of trial
spin densities n, (r) there corresponds a pair of
model potentials v', «(r) which generate these spin
densities via Eqs. (13) and (17). [v,'«(r) need not
be the self-consistent Kohn-Sham potentials but
may be some assumed model potentials. ] Solve
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Eq. (17) using these model potentials to find the
orbitals tt„,(r), which are now functionals of the
spin density. For small systems such as atoms
and ions, the Kohn-Sham orbital densities n„(r)
can be substituted directly into the SIC energy ex-
pression. (2) This expression can then be mini-
mized by varying the spin densities; in practice,
however, one varies the model potentials v',«(r).
If the model potentials have sufficient variational
flexibility, they will approach a self-consistent
solution. 'This method of potential variation was
suggested as a practical scheme for LSD calcula-
tions by Rose and Shore." [The minimization dis-
cussed here is constrained to the "Kohn-Sham"
space of orbitals belonging to orbital-independent
potentials, so the resulting self-interaction-cor-
rected total energy will be greater than the value
found by the method of Sec. II 8, Eq. (37), which
does not impose this constraint. ]

'The scheme just defined is a Kohn-Sham for-
malism which is self-interaction free in the sense
that it satisfies Eq. (29). Unfortunately, the self-
interaction error reappears in the form of a size-
consistency problem: The theory will be useful
for an isolated atom, but not for a lattice of atoms
in the limit of infinite lattice constant, since in the
latter case the Kohn-Sham orbitals will be atomic-
like Bloch functions and the correction per atom
will be zero. As mentioned in Sec. II 8, there will
in this latter case be a correction to the total en-
ergy proportional to the volume of the system to
the & power, which looks at first like a contribu-
tion to the surface energy, but is not; it is simply
a shadow of the size-consistency problem. This
example, and another discussed in Appendix B,
show how subtle the self-interaction problem can
be: Satisfaction of Eq. (29) is a necessary condi-
tion for solving it but not a sufficient one.

The reason for the size-consistency problem is
that the self-interaction correction depends on the
choice of orbital representation. For example,
the core electrons in a solid could be represented'
either by localized Wannier orbitals which carry
self-interaction, or by delocalized Bloch orbitals
which do not. Stated differently, the self-inter-
action 6~, depends on the number of atoms which
share the orbital P«, as illustrated by the SIC
band-structure calculation for solid Ar presented
in Sec. IIH.

Thus, the key to resolution of the size-consis-
tency problem lies in unitary transformation of
the fully occupied orbitals. Such a transformation
leaves invariant a Slater determinant and any one-
electron property that can be evaluated from a
Slater determinant, such as the spin density [Eq.
(13)], the kinetic energy [Eg. (14)], or the ex-
change energy [Eq. (7)]. As a result, the Hartree-

Fock and Kohn-Sham total energies are invariant
under such a transformation. Since the orbital
densities n, (r) change under the transformation,
the SIC total energies are not invariant.

To get a size-consistent self-interaction-cor-
rected Kohn-Sham theory, insert between steps
(1) and (2) above another step: (1') Perform a
unitary transformation of the Kohn-Sham fully
occupied (molecular or Bloch) orbitals to a second
set of (more localized) orbitals which will gener-
ate the orbital densities to be used in step (2).
The right unitary transformation might be the one
which minimizes the SIC energy expression.
Since the spin densities and the kinetic energy re-
main invariant, so does each piece of the energy
(15) excePt the self-interaction correction, so
this choice amounts to finding the equivalent orbi-
tals that carry maximal self-interaction error.
Within SIC-LSD, the transformed orbitals for core
electrons in solids will be localized, correspond-
ing roughly to the localized hole that is left behind
in x-ray ionization, while loosely bound conduc-
tion electrons may have delocalized transformed
orbitals.

Finally, although the exact realization of this
scheme would be tedious, it is probably unneces-
sary. LSD already gives reasonable spin densities
and one-electron potentials, and it is not hard to
imagine an approximate way to incorporate self-
interaction corrections within a self -consistent
orbital-independent potential, e.g. , by using a
weighted average of the SIC orbital-dependent po-
tentials of Eq. (38) [the orbitally-averaged-poten-
tial (GAP) method]:

v', P,
" (r)=+n~„(r)v„', (r) Q n~, (r),

where p is some positive constant. Furthermore,
the variational principle suggests that accurate
energies could be obtained without optimizing the
unitary transformation of the orbitals: It should
often suffice to compare the Kohn-Sham orbitals
with any unitarily equivalent but more localized
orbitals. Such localizing transformations are al-
ready familiar in the Edmiston-Ruedenberg"
method for molecules and the Wannier transfor-
mation for filled bands in solids. '

III. NUMERICAL RESULTS

A. Ingredients of the calculation

We have performed numerical calculations using
the SIC-LSD formalism of Sec. IIB. The para-
metrized electron-gas correlation energies E,
(n~, n&) are described in Appendix C. They are
based on Ceperley's" accurate Monte Carlo cal-
culations for low and metallic densities, which
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we have matched smoothly to the correct high-
density limit. As shown in Appendix C, other
parametrized correlation energies commonly used
in density-functional calculations are in error at
the high densities which are important in atoms.

For atoms and ions, we solve Eg. (37) with the
state-dependent potential of Eq. (38) using a direct
predictor-corrector numerical integration. At
each iteration we have trial spin densities (n &(r),
n &(r)] as well as trial spin-orbital densities
{n„„(r)].We achieve self-consistency in both sets
to a relative accuracy of 10 ' or a relative accura-
cy of 10 ' in the energy (whichever comes first).
With the self-consistent orbitals we calculate the
total energy and its individual components [e.g. ,
Eqs. (32) and (33)] as well as various moments of

The same calculation is repeated in each case
for the LSD approximation.

Following the custom of LSD calculations, we
have sphericalized the orbital densities n, (r) be-
fore evaluating the potential and total energy for
atoms. This "central-field" approximation is per-
haps most severe for the 2p state, which makes a
sizable contribution to the total self-interaction
correction. However, for a hydrogenic 2p state
(with m, = 0) the self-direct Coulomb energy
U[n, ] is only 4% larger than it would be for the
sphericalized orbital density. "

The eigenfunctions of the orbital-dependent one-
electron Hamiltonian are very slightly nonortho-
gonal. Except where otherwise noted, we have
performed a Schmidt orthogonalization after each
iteration: The 2s orbital is orthogonalized to the
1s then 3s is orthogonalized to 1s and 2s, etc.

B. Size of self-interaction terms

'Table II compares the orbital eigenvalues, total
energy and separate exchange and correlation en-
ergies for the Kr atom calculated self-consistently
in three schemes: LSD, SIC-LSD without ortho-
gonalization, and SIC -LSD with orthogonalization.

The separate orbital contributions to the self-
interaction correction -6„, for Kr are shown in
Table III. The sum -Z, 2(21+ 1)5„,= -185.1 eV is
just the difference between the LSD and SIC total
energies of 'Table II, showing that the difference
between LSD and SIC-LSD orbitals has little ef-
fect on the total energy. Note that even in an atom
as large as Kr, 44% of the self-interaction correc-
tion to the total energy is carried by the 1s orbi-
tals. It is clear from Table II that SIC has a pro-
found effect on all the orbital energies, core as
well as valence, and that orthogonalizing the
SIC-LSD orbitals is a small effect.

'The various self-interaction contributions to
the spin-up valence orbital energies c„I, [Eq. (39)]

TABLE II. Orbital eigenvalues e„&, total energy E,
and separate exchange (E„) and correlation (E )
energies for the Kr atom, calculated self-consistently
in three schemes. Energies in eV. (Throughout the
paper the calculations were done in atomic units. 'We

then used the conversion 1 a.u. = 27.21 eV.)

LSD
SIC-LSD SIC-LSD

(not orthogonalized) (orthogonalized)

-13876.6
2s -1803.6

e2p -1633.1
—253.46
-192.81
-83.63

E'4~ -22.30
C4p -9.40

E -74 830.57
E„-2409.06
E -88.40

-14127.4
-1851.9
-1695.0
-269.46
-209.02
-101.27
-27.76
-13.95

-75 015.47
-2632.90

-53.26

-14129.5
—1852.5
-1695.8
—269.54
-209.11
-101.34
-27.76
-13.95

-75 015.47
-2631.75

-53.25

TABLE III. Orbital self-interaction corrections —6„&
t'see Eqs. (32) and (33)J to the total energy in the Kr
atom. (SIC-LSD orbitals. ) Energies in eV.

lg
2g

2p
3s
3p
3d
4g

-40.86
-5.05
-9.80
-1.12

1 33
-2.31
-0.18
—0.17

are shown diagramatically in Fig. 5 for the 3d
elements in the d" 's' configuration. White areas
indicate the self-direct contribution, dashed areas
indicate the self-exchange part, while dotted
areas denote the self-correlation part. Asterisks
mark the SIC eigenvalues c„,', while open circles
denote the LSD eigenvalues &„"„.The self-inter-
action terms are clearly of similar magnitude to
the energy eigenvalues themselves. The self-cor-
relation is usually a small correction. For the
more localized 3d orbitals, SIC effects are signi-
ficantly larger than for the more diffuse 4s orbi-
tals. 'The SIC contributions to the orbital ener-
gies follow the same trend as the energy eigen-
values in going from the left- to the right-hand
side of the row in the Periodic 'Table. The large
(but incomplete) cancellation between the self-
direct and self-exchange-correlation terms is ev-
ident.
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TABLE 1V. Hesults of exchange-only calculations for
the Ne atom. Here the SIC-LSD orbitals were not or-
thogonallzed, Energies in eV and distances in a.u.

0
o 0

o o o

~~s

~2s
6'2p

7

LSD

-822.7
-34.4
-12.1

-3469.0
3469.0

-888.4
-44.2
-22.0

-3506.2
3506.2

HF
Pef. 59)

-891.7
-52.5
-23.1

-3497.8
3497.8

+ -10

~ 15-

LLI

C"- 10-

ca sc Ti V Cr Mn Fe Co Ni Cu

p P //// /// // /// /////
/

&~&2p

&&'&2m

&~'&2p

0.159
0.906
0.990
0.034
1.005
1.326

0.158
0.908
0.965
0.034
1.007
1.238

0.158
0,892
0.965
0.033
0.967
1.228

o
0 0 0 0

o

PIG. 5. Breakdown of the orbital energiee in the SIC-
LSD formalism for spin-up 4s and 3d orbitale of transi-
tion atoms in the d" ~ sy configuration. %hite area:
self-Coulomb; dashed: self-exchange; dotted: self-
correlation. Open circles: LSD eigenvalues; asterisks:
SIC eigenvalues.

C. Exchange-only calculations compared to Hartree-Pock

tion effects were not included in this calculation.
The results are compared with the HF results of
Ref. 59. Note that, for the d" 's' configuration,
LSD predicts that the Sd energies are above the
4s energies for the elements Sc to Mn, in con-
trast to the HF results. The SIC scheme, on the
other band, shows'a reasonable agreement with the
HF results. Self-interaction corrections may have
profound effects on the hand structures of the cor-
responding elemental metals and the energy levels

d-e one-electron energy gape
Ispinupj

a HF results fd" s j

o HF results ld" s

Exchange-only calculations are performed by

setting the electron-gas correlation energy z,
(ni, n~) to zero. Table IV shows a comparison of
exchange-only orbital eigenvalues, total and kine-
tic energies, and orbital expectation values (r)
and (r') for the Ne atom in LSD, SIC-LSD, and

Hartree Fock." All three approximations satisfy
the virial theorem E= -T. The LSD orbital val-
ues of (r) (and also (x '), not shown) are already
remarkably close to Hax tree-Pock values, so
self-interaction correction provides little im-
provement in them. The same is true of (r') ex-
cept for the loosely bound 2p orbital, which is too
diffuse in I SD. On the other hand, the total energy
and even more so the orbital eigenvalues have
been significantly improved by SIC.

Figure 6 shows the splitting inenel gybetween
the spin-up M and 4s eigenvalues in the SIC and

LSD approximations for the Sd elements. Correla-

LSD

slc-
LSD

-10

-'55; I I I I I I
Sc Ti V Cr Mn Fe Co Ni Cu

PIG. 6. Difference between d and s orbital energiee
(spin-up) in LSD, SIC-LSD, and spin-unpolarized HP
(Ref. 59) calcu1ations for the 3d elements in the cP st
and cP 2 s~ configurations.
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of transition-element impurities in solids. "
Table V compares the exchange energies of

atoms calculated in these three approximations.
LSD underestimates the magnitude of the exchange
energy by 10-15%, while SIC-LSD gives values in

better agreement with HF. (Note that SIC-LSD for
exchange only and HF are the same approximation
in the case of atomic H and He. )

It was once hoped that LSD exchange energies
would be improved by including the first correc-
tions from the density-gradient expansion (e.g. ,
the X&P method, Ref. 61). For exchange alone
(as opposed to exchange and correlation), the
a priori gradient correction is negative and so
improves the LSD exchange energy, but the im-
provement is slight for all but the lightest atoms;
the coefficient of the gradient term must be arti-
ficially magnified by a factor of 5 to get agree-
ment with Hartree-Fock energies. " It might be
interesting to reexamine the convergence of the
gradient expansion for exchange once each term
has been self-interaction corrected.

D. Total and correlation energies of atoms compared
with experiment

The "experimental" total energy of an N-elec-
tron atom is the sum of the ionization potentials

(76)

corrected for relativistic and reduced-mass ef-
fects. In Table VI we compare experimental val-
ues determined this way by Veillard and Clemen-
ti" with LSD and SIC-LSD values, which now and
hereafter include correlation. The HF values"
are of course higher than experiment, and the LSD

TABLE V. Exchange energies of atoms from ex-
change-only calculations. Here the SIC-LSD orbitals
were not orthogonalized. Energies in eV.

Atom E SK'.-LSD
x

EHF

(Ref. 2)

H

He
Ne
Ar
Kr

-6.9
-23.2

-297.6
-755.8

-2407.5

-8.5
-27.9

-337.8
-842.4

-2632.0

-8.5
-27.9

-329.5
-821.3

-2561.9

Econv~ E
C C

(77)

Table VII compares the LSD and SIC-LSD cor-
relation energies [the latter evaluated from Eq.
(42)] with E "". Although the inequality (77) is sa-
tisfied, it seems clear that essentially all of the

values are higher still, with an error about twice
that of HF. The SIC-LSD values, on the other
hand, are lower than experiment (because the
magnitude of the exchange energy is slightly over-
estimated, as shown in Table V), with an error
magnitude far less than that of HF for the lighter
atoms but comparable to HF for Ne and Ar.

The conventional correlation energy E,'"" is de-
fined" as the difference between the experimental
total energy and the spin-restricted HF value.
The exact spin-density-functional theory defines
the correlation energy E, as E —T —J vn —U —E„,
with E„given by Eq. (7). The difference between
these two definitions arises only from the differ-
ence between the spin-restricted HF and Kohn-
Sham orbitals, so for spin-unpolarized atoms the
variational principle implies the close inequality

TABLE VI. Calculated ground-state total energies of atoms compared with experiment
(eV). The uncertain Lamb-shift corrections (Ref. 62) were not included in the experimental
numbers.

Atom

Spin-restricted
gHF

(Ref. 59) @SIC LSD
Expt.

(Bef. 62)

H
He
Li
Be
B
N
p
Ne
Na

Mg
Al
P
Ar

-13.6
-77.9

-202.2
-396.5
-667.4

-1480.2
-2704.9
-3497.8
-4404.2
-5431.5
-6581.5
-9271.0

-14334.7

-13.0
-77.1

-199.8
—393.0
-662.5

-1472.7
-2696.6
-3488.9
-4392.6
-5418.3
-6566.0
-9251.1

-14310.5

-13.6
-79.4

-204.2
-399.8
-672.0

-1488.9
-2720.7
-3517.6
-4426.1
-5456.4
-6608.8
-9303.7

-14378.3

-13.6
-79.0

-203.5
-399.1
-670.8

-1485.3
-2713.5
-3508.1
-4414.7
-5443.2
—6594.0
-9285.1

-14354.6
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TABLE VII. Calculated correlation energies of atoms
compared with the "conventional" experimental values
Ec~" (eV). The uncertain Lamb-shift corrections {Ref.
62) were not included in the experimental values.

Ea Tc"LSD
C

Econv
C

(Ref. 62)

H

He
Be
Ne

Mg
Ar'

-0.6
-3.0
-6.0

-19.9
-23.9
-38.4

-0.0
-1.5
-3.1

-11.4
-13.6
—22.3

-0.0
-1.1
-2.6

-10.4
-11.6
-19.9

difference between E, and E,"""arises from errors
in our approximations. LSD overestimates the
magnitude of the correlation energy by 100-200%
while SIC-LSD overestimates it by only -20%%uq.

Tong" ascribed the LSD overestimate of the
magnitude of the atomic correlation energy to the
difference in polarizability between systems with
discrete energy levels like atoms and those with
continuous energy levels like the electron gas.
Since the self-interaction correction arises only
for localized orbitals, and localized orbi. tais imply
discrete energy levels, there is perhaps no con-
flict between his argument and the correctness of
the SIC-LSD correlation energies.

Figure 7 shows the LSD and SIC-LSD correlation
energies E, for neutral atoms as a function of
N=Z. Note the change of slope that occurs in the
first transition series at Cr, as electrons of anti-
parallel spin start to be added to the d shell. Ex-

cept for such fine details, the LSD and SIC-LSD
correlation energies for all atoms and ions may
be described by a simple analytic model. '4

We have established that the SIC-LSD functionals
for the total and correlation energies of neutral
atoms are rather accurate. Even greater accur-
acy might be found if the orbital densities were
not sphericalized. However, an alternate ap-
proach promises to establish a new standard of
theoretical accuracy: Levy, Clement, and Tal"
have shown how to get the total energy of an atom
of atomic number Z from a knowledge of the first
ionization potentials, electron affinities, and (r )
for neutral atoms with atomic number ~Z. Using
experimental ionization potentials and affinities,
and HF values of (r '), they obtained remarkably
accurate total and correlation energies. All the
inputs needed for this calculation could be com-
puted to excellent accuracy in the SIC-LSD form-
alism.

E. Binding energies of negative ions

The negative ions are a sensitive test of any
many-electron theory, since a large fraction of
their binding energy is due to correlation. In LSD
the Kohn-Sham equations do not admit self-con-
sistent negative-ion solutions": The eigenvalue of
the extra electron iterates to a positive value be-
cause of the incorrect long-range behavior of the
one-electron potential discussed in Sec. II E. (If,
however, the extra electron is artificially confined
to a region near the atom, the LSD total energy is

O.O 0

'3
O

-I.O—
C9K
4J
X
LLI

x
O

~ -2.0—
LLI
K
O
O

-20

-60

-5.0- -80

0 4 8 l2 l6 20 24 28 52 56
ATOMIC NUMSKR Z

FIG. 7. LSD and SIC-LSD correlation energies of neutral atoms, as a function of atomic number g.
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losoex than for the neutral atom, and the difference
is a rough estimate of the true binding energy. 6)

This kind of misbehavior cannot occur in a self-
interaction-free theory like HF or SIC-LSD: Be-
cause of the inequality (57), the eigenvalue of the
extra electron will always be negative if binding
is allowed by the total energy.

Table VIII shows HF (Refs. 66 and 67) and SIC-
LSD binding energies of negative ions (calculated
from total energy differences) in comparision with
experiment. ' The HF values grossly underesti-
mate the binding, and in some cases predict an
instability for the experimentally stable negative
ions, while the SIC-LSD values are remarkably
close to experiment, giving us additional confi-
dence in the SIC-LSD description of correlation.

F. Density response to the correlation potential

In Fig. 8 we show the density response to the
correlation potential, i.e. , the difference between
the electron density calculated self-consistently
with and without correlation, for the He atom in
LSD and SIC-LSD. The effect of the correlation
potential is to build up some extra density near
the nucleus by depleting the low-density tail (the
region r & 1 a. u. ); the resulting relative change
in the density is less than 2% in the high-density
region (r & I a. u. ), and the relative change may
be even smaller in larger atoms where correlation
is less important. Just as we found that the SIC-
LSD correlation energy is about half that of LSD in
Sec. IIIC, we now find that the SIC-I SD correla-
tion potential is about half that of LSD.

In Fig. 8 we have also plotted the difference be-
tween the configuration-interaction (CI) and HF
densities in He,"which can be regarded as the ex-
act density response to the correlation potential.
Although the SIC-LSD density is clearly more
realistic than the LSD density, both approxima-
tions miss the CI tendency to deplete the density
in the intermediate region (x=0.5 a. u. ). Smith,
Jagannathan, and Handler" have pointed out how
hard it is for approximations based on the uniform
electron gas to get this behavior right.

0.06—

I I I

He, Density response to the
correlation potential

0.04

~ 0.0Z
I

0.00

—Exact (CI)
S1C

-"- LSD

-0.02 I

0.5
I

I.O
r (a.u. )

I!.5

FIG. 8. Density response to:he cor relation potential
in the He atom, in LSD, SIC-LSD, and configuration-
interaction (CI) calculations. (The exact or CI curve
has been sketched from a figure in Ref. 69.)

G. Eigenvalues and removal energies

TABLE IX. Comparison of outer-orbital eigenvalues
em~ with measured first ionization potentials I&. (e ~
is the least negative eigenvalue of the occupied orbitals. )
Energies in eV.

HP-~max
(Ref. 59) ~LSD

max
~SIC-LSD
~max

I)
(Ref. 71)

H
Li
Na
K

13.6
5.3
5.0
4 0

7.3
3.2
3.1
2.6

13.6
5.4
5.1
4.3

13.6
5.4
5.1
4.3

As discussed in Sec. IID, the orbital eigenval-
ues (multiplied by -1) should approximate the
relaxed energy changes due to electron removal in

SIC-LSD, but not in LSD. This conclusion is
supported by Table IX, which compares the eigen-
value of the least-bound occupied orbital to the
measured first-ionization potential" in a series of
atoms. On the average, the SIC-LSD eigenvalues
agree with experiment better than the HF eigen-
values do. They seem to satisfy the inequality
(57) almost as an equality, even in He where re-
laxation effects should be largest. In contrast,

TABLE VIII. Binding energies of negative ions in eV
(or electron affinities of the corresponding neutral
atoms).

15.4
10.7

8.3
6.3

14.9
10.0

14,5
10.5

HF
(Refs. 66 and 67) SIC-LSD

Expt.
P,ef. 68)

6.5
6.7

4.0
4.6

6.7
7.1

6.8
7.4

H
0
F
Cl"

—0.33
-0.54
1.36
2.58

0.7
1.6
3.6
3.8

0.75
1.46
3.40
3.62

He
Ne
Ar
Kr

25.0
23.1
16.1
14.3

15.5
13.5
10.4
9.4

25.8
22.9
15.8
14.0

24.6
21.6
15.8
14.0
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the LSD eigenvalues only capture about 60/p of the
ionization potential.

Qualitatively similar conclusions apply when the
ionization process leaves the atom in an excite
state. Table X displays a detailed comparison
between ground-state orbital eigenvalues and re-
laxed energy differences due to hole creation in
Ar. First consider the relaxed energy differences
&E~ „& in comparison with measured removal ener-
gies": The SIC-I SD values show the best overall
agreement with experiment, while the HF values
are somewhat in error for the outer orbitals (due
to neglect of correlation) and the LSD values are
slightly in error for the inner orbitals (due to
self-interaction). Note in particular the serious
error of the HF approximation for the Ss hole in
Ar, where &E" ~«~ is 4 eV greater than the ex-
perimental removal energy. Bagus ' has attribu-
ted this error to an anomalous inc~ease in the
magnitude of the correlation energy upon forma-
tion of the hole. Most of this increase is accoun-
ted for within the LSD and SIC-LSD total energy
calculations.

Next compare the orbital eigenvalues to the
measured removal energies in Table X: The HF
eigenvalues overestimate the removal energies
from inner orbitals (due to neglect of relaxation
and correlation), while the LSD eigenvalues ser-
iously underestimate the removal energies from
all orbitals. In contrast the SIC-LSD eigenvalues
yield a good estimate of the removal energies.
Finally, note that the self-interaction-free theor-
ies (HF and SIC-LSD) satisfy the inequality (57}.

In Table X we also show an estimate of the un-
relaxed energy difference in SIC-LSD, based on
the assumption that the relaxation energy p»~ of
Eq. (67) is the same as Z"r of Eq. (53). Note
that in SIC-LSD the negative of the eigenvalue falls
between the unrelaxed and relaxed energy differ-
ences in agreement with Eq. (71), and lies closer
to the relaxed energy difference except for the 1s
hole.

To what extent can these conclusions carry over
into the self-interaction-corrected Kohn-Sham
scheme of Sec. IIF, in which all orbitals see the
same potential? In an attempt to answer this
question, we have also calculated the orbital
eigenvalues for the Ar atom using the ox'bitally
averaged potential (OAP) of Eq. (75) (with expon-
ent p = 1), and the results are displayed in Table
X where they can be compared to the eigenvalues
obtained from the orbital-dependent potential of
Eq. (38). There is fair agreement between the
two sets of eigenvalues, suggesting that our con-
clusions can in fact carry over.

H. Band structure of nonmetals

Turning now to solids, we note that LSD band

calculations have had some striking successes in

relating the band eigenvalues and related spectral
functions to observed excitation. However, in

many of the calculations for insulators, if the cal-
culations are pushed to full self-consistency and if
additional approximations such as artificial ex-
change scaling, muffin-tin approximations, em-
pirical charge-transfer factors, or empirical
pseudopotentials are avoided, anomalously small
optical gaps E, are frequently obtained in LSD
[e.g. , see Refs. (27)-(31) and Table XI]. Such
agomalies normally do not occur in semiempixical
pseudopotential calculations, even though LSD is
used for screening, "since agreement with the ex-
perimental band gaps is usually forced through
empirical fitting of the pseudopotential. However,
in the first principles p-seudopotential approach"
such systematic errors persist. This failure of
first-principles band-structure theory with local
LSD-type potentials occurs, in fact, for chemical-
ly broad classes of nomnetals, ranging from van
der Waals solids such as Ne [E~c=11.2 eV,"
Ep'=2l. 4 eV (Ref. 27}], through covalent solids
like Si(E""=0.6 eV,"'"' '""E'*"=1.17 eV} to
ionic solids like LiF (E",so =10.5 eV,"E'""=14.2

TABLE X. Comparison of ground-state orbital eigenvalues e», relaxed energy differences

hE~„&, and experimental electron removal energies in atomic Ar. The SIC-LSD column also
shows an estimate of the unrelaxed energy differences d E]~,&

and eigenvalues calculated
with the orbitally averaged potential (OAP). Energies in eV.

SIC-LSD

Hole HF (Ref. 46) LSD -~ni
-&,g &&I ~t &&I~,g (Oltp)

Expt.
-d E(~, (Ref. 46)

1s
2s
2P
3s
3P

3227.0
335.0
260.0
34.8
16.1

3195.0
325.0
24g.O

33.2
14.8

3097.0
294.0
230.0
24.0
10.4

317g.O
310.0
248.0
29.9
15.7

3227.0
322.0
263.0
31.6
17.2

3197.0
322.0
260.0
32.3
18.2

3220.0
316.0
257.0
30.2
15.8

3195.0 3206,0
311.0
251.0 249.0
30.1 29.2
15.8 15.8
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TABLE XI. Self-interaction corrections 4&zc to the
LSD band-structure error 4E~ in the band gaps of rare-
gas solids and the core ionization in solid LiF. Energies
in eV.

Solid

Ne
Ar
Kr
Xe
LiF (Li ls)
LiF (F2@)

21.4 ~

14 2
11.6 ~

9.3'
64.4'
37 6"

11.2
8.3
6.8

47.2'
301'

9.9
-5.9 5.8

4.9
4.2

-17.2 18.0
-7.5 7.9

-4.9

~Reference 27.
~References 28 and 31.
cReference 29.
d Reference 30.
'Reference 31.

eV) and transition-metal oxides like Coo (predic-
ted erroneously by LSD to be metallic' ). While
for years such anomalies were often disguised by
computational devices which "fixed" the gaps, it has
become clearer in the last few years" "'~'""'""
that they reflect a fundamental limitation of the
LSD band-structure model. In what follows we
will present evidence (see also Refs. 31, 75, and
76 for our earlier corrections to LSD band gaps
due to SIC) that these discrepancies arise largely
(but not entirely) from self-interaction errors,
and that the SIC scheme can form the basis for
a new and improved band theory.

It is not difficult to see why self-interaction cor-
rections should significantly alter the results of
band theory for atomic crystals like solid Ar
(Ref. 77): Although an electron should see an
Ar'-like potential in the valence band and an Ar'-
like potential in the conduction band, LSD actually
forces an Ar'-like potential for both bands. The
difference between the two corresponding orbital
energies has both a kinetic component W (inclu-
ded in band theory) and an intra-atomic self-direct
component II (neglected in LSD but not in SIC).
For localized electronic states one expects U 8 W.

We show in Table XI, along with the LSD band-
structure error &E (=E",' —E;*"') for rare-gas
solids, the difference ~»c between the LSD and
SIC-LSD eigenvalues of the outermost atomic or-
bital forming the valence-band maximum (e.g. , 2p,
3p, 4p for Ne, Ar, and Kr, respectively). The cor-
rection &sl& is expected to be accurate for the val-
ence band when the latter is largely atomiclike and
unhybridized. Thi's is indeed the case for rare-
gas solids having narrow p-like valence bands
which are well separated from the lower s-like
band. We have calculated &stc =Ega —e ' [Eqs.
(39) and (40), where e'&p'" of Eq. (40) is taken as

the LSD approximation] using exactly the same lo-
cal exchange-correlation functionals which were
employed in the corresponding band-structure ca1.—

culations (Refs. 29 and 30). Table XI clearly
shows that the self-interaction of this orbital ac-
counts for almost 100% of the LSD error in the in-
sulating gap of the solid. This is also confirmed
through an actual SIC band-structure calculation
for solid Ar, described below.

A similar argument applies to ionic solids such
as the alkali halides, in which the valence band is
constructed predominantly from the anion p orbi-
tals. Interestingly, in the past, the discrepancies
between the small LDS band gaps and the larger
experimental values in these materials were "re-
medied" by employing an artifically large ex-
change parameter n ~ 1." This device restored an
apparent agreement with experiment since the val-
ence states, characterized by fairly localized an-
ion p orbitals, were lowered in energy more than
the diffuse conduction-band cationlike s orbitals
by the artificial enhancement of the (negative) ex-
change potential. From our present discussion it
is clear„however, that such an empirical ap-
proach does not treat the true physical origin of
the discrepancy.

It is easy to see why such an approach is not a
panacea: One could adjust n to make the self-in-
teraction correction to the total energy zero, by
choosing in Eq. (33)

&&"=-U[n ]/-,'E""[n.„o],
or to zero the self-interaction correction to the
orbital energy, by choosing in Eq. (39)

~, ) (y„, lu([n„„];r) I „)
—,'(y„. i v'„""([n„.,0; r) i y„.)

'

Not only are n",' 0 n'2, ' (so that fixing the band gaps
may spoil the total energy), but also these ex-
change parameters are state dependent (so fixing
one gap may spoil another one).

A recent example of this situation is the CuC1
band structure. The experimental band gap (3.4
eV) was obtained in an Xo' band-structure" calcu-
lation using + =1, while the correct LSD treatment
incorporating o = 3 for exchange (plus local corre-
lation) yielded &,=2.0 eV." The reason for this
is that the top of the valence band in this material
is composed largely of the localized Cu 3d orbitals
(with 25%%up admixture of Cl p orbitals) which carry
a considerable amount of self-interaction whether
& =1 or 3. The correction due to this self-interac-
tion term has been estimated" from simple atomic
models and found to lead to the experimentally cor-
rect band gap only if o' =-', (plus correlation) is
used, while for & =1 the corrected" band gap is
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-4.0 eV. It is gratifying that an artificial enhance-
ment of the exchange parameter is no longer
needed to obtain the correct band gap in such ma-
terials, since the use of + =1 spoils the agreement
between the calculated ground-state bulk properties
(equilibrium lattice parameter, cohesive energy,
and bulk modulus) and experiment, while the use
of & = 3 (plus correlation} produces the correct
results. ~

It is interesting to contrast this situation with
the one encountered in HF band-structure studies.
HF calculations (e.g. , Ref. 4) predict band gape
for insulators that are too large, often by as much
as a factor of 2-5 relative to experiment (due to
lack of correlation and the inclusion of spurious
self-interaction in the conduction band}. On the
other hand, LSD band-structure calculations show
band gaps which are 20-40 Vp too seawall (among
other reasons due to spurious self-interaction in
the valence band). Both the correlated HF results
(e.g., Ref. 4) and the self-interaction-corrected
LSD results match the experimental gaps reason-
sonably well. It would seem, therefore, that LSD
forms a better starting point than HF to calculate
band structures, as the needed corrections to the
band structure are far smaller than in HF while
the bulk ground-state properties are described in
LSD at least as well (and usually better) than in
HF.

It is likely that SIC could explain additional dis-
crepancies between LSD calculations and experi-
ment for localized states in. extended system. For
example, the LSD-calculated positions of the lo-
calized surface states in the relaxed GaAs(110)
surface ' are systematically too high in energy by
0.2-0.3 eV relative to experiment, when the ener-
gy of the state is measured in both cases with re-
spect to the Bloch-type valence-band maximum.
SIC is expected to lower these states relative to
the Bloch states. Similarly, nonempirical LSD
band-structure calculations on tetrahedrally
bonded heteropolar semiconductors and insulators
(e.g., BN, CdS, GaAs) "as well as alkali and
alkali-earth halides' often indicate a systemati-
cally too narrow valence-band width. Inspection
of the wave functions involved shows that at the
bottom of the band (predominantly of cation s-like
character) the wave function is more localized
than it is at the valence-band maximum (predomi-
nantly anion p-like character). Self-interaction
corrections would then tend to lower the valence-
band minimum more than the valence-band maxi-
mum, leading to a la.rger ba.ndwidth.

A somewhat similar situation occurs in the Mott
insulators FeO, CoO, MnO, and NiO: While pho-
toemission studies indicate that the upper (transi-
tion-element 3d-derived) valence band strongly

overlaps with the lower (oxygen 2P-derived) val-
ence bands, local-density band-structure calcula-
tions (e.g., Ref. 74) indicate a large gap (up to 8

eV) between the two groups of bands. One expects
then that self-interaction corrections will play a
central role in reconciling this result with experi-
ment: The d-based valence bands, being far more
localized spatially than the 2p band, would receive
a larger self-interaction correction (and orbital
relaxation correction) and move down in energy
relative to the p band, reducing if not closing the
spurious LSD gap.

LSD band structures are known to exhibit differ-
ences with optical experiments not only at thresh-
old but also in the interband region, a few eV
threshold. Such differences usually show up as
0.1-0.5 eV shifts of the calculated peaks in a, (~)
relative to experiment. These differences have
encouraged theoretical work (e.g., Refs. 82-84)
which emphasizes many-body corrections to the
spectra, in particular screened electron-hole and
exchange effects. These corrections produce a
desired shift in the peaks (e.g. , a 0.2-eV shift out
of the 0.1-0.5 eV shift needed). However, such
approaches completely ignore self-interaction cor-
rections (a fundamental one-body effect} which lead
to a far larger shift at threshold and may well re-
sult in substantial shifts of a,(v) above threshold
due both to a direct SIC modification in the single-
particle energies and to the change in orbitals
which enter the screened exchange calculations.
For example, the LSD band structure of Si pre-
dicts a gap of 0.8 eV [Refs. 73(b} and 73(c)], com-
pared with the observed value of 1.17 eV. Many-
electron corrections" amount merely to a =0.2-
eV shift in the interband region and practically do
not affect the value of the band gap.

We also show in Table XI the error of the LSD
band-structure prediction of the energy of core
electrons, relative to vacuum, in the ionic insula-
tor LiF; again self-interaction correction of the
eigenvalue removes most of the discrepancy. Al-
ternately, but with much greater effort, the cor-
rect answer Could be obtained within LSD by a
4SCF calculation of the relaxed total energy dif-
ference in the solid" upon removal of the core
electron. The significance of self-interaction
terms in narrow-band solids has been emphasized
by Zunger and Freeman" who have evaluated them
directly in a soLid-state 4SCF approach.

All band-structure techniques which employ in-
scribed atomic spheres, and solve a radial atom-
iclike Schrodinger equation inside such spheres,
lend themselves naturally to incorporating a sim-
plified SIC. One has to solve an SIC-.LSD single-
particle equation within the sphere (rather than an
LSD equation) much as in the atomic case (except
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for the modified Wigner-Seitz boundary conditions
at the sphere boundary), while the more diffuse
wave-function components outside the sphere can
be treated in the standard LSD form. The wave
functions are normalized over the entire unit cell.
This approach constitutes a generalization of the
classical Wigner-Seitz treatment of metallic sodi-
um" to include both exchange and correlation in
a self-consistent fashion. Such a technique would
incorporate the major SIC on the localized states
and lead to improved band-structure energies and
wave functions.

A self-interaction-corrected self-consistent
band-structure calculation has been performed"
for the valence (3p) and conduction bands of solid
Ar in the fcc structure. A pseudopotential appro-
priate to the 3p states, and a mixed basis of Gaus-
sians and plane waves, were employed. The re-
sulting pseudo-orbitals g,.-„(r) were used to find the
pseudodensity by summing over the first Qrillouin
zone and over the three upper valence bands as

BK 3

n„(r)=2 + Q ~P,;(r)~'.
k /=1

If there are M atoms per unit cell (where conven-
tionally M=1), then the integral of n~, (r) over the
unit cell equals 6M. The averaged orbital density

n~, (r)/6M was used to calculate &, [Eq. (33)j as
well as the self-interaction-corrected potential
v, f'f(r) [Eq. (38)]. Since n~, (r)/6 approaches the
atomic orbital density ~g,'~(r)

~

in the limit of in-
finite lattice constant, the resulting band structure
for M =1 has the correct atomic limit. Prelimi-
nary results indicate that at the observed. lattice
constant, the calculated band gap is 13.8 eV, with
the Kohn-Sham exchange and 15.0 eV with the He-
din-Lundqvist exchange-correlation (8.2 eV with-
out SIC) which compares favorably with both the
experimental value (14.2 eV) and the atomic esti-
mate of Table XI. The valence-band width in-
creases from the LSD value of 1.3 eV to the SIC-
LSD value of 2.4 eV. Note, however, that the
success of this approach rests on the intuitive
choice M =1; if the calculation were repeated with
larger unit cells, the orbital density n~, (r)/6M
would carry zero self-interaction in the limit of
large M. This approach clearly exemplifies the
size-consistency problem described in Sec. IIF.

More applications of the SIC band-structure
method will have to be attempted in the future
(either within the practical schemes described
here and in Sec. IIF or by other schemes) before
an efficient computational method will be clearly
identified. One would expect such a method to be
particularly useful for band-structure calculations
of nonmetals as well as for the calculation of the
electronic structure of core excitations and exci-

tons in solids, localized surface and interface
states, f-band materials and valence fluctuations,
and deep defect levels, and for the description of
metal-nonmetal transitions.

I. The "Fermi Statistics" problem in Fe and Co

A peculiar behavior occurs in LSD calculations
for atomic Fe and Co: If the occupation numbers
are restricted to integer values (0 or 1), then
the orbital configuration which minimizes the total
energy violates the aufbau principle. For ex-
ample, in Fe the calculated lowest-energy con-
figuration is the observed one d's', but in this
configuration the eigenvalue of the occupied 4sf
orbital lies above the eigenvalue of the four unoc-
cupied 3db orbitals. Slater' argUed that the mini-
mizing configuration must then have fractional
occupation (d"s" in this case").

Fractional occupation is not allowed in the ori-
ginal Kohn-Sham scheme, as Janak" and Harris"
have pointed out. From the discussion of Sec.
IIA, we know that fractional occupation is now
permitted in prie pie. The more practical prob-
lem of finding a realistic approximation for the
exchange- correlation energy under fractional
occupation remains; this problem is not solved
by our scheme of self-interaction correction ex-
cept in certain idealized cases, as discussed in
Appendix B.

The SIC-LSD scheme of Sec. IIB evades the
Fermi statistics problem in the following way:
When this scheme is applied to Fe in the d's' con-
figuratiori, the eigenvalue for the occupied dk or-
bital lies below that of the occupied s4 orbital,
while the eigenvalue of the unoccupied dk orbitals
lies above s4, so the aufbau principle is satis-
fied. In the self-interaction-corrected Kohn-Sham
scheme defined- in Sec. II F, all the dk orbitals
will be degenerate and we expect that the Fermi
statistics problem may reappear.

J. Cohesive energies of transition metals

The cohesive energy E„„isthe small (1-'6 eV)
difference of two large numbers: the energy of the
free atom and the energy per atom of the solid.
Although LSD-calculated total energies of atoms
and solids are in error due to self-interaction,
their difference yields a reasonable estimate for
the cohesive energy in most metals. " In K for
example, where the LSD self-interaction error of
the atomic energy is 73 eV, the LSD cohesive
energy is only 1 eV, in good agreement with ex-
periment. The explanation is of course that nearly
all the self-interaction error is carried by the
ionic core, which is essentially the same for the
solid as for the atom, whereas the self-interaction
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error for the K 4s orbital is much smaller than
the cohesive energy.

The 3d transition metals are a notable exception
to this rule. Figure 9 shows a comparison of LSD
(Ref. 12) and measured" cohesive energies across
the 3d series. Note that LSD gives accurate co-
hesive energies at both ends of the series, but
overestimates them by as much as 70/q near the
middle.

As we cross the transition sex'ies from Ca to
CU, the 3d band is progressively fiBed, and the
orbitals contract in response to the increasing
nuclear charge. As a result the LSD self-inter-
action 6„, of each orbital grows progressively,
as shown in Fig. 10. The 3d orbitals are xathex'

localized and each carries a self-interaction
(0.2 to 1.2 8V per electron) that is large on the
scale of the cohesive energy, but they are not
inert core orbitals until we reach Cu; in fact, they
hybridize strongly with the 4s orbitals. As we
move to the post-transition elements, the 3d or-
bitals carry even mox'e self-interaction but they
are largely chemically inert when the solid is
formed from atoms; this leads to an effective
cancellation of SIC core terms in the cohesive
eQergy x'ende11Qg LSD a good appl oxlmatlon. It
seems likely, then, that the s-d valence shell, car-
x'les a gl eater LSD self-1ntex'act1on ex'1 ox' 1Q the
transition atom than it does in the solid, leading
to the LSD ovex'estimation of the cohesive energy.

Let us define the error of the LSD cohesive ener-

valence

N&5',."'d valence,

wllere onl)I VRlellce orbltais contribute Il ~ 8
P"I"(core) = 5„",'m(core)]. The solid-state self-
interaction 5& need not be evaluated in the present
estimate, but is in principle to be calculated from
sultabi)I localized (Wannler-tiIpe) fllIlc'tlolls fol'

the valence bands. Vfe take the 6 values from Fig.
9, gLf from Janak et al."and 5„'",' (valence) from
Fig. 10, and calculate Q&&& P,."'~(valence) from Eq.
(V9). From this we get the ratio between the
valence self-interaction in the solid and in the

0.00

-0.6

Following the argument of the preceding para-
graph, we equate 6 to the difference between the
LSD self-interaction per atom in the gas and in the
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FIG. 9. Percent error in the LSD cohesive energies
for some alkali metals and the sd metals. The LSD
and experimental values were taken from Refs. 12 .and

88, respectively.

Ca Sc Ti V Cr Mn Fe Co Ni Cu

FIG. 10. LSD self-interaction error of the atomic
orbitals in the 3d transition series. The self-interaction
~o~~g~ggo@ -g„& is plotted here for the majority-spin
orbitals. This correction is small (and in some cRses
positive) for the 4g orbitals, but large and negative for
the 3d orbitals.
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atom. We find that the valence self-interaction
in the solid is negligible for the free-electron
metals Li and Na [e.g. ZP' 68"'~ (valence) equals
0.00 and 0.01 eV for Li and Na, whereas the co-
hesive energies are 1.6 and 1.1 eV, respectively],
and it varies from -8% of the atomic valence
self-interaction at the beginning of the 3d series
(Ti), through 55% at the center (Mn} to 86% at
the end of this series (¹).Such a residual SIC
for d electrons in the 3d metals seems physically
reasonable and points to the possibility that self-
interaction effects should be considered in transi-
tion-metal physics. An g priori calculation of 5&

(valence} in the solid using a suitably localized
wave-function representation seems very desir-
able. Note from Eq. (33) that 6, is basically the
screened "Hubbard U" (intrasite repulsion term).
Our -analysis above suggests that the Hubbard re-
pulsion may not be screened out to zero even in
elemental transition metals.

K. s-d interconfigurational energies of transition elements

I I l I I I I l

0.0S
u 0.06 I}t-

LLI 0.04—
LLI

0.0R—
X
Q 0
~~ -O.OR—

L -0.04—
-0.06—

4J~ -0.08— d 8 stable
I I I I I I I I

Ca Sc Ti V Cr Mn Fe Co Ni Cu

FIG. 11. s-d interconfigurational energies of transi-
tion-metal atoms (calculated as total energy differen-
ces) compared with experiment (crosses, from Ref. 33).
The break in the curve at Cr occurs because of the
Hund's-rule special stability of the d configuration.
The LSD values shown here are about 0.2 eV closer
to experiment than those of Ref. 33, due to our use of
the accurate Ceperley correlation.

The interconfigurational energy is the total ener-
gy difference between the atomic d" 's' and d" s'
orbital configurations. Harris and Jones" have
pointed out that LSD predicts the trends of this
quantity across the 3d transition series in good
agreement with spectroscopic measurements (Fig.
ll), although there is an absolute error of about
1 eV in the LSD results which unduly favors the
d-rich configuration, leading to the wrong pre-
dicted ground state in Ti, V, and Co. The same
error seems to lead to an incorrect description
of s-d charge transfer in transition-metal dimers. '9

It seems at first thought that self-interaction
correction should seoxsen the calculated intercon-
figurational energies, since from Fig. 10 the cor-
rection is negligible for a 4s orbital but substan-
tially negative (-0.3 to -1.2 eV) for a 3d orbital.
Thus the first-order effect of the self-interaction
correction is to favor the d-rich configuration even
more than LSD does. However, a glance at Fig.
11 shows that this expectation is not met, and that
the self- consistent SIC- LSD interconfigurational
energies are essentially the same as those of LSD.

For estimates of the correction to the total ener-
gy or to the one-electron energy eigenvalues, the
self-interaction correction can be treated as a
first-order perturbation on the LSD solution (i.e. ,
approximating SIC orbitals by LSD orbitals), but

this approach fa,ils for the interconfigurational
energy. %'hat happens is that the first-order ef-
fect lowers the energy of d" 's' relative to d" s',
but the higher-order effects lower the energy of
the more polarizable d" 2s' configuration. relative
to d" 's', and these effects essentially cancel one

another.
Self-interaction correction neither improves

nor worsens the LSD interconfigurational ener-
gies. These LSD values are in fact remarkably
"persistent": The same values are found in LSD
calculations whether the density is spherical. ized
or not, "and the same values are also obtained
from the "weighted density" approximation of Eq.
(83) below. ""

L. Spin splitting in Fe, Co, and Ni

The LSD approximation has been successful in
predicting the spin susceptibilities of the para-
magnetic metals, "'"which are strongly enhanced
by exchange and correlation. LSD also correctly
predicts that the ground states of Fe, Co, and Ni
are ferromagnetic, with calculated magnetic mo-
ments in good a,greement with experiment. ' Ex-
cept for the weak ferromagnet Ni, the LSD band
structures of the ferromagnetic metals are in
reasonable agreement with the results of angle-
resolved photoelectron spectroscopy. ~2 For ex-
ample, the ratio of theoretical to experimental oc-
cupied d-band width is about 1.1, 1.2, and 1.45
for Fe, Co, and Ni, respectively, while the ratio
of theoretical to experimental spin splitting is
about 1.0, 1.2, and 2.2 for the same metals. "

The LSD overestimate of the spin spbtting in
Ni by a factor of two led us to wonder if self-inter-
action correction would change the LSD spin split-
ting. The analog in our atomic calculations of the
solid-state band-structure spin splitting is &3~~
—&,~&, the difference in eigenvalues of the minority
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FIG. 12. Spin splitting in atomic Fe, Co, and Ni as
a function of atomic configuration. The difference bet-
ween the energy eigenvalues of minority- and majority-
spin occupied 3d orbitals. is plotted' here. (The LSD
values for Fe and Co in the d"s configuration are un-
certain due to convergence difficulties. ) The observed
(Ref. 32) spin splittings in the solid, indicated by
horizontal arrows, are shown for comparison.

(0)- and majority (0)-spin 3d electrons. Figure 12
shows this quantity as a function of atomic con-
figuration in LSD and SIC-LSD; the measured
solid-state spin splittings are also shown for
comparison.

Note that self- interaction correction increases
the spin splitting, although the increase for Ni
is only marginal. The reason is very simple: The
majority spins see a more attractive exchange-
correlation potential than the minority spins do,
and so have more localized orbitals. The self-
interaction correction lowers the eigenvalues of
all occupied d orbitals, but the eigenvalues of the
more localized majority-spin orbitals get lowered
more, leading to an increase in the spin splitting.
[This argument, due to L. Kleinman and K. Mednick
(private communication}, is based on treating the
self- interaction correction to the one- electron po-
tential as a first-order perturbation on the LSD
eigenvalue, a treatment which gives numerical
results in rather good agreement with our self-
consistent ones. However, the success of this
approach should not be interpreted to mean that
the self-interaction correction has no effect on the
orbitals of transition-metal atoms; in fact, at self-
consistency it contracts the 3d orbitals and expands
the 4s orbitals non-negligibly. J

These atomic calculations suggest that self-
interaction correction couM slightly worsen the
calculated spin splittings in solid Fe, Co, and Ni.
However, as we observed in our discussion of the
cohesive energies (Sec. IIIJ), self-interaction cor-

rections are not the same in the solid transition
metals as in the corresponding free atoms, so
these atomic calculations may not be very predic-
tive of solid-state effects.

IV. BRIEF REVIEW OF RELATED WORK

When we separately began to work on self-inter-
action corrections, we knew about the work of
Lindgren. ' Since then we have learned of other
related studies. Here we attempt a brief critical
review of the papers we have found, in relation to
our own work. Except where otherwise indicated,
this related work was directed toward removing
the self-interaction error of the one-electron
potential/ in the local-density approximation, in
contrast to our own work which gives a general
scheme for self-interaction correction of gny
spin-density- functional approximation for the
total energy as well as the potential.

Lattere' observed that the Slater n'"(r) exchange
potential approaches zero exponentially far from
the center of a neutral atom, while the Hartree-
Fock exchange potential goes to -1jv, and pro-
posed switching over from the former to the latter
form at the value of x where they cross, a scheme
followed by Herman and Skillman~~ in their atomic-
structure calculations. From the present work,
however, it is clear that self-interaction effects
modify the potential even before it reaches its
asymptotic -1/x value (see the difference in orbi-
tal-dependent potentials in Fig. 4 for small x}.
Cowan". showed that Latter's procedure can intro-
duce errors into calculated ionization energies,
and proposed a scheme in which the self-Coulomb
potential u([n, ]; r) was subtracted from the one-
electron potential. seen by orbital Qt, o, while the
interelectronic exchange potential was parame-
trized in a complicated way to give a best fit to
the Hartree-Fock orbital energies. This scheme
gave the correct long-range behavior of the po-
tential, and the orbital, s gave a good total energy
when inserted in the Hartree-Fock energy function-
al (not the density-functional expression).

Liberman"-proposed partitioning the density of
an atom into a sphere containing N-1 electrons
and the rest of space containing one electron. The
total energy then involved local exchange only
within the sphere and electrostatic interaction
between the two regions. This scheme corrected
the self-interaction error for the outermost elec-
tron, so that a ~SCF calculation gave binding ener-
gies of negative ions as good as the Hartree-Fock
values or better, but of course it left the large
self-interaction error of the inner- shell el.ectrons
uncorrected.

Slater and Wood' pointed out that a large fraction
of the total exchange energy in atoms is just self-
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exchange. However, they rejected any attempt to
treat self-exchange exactly because, unlike the
total exchange energy, it is not invariant under
unitary transformation of the occupied orbitals.
We discussed this fact, and how it may be ex-
ploited, in Sec. IIF.

Lindgren's" "work is perhaps closest to our
own. Lindgren and Rosen ' calculated the inter-
electronic exchange energy of a uniform electron
gas confined to a finite volume by periodic bound-
ary conditions, and found a correction to the local
exchange energy which becomes

—Ffd'rn, (r)a, (n„(r), 0) (80)

v„"(r) = p'„(nt(r), ) n~(r))

—u( [n,]; r) —p,&(n,(r), 0) . (81)

for small electron numbers N, and never deviates
much from this for large N. Using Eq. (77) and
the exact self-Coulomb correction -Q, U[n, ] as
corrections to the local exchange energy, they
variationally derived an orbital-dependent potential
which is the same as the one we would find from
Eq. (38) within the SIC scheme for local exchange
Otlly '.

essentially the exact Kohn-Sham potential for ex-
change in atoms. In a comparative study of various
spatially local exchange potentials v„(r), Talman,
Ganas, and Green' found that those which mini-
mized the Hartree-Fock energy either exactly or
in a restricted variational sense gave orbital ener-
gies &, in better agreement with measured re-
moval energies and excitation energies than the
Hartree- Fock eigenvalues.

Brandow' ' pointed out that a local-exchange Xn
band-structure model fails for Mott insulators
such as CoO, MnO, and NiO essentially due to
the failure of the theory to subtract the self-inter-
action terms from the potential. He then proposed
to construct a d-band Hubbard Hamiltonian based
on a linear combination of atomic orbitals fit to
Xa band structure with the self-interaction terms
properly subtracted. This model Hamiltonian
correctly describes the energy levels and magnetic
properties of these systems when empirical values
for the self-Coulomb terms are used.

Gopinathan" devised a scheme in which the
self-Coulomb correction was treated exactly,
as in Lindgren's work, while the interelectronic
exchange was approximated as

In atomic calculations, this scheme gave eigen-
values &, much closer to Hartree-Fock than the
local exchange eigenvalues. Curiously, the total
energies obtained directly from the self-interac-
tion-corrected density functional for the energy
were never reported. Instead, the Schrodinger
equation with the exchange potential of Eq. (81)
was used merely as a wave-function generator for
HF calculations. In separate work, Lindgren and
Schwarz" showed that the dominance of the self-
exchange over interelectronic exchange in small
atoms was the reason for the decrease in the op-
timum n value of Slater's Xe theory from -0.8
for small atoms to -&, the proper LSD value for
exchange, in large atoms.

Szasz, Berrios-Pagan, and McGinn" proposed
an approximation for the atomic energy as an ex-
plicit functional of the density, including a simple
self-interaction correction in the spirit of the
Fermi-Amaldi correction. '

Schrieffer briefly discussed the self-interac-
tion error of Xn and LSD total energies, and gave
an argument qualitatively similar to the one of
Eq. (41) to show how this error gets magnified
in the orbital eigenvalues &,.

Talman and Shadwick"' showed how to construct
an orbital- independent, spatially local exchange
potential v„(r) which minimizes the Hartree- Fock
total energy. This potential naturally turns out to
be self-interaction free, and can be regarded as

, p„(n(r)) fr' —r I)
(83)

where p„(n,
~

r' —r ~) is the hole in a homogeneous
electron gas of density n,. The weighted density
n at each r is determined to satisfy the sum rule
(26). This approximation obviously becomes ex-
act in the limit of slow spatial. variation of the
density, like LSD. Applied to a one-electron sys-
tem, the sum rule (26) can only be satisfied for

x fn, (r) —n„(r)], (82)

which is roughly in the form of an interaction be-
tween the orbital density n, (r) and the remaining
spin density [n,(r) —n, (r)]. The variationally
derived potential had the correct long-range be-
havior, and the eigenvalues and hyperfine contact
densities were close to Hartree-Fock values.
Again the self-interaction-corrected density func-
tional for the energy served only as an interme-
diate step in the derivation of the potential and was
not itself evaluated.

A Kohn-Sham density functional for the energy
which is self-interaction-free [to the extent of
satisfying Eq. (29) for fully occupied orbitals] has
been proposed by Gunnarsson, Jonson, and Lund-
qvist, "and independently by Alonso and Girifal-
co.' ' This is the "weighted density" approxima-
tion, in which the exchange-correlation hole (Secs.
IIA and IIC) is approximated as
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n =0 (the Wigner crystal limit) and then p(r, r')
=-n(r'), which is exact;" thus our SIC scheme
gives no correction to the weighted density ap-
proximation. The weighted density approximation
has been tested in non-self-consistent calculations
for atoms. It reduces the -10% error of the LSD
exchange energy to -4%,"and greatly improves
the exchange energy density. ' The error in the
integrated exchange energy can be reduced further
by a shell-partitioning scheme, "at the cost that
the approximatioq ceases to be a density function-
al.. Unfortunately, the correlation energy. is over-
estimated by about a factor of 2, as in LSD."
Also, as in LSD, the orbital eigenvalue for the
negative-ion H turns out to be incorrectly posi-
tive, ~' while the ionization potentials of atoms
(calculated from relaxed energy differences) are
somewhat worse than in LSD." Thus this scheme,
which in comparison with SIQ-LSD is rather more
sophisticated, usually gives less satisfactory nu-
merical results.

Bryant and Mahan' ' used a form of self-interac-
tion correction in the potential to calculate soft
x-ray absorption and emission in metals. To find
the potential for core orbital no, they subtracted
the self-Coulomb potential u([n„];r) from the LSD
potential (ignoring self-exchange correlation), and
remarked that. this gave a small correction to the
shape of the orbital which translated into a large
improvement in the ionization cross section near
threshold. From the present study (cf. Fig. 5)
it is clear, however, that the exchange and cor-
relation contribution to the self-interaction cor-
rection for the eigenvalue [last term in Eq. (39)]
is very large and of the opposite sign to the Cou-
lomb term included by Bryant and Mahan.

Stoll, Pavlidou, and Preuss'" suggested that the
correlation energies of atoms and molecules could
be estimated by the equation

E,= d'rn(r &, nt r, n& r )

(84}

Here the first term is the LSD approximation for
the total correlation, and the next term subtracts
out the LSD approximation for parallel-spin cor-
relation. They argued that the correlation be-
tween electrons of parallel spin is large in the
homogeneous electron gas but not in atoms and
molecules. Stoll"' has pointed out that Eq. (84)
effectively subtracts out the spurious self-cor-
relation, as in the present work.

Shore, Zaremba, Bose, and Sander' ' applied
density-functional theory to the Wigner crystal-
lization of a low-density electron gas. They ob-
served that in the low-density limit e„,(n~, n&}

(xn' ', and that an appropriate choice of the pro-
portionality constant, slightly' different from the
standard Wigner value, elminates the self-interac-
tion in LSD for a variety of site-localized orbital. s
(exponential, Gaussian, etc.}

Zunger and Cohen'o' applied a self- consistent
self-interaction correction, analogous to the pre-
sent one, to. the local-density potential, including
correlation, and displayed the improvements in
the eigenvalues as well as the valence-electron
total energies that result for a number of mono-
valent metallic atoms. They also proposed that
the self-interaction correction can be profitably
wedded to the pseudopotential idea: In a simple
metal the valence electrons are delocalized and

carry no sel.f-interaction, so they can be treated
in LSD; the self-interaction corrections to the
core orbitals can then be absorbed into a first-
principles electron- ion pseudopotential. This
program has now been implemented xxo

Perdew"' described the present version of self-
interaction correction to LSD, and tested it in
non-self-consistent calculations for small atoms.
This work revealed the-accuracy of the SIC-LSD
energy functional itself (not just the one-eLectron
potential), and of the separate exchange and cor-
relation contributions to it.

V. CONCLUSIONS

The Hohenberg-Kohn-Sham" density-functional.
theory, as generalized by von Barth and Hedin'
and Levy, "is a formally exact prescription for
the ground-state energy, electron density, and
spin polarization of any many-electron system.
Fractional-occupation numbers are allowed in

principle, although further work on the exchange-
correlation functional is needed before they can be
used in practice. The exact density unctional
for the energy is self-interaction free, which
means in particular that it satisfies Eq. (29).
Approximate density functionals [e.g. , the LSD
of Eq. (27)] can be made to satisfy Eq. (29) by a
simple scheme of self- interaction correction
(SIC), Eq. (32). Correction of the self-consistent
one-electron potential follows naturally from the
variational principle. The most straightforward
self- consistent formalism incorporating self-
interaction correction is that of Eq. (3V). Like
the Hartree approximation which it resembles,
it is a density-functional theory in the sense of
the Hohenberg-Kohn' theorem, although it does
not fit into the Kohn-Sham scheme.

In self-interaction-free approximations (such as
Hartree, Hartree-Fock, or SIC-LSD), there is an
inequality [Eq. (5V)J relating the eigenvalue of an
occupied orbital to the relaxed energy difference
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upon removal of the electron from this orbital.
This inequality is often close to an equality, and
amounts to an "extended Koopmans's theorem",
less precise but possibly more powerful then the
or iginal.

When applied to LSD, the self-interaction cor-
rection properly satisfies the sum rule of Eq.
(26) for systems without fractional occupation
numbers, and improves the shape of the exchange-
correlation hole. We have applied this SIC-LSD
scheme in atomic calculations, with results that
are far more accurate than those of LSD for a
modest increase of computational effort. (In com-
parison with HF, SIC-LSD is both simpler gnd
more accurate. ) Calculations of this type were
recently shown'" to generate accurate a priori
pseudopotentials to describe the interaction be-
tween valence electrons and ions in more extended
systems such as molecules and solids. The SIC
scheme can also be applied directly to the all-
electron problem in molecules and solids, if care
is taken to avoid the "gremlins" discussed in Sec.
II F.

Benefits of applying self-interaction correction
to the LSD approximation in atomic calculations in-
clude: (i) improved values for the total energy
and for the separate exchange and correlation
pieces of it, (ii) accurate binding energies of
negative ions, which otherwise could only be cal-
culated by heavy CI calculations, (iii) orbital
eigenvalues that closely approximate physical
removal energies, including orbital relaxation
effects (in sharp contrast to the LSD eigenvalues,
which are almost useless for quantitative pur-
poses), (iv) correct long-range behavior of the
one-electron potential and density, and (v) im-
proved overall description of the density. Our
calculations also suggest that self-interaction cor-
rection will remedy the LSD underestimate of the
band gaps in insulators (as shown by numerical
results for the rare-gas solids and ionic crystals)
and the LSD overestimate of the cohesive energy
of the 3d transition metals. However, self-inter-
action correction is not the cure for gll the ills
of LSD, and in particular it leaves the spin split-
ting in Ni and the s-d interconfigurational ener-
gies of the transition elements unimproved and es-
sentially unchanged.
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APPENDIX A: COMMENTS ON THE DEFINITION
OF THE KINETIC ENERGY

Here we will present an alternate definition of
T[n~, n&] which is equivalent to that of Eq. (14).
We will then discuss the nature of the "minimiza-
tion" which appears in the Kohn-Sham formalism
of Eq. (17) and in the Hartree-type formalism
of Eq. (37).

If the occupation numbers f, which yield the
minimum in Eq. (14) are all 0 or 1, then the de-
finition (14) obviously reduces to the original
definition of Kohn and Sham'. T[n~, n&] is the
ground-state kinetic energy of a system of non-
interacting electrons with spin densities n~(r) and

n&(r). If some of the minimizing occupation num-
bers are fractional, then Eq. (14) is equivalent
to a more general definition. Levy" originally
proposed the generalization

T[nt, n(] = min(T), jA1)

A

when T is the N-electron kinetic-energy operator
and the minimum is over all antisymmetric N-
electron wave functions which yield the given spin
densities. Valone'" has proposed that the search
in Eq. (10) be made over statistical mixtures of
antisymmetric N-electron wave functions; if we
apply this search also in Eq. (Al), we find that
the definitions of Eqs. (14) and (Al) are equivalent,
since by Coleman's theorem'" the necessary and
sufficient conditions for a Hermitian one-particle
density matrix n(r, r') to arise from some statis-
tical mixture of N-fermion wave functions are
that its eigenvalues (occupation numbers) lie in
the interval 0 ~f, & 1, and Jd'rn(r, r) =Q,f„,=N.

We now consider the nature of the "minimiza, -
tion" in Eq. (14). If the trial orbitals g, are con-
strained to be orthogonal, then T[nt, n&] is a true
minimum of Z„f,(P, ~

--,' V'
~ g„). Note, how-

ever, that the Euler equation (17) is derived with-
out imposing the orthogonality constraint. Thus if
the trial orbitals are not constrained to be ortho-
gonal, T[n ~, n~] will be the lowest-lying extremum
of Z,f,(P, ~--,-c'

~ g, ) such that no orbital is
more than singly occupied, and this extremum is
not necessarily a minimum. (It might, for ex-
ample, be a saddle point. ) The extremizing or-
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bitals, being solutions of Eq. (17), are of course
orthogonal.

These observations become more than academic
in the Hartree-type theory of Sec. IIB, when Eq.
(14}no longer applies and the extremizing orbitals
are no longer orthogonal. In this case, "minimi-
zation over the orbitals" really means extremiza-
tion. However, "minimization over the spin den-
sities" retains its unqualified meaning.

APPENDIX B: FRACTIONAL OCCUPATION
NUMBERS

XVe need to define the energy functional for frac-
tional occupation for two distinct but related rea-
sons: (1) According to Eq. (54), the relaxed energy
difference upon removing an electron from orbital
no is the integral of the orbital eigenvalue e,(f,)
over the interval 0(f,& 1. From this point of
view, the most natural continuation of F.„, is one
which satisfies Eq. (29}, since in that case the
eigenvalue of an isolated orbital over the range
0 (f,( 1 will be the total energy at full occu-
pancy (f,=1}. Then for many-electron systems
the whole dependence of &, on f, will come from
physical relaxation effects. (2) There may be
systems in which the energy minimizes with frac-
tional occupation numbers at the Fermi level, so
here the continuation of E„,must be a physical one.

Fractional occupation numbers arise whenever
an electron hops between degenerate orbitals.
Let us consider a model system composed of N
protons equally spaced around a ring, and one
electron. The solution of the Kohn-Sham equations
is a molecular orbital in which the electron is
shared equally by all the protons. As the proton
separation goes to infinity, one can also define
1s hydrogenic orbitals on each proton which are
arbitrarily close to being solutions of the Kohn-
Sham equations; these orbitals have fractional
occupation 1/N. (The electron stays a long time
on one proton before hopping to another. } The
energy must be the same as it was for an isolated
hydrogen atom, which it will be if Eq. (29) is satis-
fied for fractional occupation.

As a second example, consider two protons and
two electrons. For small interproton separations,
the Kohn-Sham solution of lowest energy will put
both electrons, with opposite spins, into the same
molecular orbital. As the separation increases,
a point may be reached where a spin-split solu-
tion, with the spin-up electron on proton 1 and the
spin-down electron on proton 2, has the lower
energy. '" This situation is degenerate with one
in which the spin-down electron is on proton 1
and the spin-up on proton 2. The physical situation
is that the spin on each proton flips up and down,

and this can be described by giving half-occupancy
to the spin-up and spin-down orbitals on each
proton. This situation is not properly described
by our scheme of self-interaction correction,
which properly eliminates the interaction of each
orbital with itself but improperly retains an inter-
action between the two fractionally occupied or-
bitals on the same proton.

APPENDIX C PARAMETRIZED CORREL-ATION
ENERGIES

Here we describe the parametrization we used
for e,(nt, n&}, the correlation energy per electron
of a homogeneous electron gas, and explain why
we believe it is preferable to other parametriza-
tions.

Ceperley" has calculated the energy of a uni-
form electron gas over a wide range of densities.
He used Monte Carlo techniques to sample a cor-
related wave function for electrons in a finite
volume subject to periodic boundary conditions,
and extrapolated the energy per electron to infi-
nite volume. Let us define

n =(4mr', /8) ',
g =(n, —n, )/n.

(Cl}

(C2)

&,'=r;/(1+ p'«, +p.'r,), (C8)

where i = U (unpolarized, ) =0) or P (polarized,
l' =1). The corresponding correlation potential is

p
f — ]

, (1+~P,'«, + ,' P,'r.)—
c (] + p1~r + plr }

(C4)

For atomic calculations we also need &, at high
densities (r, (1) and arbitrary polarizations
0 ( g & 1. The leading behavior of the high-density
expansion is

&,'=A. , le, +B,.+C,.x, lnx, + D,.x, ,

and the corresponding correlation potential is

p, ,'=A, lnr, +(B,—-', 2,.)+ ', C,r, lnr, -
+ ', (2D,. —C,.)r, .-

(C5)

(C6}

The constants A~ and BU are known from the cal-
culation of Gell-Mann and Brueckner, "'

4 =0.0311, B =-0.048 (C7)

(atomic units). To find A~ and B~, note that in
the high-density l.imit

~ i —~ i, RPA + ~ g2
C C c (C8)

Then Ceperley's parametrization of the correlation
energy for z, )1 is
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where &,' ~" is the correlation energy in the ran-
dom- phase approximation and

&~ = 0.023

TABLE XIII. Correlation energy per electron of the

unpolarized and polarized uniform electron gas. CA:

parametrized Ceperley-Alder, HPA: numerical random-

phase approximation. r~ in eV.

is the second- order exchange constant (indepen-
dent of spin potarization). Using Misawa's'"
RPA scaling relation

Unpolarized
CA HI A

Polarized
CA It PA

4. P, RPA( r) —~ e Ui RPA(r /24/3)

me find

(C10)

e,(r„f)= e (r)+f(t)[~ (r,) —e,'(r,)],
)I.'(r, &)

= u.'( )r+f(K) [I1.'(r, ) —)1.'(r,)]
(C12)

(C13)

+ [a P(r,) —«,U(r, )] [sgn(o) —1]—,

Z =0.01555, a =-0.0269.

We used Elis. (C3) and (C4) for r,)1, and Elis.
(C5) and (C6) for r, &1. The coefficients C, and

D,. were chosen to match &,'and p,,' at r, =l, and
'till'lied oil't 'to tie 1'atilel' smaU. [Tills ls all llltel'-
polation procedure and not a precise determina-
tion of the 0(r) terms in the high-density expan-
sion. ]

For intermediate spin polarizations 0 & g & 1,
me used a standard interpolation formula, first
proposed by von Barth and Hedin, a in which the
correlation energy has the same polarization de-
pendence as the exchange energy:

0.01
0.1
0.5
1
2
3

5
6

10
20
50

100

-5.21
-3.30
-2.07
-1.62
-1.23
-1.01
-0.87
-0.77
—,0.69
-0.51
-0.31
-0.16
-0.09

-5.82
-3.89
-2.65
—2.14
—1.68
-1.44
-1.27
—1,16
-1.06
-0.84
—0.58
-0.35
-0.23

-2.68
1+ 72

-1.10
-0.86
-0.66
-0.55
-0.47
-0.42
-0.38
-0.29
-0.19
-0.10
-0.06

—3,32
-2.34
-1.68
-1.41
-1.15
-1.01
-0.91
-0.84
-0.79
-0.64
-0.47
-0.29
-0.20

were performed only for x, ~ 10, we adjusted his
parameters to give a better match to the high-
density limit. This adjustment successfully pre-
dicted the results of the more recent calculation
of Ceperley and Alder" for y, & 1.

Ceperley and Alder4' have made a stochastic
sampling of an exact solution of the Schrodinger
equation for the electron gas. Table XII also
gives the parameters me have determined by a

where

(C15)

0.05
) I

NIQ tlf

—0.8

A more realistic interpolation formula, based on

the g dependence of the HPA correlation energy,
has recently been given by Vosko, %ilk, and Nu-
Sair 117

The parameters we used are given in Table
XII. For the unpolarized electron gas, where
Ceperley's4' calculations mere performed for all
y, ~ 1, me used Ceperley's original parameters,
but for the polarized gas, where his calculations

0

0.0a

o.oi—
QI-
O

~ ~
4~ tg

- —OP

TABLE XII. Parameters used to fit the r~ dependence
of the correlation energy in an unpolarized (U} and

polarized (P) uniform electron gas. Values of A and B
are given in Eqs. (C7) and (Cll). Parameters in a.u.

/Gunnaraaon- Lundqvist

/ l ) I

0 2
DENSITY PARAMETER Is

Parameter

-0.1423
1.0529
0.3334
0.0020

-0.0116

-0.0843
1.3981
0.2611
0.0007

-0.0048

Ceperley-AMer
U P

-0.1471
1.1581
0.3446
0.0014

-0.0108

-0.0790
1.2520
0.2567
0.0001

-0.0046

Ceperley
U P

FIG. 13. Correction to the RPA correlation energy
of the unpolarized electron gas as a function of r~. The
parametrized correlation energies considered are those
of Ceperley and Alder (Bef. 42, solid curve), Moruzzi,
Janak, and Williams (Bef.12, dashedcurve), Gunnarsson
and Lundqvist (Bef. 40, dash-dotted curve), and signer
(Bef. 118, dotted curve). Ceperley values (Bef. 41, open
circles) are shown for comparison. The arrow shows
the exact high-density limit of the correction.
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0.05 —0.8

a

K

0.02
CL ~
uJ

O
0.0I—

ir
O

hl

K
O
O

0

Moruzzi et al.

o.e &

—0.2

Gunnarsson-
Lundqvist

I

4

DENSITY PARAMETER I's
FIG. 14. Same as Fig. 13, but for the polarized

electron gas.

careful fit to their numbers. For the densities
they considered (v, =l, 2, 5, 10, 20, 50, 100), our
parametrization never deviates from their results
by more than 0.0001 a.u. In Table XIII we compare
the parametrized Ceperley-Alder correlation ener-
gies with numerical RPA correlation energies. "'
The difference between the Ceperley-Alder values
and Ceperley values we used in our calculations
can be gleaned from Figs. 13 and 14; although the
difference is very small, the Ceperley-Alder

values should be preferred in future work. Vosko,
Wilk, and Nusair"' have independently parame-
trized the Ceperley-Alder results in a different
way, but for the r, values shown in Table XIII
their numbers never deviate from ours by more
than 1.3/p relatively or by more than 0.0013 a.u.
absolutely.

One way to assess the accuracy of the correla-
tion energy is to plot &,' —&," "vs x„as sug-
gested by Vosko, %ilk, and Nusair. "' As ~ -0,
this difference correctly approaches the second-
order exchange constant (C9) in our parametriza-
tions, but not in some other parametrizations
that have often been used in density-functional
calculations. In Figs. 13 and 14, we compare the
high-density behavior of our parametrization of
Ceperley-Alder correlation with the parametriza-
tions of signer, "' Gunnarsson and Lundqvist, '
and Moruzzi, Janak, and Williams. '2 [The latter
employs the Hedin- Lundqvist" parametrization
of the Singwi et gl. calculation" for the unpolar-
ized gas, and then uses the RPA scaling relation
(C10) to estimate &, for the polarized gas. ]

Recently Zabolitzky'" has obtained a numerical
upper bound on the correlation energy of the in-
finite uniform electron gas; his results for 1&x,
&20 are greater than the Ceperley-Alder" values
by about 5/a for the unpolarized gas, and about 15%
for the polarized gas. Thus his results are con-
sistent with the Ceperley-Alder results, and
closer to them than to most other calculated cor-
relation energies.

E. Fermi and E. Amaldi, Accad. Ital. Rome 6, 119
(1934).

J. C. Slater and J. H. Wood, Int. J. Quantum Chem.
4, 3 (1971).

N. W. Ashcroft and N. D. Mermin, Solid State Physics
(Holt, Rinehart and Winston, New York, 1976).

A. B. Kunz, Phys. Rev. B 12, 5890 (1975).
J. C. Slater, The Self-Consistent Field for Molecules
and Solids (McGraw-Hill, New York, 1974).
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864
(1964).

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
Also A. K. Rajagopal and J. Callaway, Phys. Bev. B 7,
1912 (1973).

O. Gunnarsson, B. I. Lundqvist, and J. W. Wilkins,
Phys. Rev. B 10, 1319 (1974).
O. Gunnarsson, J. Harris, and R. O. Jones, J. Chem.
Phys. 67, 3970 (1977).
B. I. Dunlap, J. W. Connolly, and J. R. Sabin, J.
Chem. Phys. 71, 4993 (1979).
V. L. Moruzzi, J. F. Janak, and A. B. Williams,
Calculated Electronic ProPerties of Metals {Perga-
mon, New York, 1978).

O. Gunnarsson, J. Phys. F 6, 587 (1976); J. Callaway,
D. Laurent, and C. S. Wang, in Transition Metals,
edited by M. J. G. Lee, J. M. Perg, and E. Fawcett
(The Institute of Physics, London, 1977), p. 41.
S. H. Vosko, J. P. Perdew, and A. H. MacDonald,
Phys. Rev. Lett. 35, 1725 (1975).
A. Zunger and A. J. Freeman, Phys. Rev. B 15, 47
(1977); 15, 5049 (1977); 17, 2030 (1978); Int. J.
Quantum Chem. S11, 539 (1977); Bef. 31.
N. D. Lang, Solid State Phys. 28, 225 (1973).
R. Monnier and J. P. Perdew, Phys. Bev. B 17, 2595
(1978); B. Monnier, J. P. Perdew, D. C. Langreth,
and J. W. Wilkins, Phys. Rev. B 18,' 656 (1978); J. P.
Perdew and B. Monnier, J. Phys. F 10, L287 (1980).
J. A. Appelbaum and D. R. Hamann, Rev. Mod. Phys.
48, 3 (1976).

iSG. P. Kerker, K. M. Ho, and M. L. Cohen, Phys. Rev.
Lett. 40, 1593 (1978).
A. Zunger, Phys. Bev. B 22, 959 (1980).

21D. C. Langreth and J. P. Perdew, Solid State Commun.
17, 1425 (1975); Phys. Rev. B 15, 2884 (1977).

2rD. C. Langreth and J. P. Perdew, Solid State Commun.
31, 567 (1979); Phys. Rev. B 21, 5469 (1980).
B. Y. Tong and L. J. Sham, Phys. Rev. 144, 1 {1966).



J. P. PKRDK% AND ALEX XUNGKR

D. J. W. Geldart and M. Rasolt, Phys. Rev. 8 13, 1477
(1976).
K. Schwax'z, Chem. Phys. Ldtt. 57, 605-(1978).
H. B.Shore, J. H. Rose, and E. Zaremba, Phys. Rev.
8 15, 2858 (1evv).
U. Rossler» in Rare gas 8g/ids, . edited by M. L. Klein
and J. A. Venables (Academic, New York, 1976), p.
505.
K. Hamx'in, G. Johansson, U. Gelius, C. Nordling,
and K. Siegbahn, Phys. Scr. 1, 277 {1970).
S. B. Trickey and J. P. Worth, Int. J. Quantum Chem.
s11, 529 (1evv).
M. - Boring, Int. J. Quantum Chem. Ss, 451.(1974).

3 A. Zunger and A. J. Freeman, Phys. Rev. 8 16, 2901

(1977) (and references therein); Phys. Lett. 57A; 453
(1976).
D E. Eastman F. J. Hlmpsel, and J- A. Knapp, Phys
Rev. Lett. 44, 95 (1980).
J. Harris and R. O. Jones, J. Chem. Phys. 68, 3316
(19V8).
A. Zunger, J. P. Perdew, and G. L. Oliver, Solid
State Commun. 34, 933 (1980). In Fig. 1 of this paper,
an error occurred in plotting the LSD splitting between
the spin-up and spin-down potentials; the correct
splitting is 10 times smallex' than the one plotted. We

would like to thank L. Kleinman and K. Mednick for
drawing our attention to this mistake. The exchange
splitting in the SIC scheme for magnetic elements is
discussed in Sec III L in the present paper.
M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).
In Eq. (14) we are pursuing a hint" in the unpublished
first draft of Ref. 35, to the effect that the kinetic
energy can be defined as a functional of the density
in a way that admits fractional occupation numbers.
See also M. Levy, Bull. Am. Phys. Soc. 24 (4), ab-
stract ED6 (1979).
J. F. Janak, Phys. Rev. 8 18, 7165 (1978).

SThe remaining constraints 0 ~f a 1 make Eq. (23)
an inequality. A possible objection to relaxing the
constraints, f, =N is that, although T, U, and s,
were defined for noninteger numbers of electrons,
E~ was defined at Q-'E-U and Q was defined only for
integer numbers of electrons. The answer to this
objection is that any continuation of E~, differentiable
in the range 0 ~f ~ 1, will imply Eq. (23).
R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke,
J. Chem. Phys. 68, 3801 (1978); L. J. Bartolotti, S. R.
Gadre, and R. G. Parr, J. Am. Chem. Soc. 102, 2945
(19so).
O. Gunnarsson and B. I. Lundqvist, Phys. Rev. 8 13,
4274 (1976).
D. M. Ceperley, Phys. Rev. 8 18, 3126 (1978).

42D. M. Ceperley and B.J. Alder, Phys. Rev. I ett. 45,
566 0.98O).
R. S. Gadre, L. J. Bartolotti, and N. C. Handy, J.
Chem. Phys. 72, 1034 (1980).

+For example, F. E. Harris, Int. J.Quantum Chem.
13, 189 (1978).
O. Gunnarsson, M. Jonson, and 8. I. Lundqvist, Phys.
Rev. 8 20, 3136 (1979).

46P. S. Bagus, Phys. Rev. 139, A619 (1965).
4~A. R. Williams, R. A. de Groot, and C. B. Somxners,
J. Chem. Phys. 63, 628 (1975).
L. Hedin and A. Johansson, J. Phys. 8 2, 1336 {1969).
M. Gopinathan, J. Phys. 8 12, 521 (1979); Phys. Rev.

A 15, 2135 (1977).
OM. M. Morrell, R. G. Parr, and M. Levy, J. Chem.
Phys. 62, 54e (19V5).

5 Y. Tal, Phys. Rev. A 18, 1781 (1978); 21, 2186(E)
(198O).

~2A. K. Theophilou, J. Phys. C 12, 5419 (1979).
J. Katriel, J. Phys. C 13, L375 (1980).

+S. M. Valone and J. F. Capitani, Phys. Bev. A 23, 2127
(1981).

5~W. J. Hunt and W. A. Goddard, Chem. Phys. Lett. 3,
414 {1e69).

56J. H. Rose and H. B. Shore, Solid State Commun. 17,
32V (19V5).
C. Edmiston and K. Ruedenberg, J. Chem. Phys. 43,
S97 {1965).

5 We are grateful to Lee Cole for performing this cal-
culation.

~9C. Froese Fischer, The Hartree-I'os Method for
A.toms (Wiley, New York, 1977).

60L. A. Hemstreet, Phys. Rev. 8 11, 2260 (1975).
6 F. Herman, J. P. Van Dyke, and I. B. Ortenburger',

Phys. Rev. Lett. 22, 807 (1969); F. Herman, I. B.
Ortenburger, and J. P. Van Dyke, Int. J. Quantum.
Chem. S3, 827 (1970); I. B. Ortenburger and F. Her-

Computationa/ Methods in Band Theory,
edited by P. M. Marcus, J. F. Janak, and A. R.
W'illiams (Plenum, New York, 1971), p. 469.
A. Veillard and E. Clementi, J. Chem. Phys. 49, 2415
(196S).

638. Y. Tong, Phys. Rev. A 4, 1375 (1971).
@J.P. Perdew, E.B.McMullen, and A. Zunger, Phys.

Bev. A (in press).
6 M. Levy, S. C. Clement, and Y. Tal, in Chemical

Applications of Atomic and Mo/ecu/ar E/ectrostatic
Potentia/s, edited by P. Politzer and D. G. Truhlar
(Plenum, New York, 1981) (in press).

66E. Clementi and C. Roetti, At. Data Nucl. Data Tables
14, 1vv (1ev4).

@L. C. Green, M. M. Mulder, M. N. Lewis, and J. W.
Woll, Phys. Rev. 93, 757 (1954).

6 H. Hotop and W. C. Lineberger, J; Phys. Chem. Ref.
Data 4, 539 (1975).

69S. Jagannathan, Ph. D. thesis, University of Georgia,
Athens, Ga. , 1979 (unpublished).
D. W. Smith, S. Jagannathan, and G. S. Handler, Int.
J. Quantum Chexn. S13, 103 (1979).

~~C. E. Moore, Natl. Bur. Stand. (U. S.) Bef. Data Ser.
34, 1 (1970).

~2M. L. Cohen, M. Schluter, J. R. Chelikowsky, and
S. G. Louie, Phys. Rev. 8 12, 5575 (1975); J. A.
Appelbaum and D. R. Hamann, Phys. Rev. 8 8, 1977
{19V3}.

73(a) A. Zunger and M. A. Rather, Chem. Phys. 30, 423
(1978); (b) A. Zunger and M. L. Cohen, Phys. Rev.
8 20, 4082 (1979); (c) A. Zunger, J. Vac. Sci. Technol.
16, 1337 (1979).
T. M. Wilson, Int. J. Quantum. Chem. S2, 269 (1968);
3, 757 {1970).7a'
A. Zunger and M. L. Cohen, 'Phys. Rev. 8 20, 1189
O.eve).

76A. Zunger and A. J. Freeman, Phys. Rev. 8 17, 4850
O.evs}; 8 1v, 2o3o (19vs).

YT M«t» Meta/-Insulator Transitions (Taylor and
Francis, London, 1974), p. 128.

8W. P. Menzel, C. C. Lin, D. Fouquet, E. E. Lafon,



SELF-INTERACTION CORRECTION TO DENSITY-FUNCTIONAL. . . 5079

and R. C. Chancy, Phys. Rev. Lett. 30, 1313 (1973);
R. C. Chancy, E. E. Lafon, and C. C. Lin, Phys. Rev.
B 4, 2734 (1971);G. E. Laramore and A. C. Sviten-
dick, ibid. 7, 3615 (1973); D. M. Drost and J. L. Fry,
ibid. 5, 684 (1972).
L. Kleinman and K. Mednick, Phys. Rev. B 20, 2487
(1979).
A. Zunger, Phys. Rev. B 21, 4785 (1980); J. Ihm and
M. L. Cohen, Solid State Commun. 29, 711 (1979);
Phys. Hev. B 21, 1527 (1980); J. P. Worth and S. B.
Trickey, ibid. 11, 3658 (1975); A. Zunger and A. J.
Freeman, ibid. 15, 5049 (1977); A. Zunger and M. L
Cohen, ibid. 19, 568 (1979); Ref. 29.
R. T. Pool, J. Liesegang, R. C. C. Leckey, and J. G.
Jenkin, Phys. Rev. B 11, 5190 (1975).
W. Hanke and L. J. Sham, Phys. Rev. Lett. 33, 582
(1974); 43, 387 (1979).
W. Schafer and M. Schrieber, Solid State Commun.
32, 591 (1eve).
M. Bennett and J. C. Inkson, J. Phys. C 10, 987 (1977).
E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);
46, 509 (1934).
A. Zunger (unpublished results).
J. Harris, Int. J. Quantum. Chem. S13, 189 (1979).
C. Kittel, Igtroduction to Solid State Physics, 5th ed.
(Wiley, New York, 1975), p. 74 (from data furnished
by L. Brewer).
J. Harris and R. O. Jones, J. Chem. Phys. 70, 830
(1979).
O. Gunnarsson and R. O. Jones (unpublished).
O. Gunnarsson and R. O. Jones, Phys. Scr. 21, 394
(1980).
I. Lindgren, Int. J. Quantum Chem. 5, 411 (1971).
R. Latter, Phys. Rev. 99, 510 (1955).

4F. Herman and S. Skillman, Atomic Structure Calcu-
latioms (Prentice-Hall, Englewood Cliffs, 1963).
R. D. Cowan, Phys. Rev. 163, 54 (1967).

6D. A. Liberman, Phys. Rev. 171, 1 (1968).
I. Lindgren and A. Rosen, Technical Report GIPR-034,
Institute of Physics, Chalmers Technical University,
Goteborg, Sweden (unpublished).

I. Lindgren and K. Schwarz, Phys. Rev. A 5, 542
(19V2).
L. Szasz, I. Berrios-Pagan, and G. McGinn, Z.
Naturforsch. 309, 1516 (1975).
J. R. Schrieffer, J. Vac. Sci. Technol. 13, 335 (1976).
J. D. Talman and W. F, Shadwick, Phys. Rev. A 14,

36 (19V6).
J. D. Talman, P. S. Ganas, and A. E. S. Green, Int,
J. Quantum Chem. S13, 67 (1979).
B. H. Brandow, Adv. Phys. 26, 651 (1977).
J. A. Alonso and L. A. Girifalco, Phys. Rev. B 17,

3V35 (19V8).
G. W. Bryant and G. D. Mahan, Phys. Rev. B 17, 1744
(1978).
6H. Stoll, C. M. E. Pavlidou, and H. Preuss, Theoret.
Chim. Acta 149, 143 (1978); H. Stoll, E. Golka, and
H. Preuss, ibid. 55, . 29 (1980).
TH. Stoll, private communication.
H. B. Shore, E. Zaremba, J. H. Rose, and L. Sander,

Phys. Rev. B 18, 6506 (1978).
A. Zunger and M. L. Cohen, Phys. Rev. B 18, 5449

(19V8).
A. Zunger, Phys. Rev. B 22, 649 (1980).
J. P. Perdew, Chem. Phys. Lett. 64, 127 (1979).
S. M. Valone, J. Chem. Phys. 73, 1344 (1980).
A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).

~~40. Gunnarsson, P. Johansson, S. Lundqvist, and

B. I. Lundqvist, Int. J. Quantum Chem. S9, 83 (1975).
~~M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106,
364 (1e5v).
S. Misawa, Phys. Rev. 140, A1645 (1965).
S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys.

58, 1200 (1980).
E. P. Wigner, Phys. Rev. 46, 1002 (1934); Trans.

Faraday Soc. 34, 678 (1938).
~ OL. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064

(1ev1).
K. S. Singwi, A. Sjolander, M. P. Tosi, and R. H.

Land, Phys. Rev. B 1, 1044 (1970).
~2~J. G. Zabolitzky (unpublished).


