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Finding the most stable structure of a solid is one of the central problems in condensed matter physics. This
entails finding both the lattice type �e.g., fcc, bcc, and orthorhombic� and �for compounds� the decoration of the
lattice sites by atoms of types A, B, etc. �“configuration”�. Most approaches to this problem either assumed that
both lattice type and configuration are known, optimizing instead the cell volume and performing local relax-
ation. Other approaches assumed that the lattice type is known, searching for the minimum-energy decoration.
We present here an approach to the global space-group optimization �GSGO� problem, i.e., the problem of
predicting both the lattice structure and the atomic configuration of a crystalline solid. This search method is
based on an evolutionary algorithm within which a population of crystal structures is evolved through mating
and mutation operations, improving the population by substituting the highest total-energy structures with new
ones. The crystal structures are not represented by bit strings as in conventional genetic algorithms. Instead, the
evolutionary search is performed directly on the atomic positions and the unit-cell vectors after a similarity
transformation is applied to bring structures of different unit-cell shapes to a common basis. Following this
transformation, we can define a crossover operation that treats, on the same footing, structures with different
unit-cell shapes. Once a new structure has been generated by mating or mutation, it is fully relaxed to the
closest local total-energy minimum. We applied our procedure for the GSGO in the context of pseudopotential
total-energy calculations to the semiconductor systems Si, SiC, and GaAs and to the metallic alloy AuPd with
composition Au8Pd4. Starting from random unit-cell vectors and random atomic positions, the present search
procedure found for all semiconductor systems studied the correct lattice structure and configuration. In the
case of Au8Pd4, the search retrieved the correct underlying fcc lattice, but energetically closely spaced
��2 meV/at.� alloy configurations were not resolved. This approach to GSGO opens the way to predicting
unsuspected structures by direct optimization using, in the cases noted above, an order of 100 total-energy ab
initio calculations.
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I. INTRODUCTION

A central feature of the solid-state physics of crystalline
solids is the existence of a very rich diversity of stable crys-
tal forms,1,2 distinguished by their lattice type �e.g., fcc, bcc,
hcp, and monoclinic� and by the pattern of occupation of the
lattice sites by atom types �“configuration” or “decoration”�.
Indeed, a central theme in theoretical physics of crystalline
solids is the quest for prediction of the stable crystal struc-
tures of a given A-B �or more complex� periodic solid.3–7

While early attempts were based on correlating observed
structures with elemental scales such as electronegativity,4

orbital radii,5,6 or electron-atom ratio,7 modern attempts are
all based on optimizing the quantum-mechanical total energy
of a solid as a function of its structural degrees of freedom.
One can recognize three basic types of searches for stable
crystal forms distinguished by the level of restriction im-
posed on the structural degrees of freedom being optimized.

Type-I optimization involves cases where both the lattice
type and the configuration �decoration of sites by A- or
B-type atoms� are assumed at the outset. This includes opti-
mization of the unit-cell volume in known structures,8–10 op-
timization of cell-external degrees of freedom �e.g., c /a te-
tragonal ratio�, and symmetry-undetermined cell-internal
atomic relaxations in solids of known structure types.10,11

The optimization methods used for such type-I problems are
continuous position-space optimization such as gradient-

guided searches12 and conventional13 and Car-Parrinello14

molecular dynamics. These methods have a good local vision
but are not concerned with global optimization. Essentially,
one looks for the nearest local minimum of a more or less
known structural topology. More complex examples of type-I
optimization include relaxation of surface structures for
given semiconductor topologies15 and local relaxation
around a point defect in semiconductors.16 A solution to
type-I optimization problems has led to the establishment of
the equation of state of numerous materials in known
structures8,10,11 as well as to the discovery of surface recon-
struction patterns of given semiconductor surface
topologies15 or to the local geometry of the leading defect
structures in semiconductors.16

Type-II optimization involves cases where the lattice type
is given, but its specific decoration by A, B, etc., atoms �con-
figuration� is unknown. A classic example is finding the
ground states among 2N candidate configurations created oc-
cupying the N lattice sites of a fixed underlying Bravais lat-
tice by either A-type or B-type atoms.17 Here, the optimiza-
tion methods of choice are not continuous positional space
techniques such as needed in type-I problems, but rather dis-
crete methods, including exhaustive enumeration,18 linear
programing,19 and discrete sampling.20 Molecular dynamics
is not the method of choice here because of its lack of global
vision, the slowness of swapping a large number of atoms in
a concerted fashion, and the difficulty of overcoming a large
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number of local activation barriers. Solution to type-II opti-
mization problems has led to the discovery of many previ-
ously unknown ground-state configurations in fcc-based21

and bcc-based22,23 alloys via search of lowest-energy cluster
expansion �Ising type� Hamiltonians.24

Type-III optimization problems involve cases where nei-
ther the underlying lattice type nor the atomic configurations
are known. Examples involve cases where the presumed
lattice-type �e.g., fcc� changes to another fundamental type.
For example, whereas solid Cu and Pd are fcc in their el-
emental form, their 50-50 compound has a bcc symmetry.1

Another class of examples is represented by structures which
exhibit dynamic �i.e., phonon� instabilities that carry the
system into a new lattice type and configurational
arrangement.25 This includes the instabilities of the initially
NaCl-type,25 CsCl-type,26 or beta-Sn-type25 binary semicon-
ductors, which transform spontaneously under pressure into
different lattice types. In this type of optimization problems,
one has a set of lattice vectors �a1 ,a2 ,a3� and a set of N
atomic position vectors �ri�, where i=1, . . . ,N, and these are
altered simultaneously, starting from a random arrangement,
in search of a minimum of the total energy. It is this type of
global space-group optimization �GSGO� problems that we
discuss in the present paper.

Variable cell molecular dynamics27,28 is not usually ad-
equate to address the global optimization problem in solids
due to the existence of substantial energy barriers and the
slow rate of transition between different configurations. In
the recently introduced metadynamics approach,29 local
potential-energy wells are subjected to gradual deformation
that makes them shallower, thus allowing the simulation of
structural transformations which are characterized by high-
energy barriers.

The difficult part in any type-III optimization methods is
to identify the lowest-energy structure out of a dense mani-
fold of structures that have similarly low energies and are
separated by significant activation barriers and complicated
paths in configuration space. Different material types differ
in the identity of the low-energy structural excitations. In
general, in covalently bonded systems, different configura-
tions �e.g., anions bonded by anions vs anions bonded by
cations� have rather different energies �since violations of the
octet rule are associated with large energy penalties�, but
different lattice types �e.g., wurtzite vs zinc blende� often
represent low excitation energies.4–6 Thus, in covalent sys-
tems, the challenging problem �resolving low excitations� is
often finding the equilibrium lattice type. In contrast, in
many metal alloy systems, the configurational energy associ-
ated with swapping A and B atoms is rather small,21,23,30 but
different lattice types �e.g., fcc-type L10 vs bcc-type B2� rep-
resent higher excitation energies. Thus, in metallic alloys, the
challenging optimization problem is often finding the equi-
librium atomic configuration.

In this paper, we discuss an approach to tackle type-III
�i.e., GSGO� problems. This method is based on an evolu-
tionary algorithm,31 following earlier works of Deaven and
Ho,32 Abrahams and Probert,33 Oganov et al.,34 and Oganov
and Glass.35 Evolutionary algorithms have a global vision of
the search space and are less prone to get trapped in local
minima. We have applied this search algorithm to semicon-

ductor materials and to metallic alloys, starting in all cases
with a random set of lattice vectors and a random set of
atomic positions. Using less than 100 ab initio total-energy
calculations, we recover for semiconductors Si, GaAs, and
SiC the correct structures �both lattice types and configura-
tion, where applicable�. For AuPd, we correctly identify
the lattice type, but energetically closely spaced
��2 meV/atom� configurations are not resolved during �10
simulation steps.

II. GENERAL METHODOLOGY: THE APPROACH
TO GLOBAL SPACE-GROUP OPTIMIZATION

Here, we describe the main ideas of the method for
searching the structure of lowest energy of a solid, including
finding both the lattice type and the decoration of its sites by
different atom types. Several of the methods used previously
for solving the GSGO problem explore the configuration
space of the solid by sampling one equilibrium structure at
the time and hopping from one structure to an adjacent struc-
ture. This class of methods includes, e.g., simulated
annealing,36 basin hopping,37,38 and minima hopping.39 The
method at hand searches, instead, for the global minimum of
the potential-energy surface of a solid using an evolutionary
algorithm that simultaneously explores several parts of con-
figuration space. This procedure is inspired by evolutionary
algorithms based on the principle of the survival of the
fittest.31 One defines a set �“population”� of crystal structures
�“individuals”�, each representing a possible realization of a
lattice configuration. For each such individual in the popula-
tion, one defines its fitness score as the total energy of that
lattice configuration. The population is allowed to evolve by
replacing a given number of the highest-energy lattice con-
figurations by new ones, generated from those present in the
population by the operations of “mating” and “mutation.”
New “generations” of the population are created iteratively
until some stopping criterion is met �e.g., the allocated num-
ber of generations is exhausted�. Replacing the highest-
energy structures in the population with new ones aims at
sampling new parts of the configuration space associated
with local minima whose energy may be lower than that of
the local minima previously found. The problems in using
such standard genetic algorithm approaches for type-III
structural optimization are threefold.

First, if each structure is described as a bit-string repre-
sentation, then there is no simple way to mate structures
whose unit cells have different shapes. This pertains to mat-
ing different cell shapes belonging to the same Bravais lat-
tice �as in type-II problems� or to mating different Bravais
lattices, or lattices with different Wyckoff positions or lat-
tices with different space groups �as in type-III problems�.
Instead of attempting to encode the atomic structure into a
bit string of 1’s and 0’s, we represent here each structure
using directly its atomic positions and unit-cell vectors. To
enable the crossover of structures that have different cell
shapes, we subject them to a transformation,33 which brings
different shapes to a common basis �see Sec. III A�.

Second, in a bit-string-based genetic algorithm, it may
happen that the mating operation does not allow certain
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structural motifs present in the parents to propagate to the
children. To favor the propagation of such local structural
motifs to the offspring, we mate two crystal structures using
a cut-and-splice procedure which generates a child structure
by matching real-space segments of two parent lattice con-
figurations �see Sec. III B�. For mutation, given a structure,
we generate a new one altering randomly the atomic posi-
tions and/or the cell vectors �see Sec. III C�. In multispecies
systems, we also explore the configuration that corresponds
to a given lattice structure by atom swaps �see Sec. III D�.

Third, candidate structures obtained by mating and muta-
tion may represent chemically unreasonable configurations
�e.g., pathologically short bond lengths�. Progressing with
genetic algorithm �GA� evaluation on such structures may
thus take very long to converge. To accelerate convergence,
two operations are performed: �i� we screen the offspring,
rejecting the newly generated structures that have unphysi-
cally short atomic distances or unit cells with cell vectors
that are too short or cell angles that are too small �see Sec.
III E�; �ii� we perform total-energy structural relaxation on
the mated and/or mutated lattice configurations to obtain the
closest local equilibrium structure �see Sec. III F�.

III. THE METHOD IN MORE DETAIL

A population of Npop crystal structures is defined, where
each structure S= �a1 ,a2 ,a3 �r1 , . . . ,rN� contains in the unit
cell N atoms of Ntype atomic types, and is specified by the
triad of lattice vectors �a1 ,a2 ,a3� and by the atomic positions
�ri�, where i=1, . . . ,N. The population evolves through a se-
ries of generations, each one consisting in replacing the Nrep
highest-energy structures with new ones produced by mating
or mutation through the following steps.

A. Creating common shapes: Similarity transformation

As a preliminary step to both the mating and the mutation
operations, the atomic positions ri are transformed to the
fractional coordinates33 si defined by the relation ri=Asi,
where A= �a1 ,a2 ,a3� is the 3�3 matrix of the lattice vectors.
If B is the matrix defined by

B = �b1,b2,b3� = A−1, �1�

then the relation

si = Bri �2�

holds between the fractional coordinates si and ri. Such a
transformation maps the original cell shape onto a cubic cell
whose cell vectors have unitary length, whereas the reduced
coordinates �si

�1� ,si
�2� ,si

�3�� are between 0 and 1. The represen-
tation of the crystal structures in terms of fractional coordi-
nates makes it easier to formulate a procedure for mating
�see Ref. 33� two structures �“parents”� that have different
cell shapes and generating a new �“child”� structure.

B. Real-space mating: Cut-and-splice crossover

Let us consider the two parent geometries S1
�p� and S2

�p�

chosen randomly among the structures in the population: the

child structure S �c� is created using a procedure based on the
idea of cut and splice of Deaven and Ho,32 adapted to peri-
odic systems by Abraham and Probert in Ref. 33, by Oganov
et al. in Ref. 34, and by Oganov and Glass in Ref. 35. After
the similarity transformation of Eq. �2� has been performed,
two cuts are defined in the unit cells of S1

�p� and S2
�p� �see Fig.

1�. These cuts are parallel to each other and perpendicular to
one of the lattice vectors of the cell. As a result, the unit cells
of both parent structures are divided into two slabs. The new
structures are produced swapping the slabs defined in the
supercell of the two parents, as shown in Fig. 1. One of the
newly produced sets of atomic positions �given in fractional
coordinates� is then chosen as child structure. The last step of
the crossover assigns to the child the triad of cell vectors. We
assign to the new structure a triad of cell vectors �ai� defined
as a linear combination of the lattice vectors of the parents
with a weight factor that is chosen randomly between 0
and 1.

C. Mutation

The mutation operation consists in subjecting the atomic
positions to a random change of maximal amplitude �mut. To
mutate the cell-vector matrix A= �a1 ,a2 ,a3�, we use the
transformation defined by a symmetric matrix35 �, whose
elements are chosen randomly between −1 and 1. The matrix
A� of the transformed unit-cell vectors is then obtained by
the relation

A� = �1 + ��A , �3�

where 1 is the unit matrix. In a multispecies system, the
mutation of the cell-internal and the cell-external degrees of
freedom is followed by a mutation of the configuration �see
Sec. III D�.

D. Exploring the configuration space by atom swaps

To explore the set of configurations in a multispecies sys-
tem, one needs to scan a range of different occupations �e.g.,
by A or B� of the lattice sites. This implies searching all

FIG. 1. �Color online� Generation of the “child” structures by
the cut-and-splice procedure applied to two “parent” structures �see
Sec. III B�. The similarity transformation is performed before the
cut-and-splice operation.
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decorations of the sites. If the numbers of sites per cell is
small, one could enumerate all configurations and evaluate
the fitness for each of them. If the number of sites is large,
we start from the configuration that a newly generated indi-
vidual inherits by mutation or mating and perform on it a
series of atom swaps, i.e., a series of permutations of the
position of pairs of unlike atoms, to produce a new configu-
ration. Usually, in the calculations that are presented in the
following, we performed up to ten atom swaps per newly
generated structure.

E. Screening of the offspring

A structure produced by crossover or mutation is rejected
whenever it contains the wrong number of atoms or does not
have the composition that is considered for that compound.
Moreover, it might also happen that the structures that result
from the crossover or the mutation contain atoms that are too
close to each other or have the unit cell with angles that are
too small or cell vectors that are too short. Therefore, a
newly generated structure is included in the population only
if �i� the nearest-neighbor atomic distances are longer than a
minimum distance dmin that is about 80% of the typical bond-
ing length in the system, �ii� the cell angles are between 45°
and 135°, and �iii� the cell-vector lengths are not shorter than
the typical bonding distance. Whenever a structure generated
by crossover or mutation does not meet these geometrical
requirements, the crossover or the mutation is repeated until
a valid configuration is obtained.

F. Refinement

After the child structure is accepted in the population, its
cell shape and the atomic positions are relaxed to the nearest
total-energy local minimum and the equilibrium total-energy
is assigned to it as fitness score. In the present work, the total
energy is represented by the pseudopotential plane-wave ap-
proach to the local-density approximation40 with computa-
tional parameters described in the Appendix. To fully relax
the new structure, we employ a conjugate-gradient algorithm
that uses the gradients with respect to the atomic positions
�i.e., atomic forces40� and the gradients with respect to the
cell vectors �i.e., components of the stress tensor41�. This
relaxation32 performed on each individual in the population
makes the present optimization procedure more efficient in
surveying the search space than algorithms based only on the
generation of new structures by mating and mutation alone.
Indeed, after relaxation, an individual is associated with an
entire zone of the configurational space for which it repre-
sents the local equilibrium structure rather than just one par-
ticular realization of the system. The replacement of a sig-
nificant number of the highest-energy structures in the
population by new ones allows the evolutionary search to
explore at each generation new parts of the configurational
space in a parallel fashion. This is an important aspect of the
search algorithm that avoids trapping in local minima of the
total energy. Moreover, the fact that the search proceeds by
the generation of new structures from locally optimized ones
allows the ordered motifs that might have appeared in some
individuals to propagate to the new generation.

IV. SIZE OF THE SEARCH SPACE

To estimate the number of realizations of the crystal struc-
ture included in the search space of a monoatomic system or
of a binary alloy, we follow the simple argument proposed in
Ref. 35. Let us define within the supercell a regular mesh of
points with resolution � and make the simplifying assump-
tion that the atomic positions allowed are the points of the
mesh. If V is the volume of the supercell, the number M of
points of the mesh is equal to V

� 3 . Reasonably, one can take �
equal to the typical value of the bond distance in the material
under study. As a result, the number Q of crystal structures of
a monoatomic system is

Q = 	M

N

 . �4�

Now, let us consider a binary system AnBN−n: in such a case,
yet under the assumption of discrete positions, one has to
count for each realization of the crystal lattice of N sites all
the possible ways to decorate it with n atoms of type A and
N−n atoms of type B, i.e., all the allowed configurations
corresponding to the given atomic positions. Therefore, one
has

Q = 	M

N

	N

n

 . �5�

As an example, we can consider the A5B5 system represented
by a cubic supercell having edges 10 Å long and define in
such a cell a regular grid of resolution �=1.0 Å. Under these
assumptions the number Q of possible configurations is 6.6
�1025. In Sec. V, we estimate, following the simple argu-
ment given above, the size of the search space for each sys-
tem for which a GSGO has been performed.

V. RESULTS OF THE GSGO

In the GSGO searches described in this section, we used
the total-energy pseudopotential method as implemented in
the VASP �Refs. 42 and 43� code to fully relax the unit-cell
vectors and the atomic positions of all the structures that
were generated �with parameters given in the Appendix for
all systems studied�.

A. Silicon

The first material for which we perform a GSGO search is
silicon, which represents a nontrivial case for its tendency to
form amorphous structures. Upon amorphization, three- and
fivefold coordinated atoms appear in the GSGO simulation,
while the fourfold coordinated atoms are at the center of
distorted tetrahedra that form a disordered array. One can
distinguish structural excitations at two different energy
scales: high-formation-energy structures containing three- or
fivefold coordinated Si atoms or low-formation-energy struc-
tures exhibiting distorted tetrahedra centered around fourfold
coordinated Si atoms. Therefore, dealing with silicon, the
difficult task is retrieving the ordered array of tetrahedrally
coordinated atoms. In our GSGO search, we used eight at-
oms per supercell and performed a full relaxation of each
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structure produced. Following Sec. IV, taking the volume V
=160 Å3 and grid resolution �=2.0 Å, we estimate that the
number of possible configurations in the search space is Q
=1.3�105. In Fig. 2�a�, we show the history plot of the
evolutionary algorithm search. The diamond structure was
correctly found as the lowest-energy structure in about 15
generations, i.e., by performing the ab initio structural relax-
ation of about 60 structures. Along with diamond �see Fig.
2�b��, the GSGO search found the lonsdaleite structure �see
Fig. 2�c�� as a local minimum with an energy that is about
10 meV/at. higher than that of diamond.

B. SiC

SiC is a binary semiconductor system which is stable to-
ward decomposition in its elemental constituents: this is
mostly due to the larger stability of the Si–C bond with re-
spect to the Si–Si and the C–C bonds.44 The history plot of
the GSGO run is shown in Fig. 3�a�. In this case, we in-
cluded eight atoms in the search and took Npop=12 with
Nrep=4 structures replaced at each generation. Concerning
the size of the search space, taking the unit-cell volume V

=80 Å3 and grid resolution �=1.5 Å one obtains that the
number of possible configuration in the search space is Q
=5.1�107. The GSGO search finds the observed ground-
state structure, which is zinc blende �see Fig. 3�b��, perform-
ing about 20 ab initio structural relaxations.

C. GaAs

GaAs represents a system where the structural excitations
of largest energy are the antisite defects, which are atoms
that violate the octet rule binding atoms of the same valence.
Therefore, as for SiC, a procedure for surveying the lattice
decoration during the search is required to find defect-free
structures. Figure 4�a� shows the result of the GSGO search.
We considered eight atoms per supercell and fully optimized
the atomic positions and the cell vectors of every structure
generated during the search. To estimate the size of the
search space, we take the unit-cell volume V=180 Å3 and
the grid resolution �=2.0 Å and find that the number of
structures in the search space is Q=3.4�107. A population
of Npop=12 individuals has been set, and the Nrep=3 highest-

FIG. 2. �Color online� �a� History of the GSGO performed on
bulk silicon, with eight atoms per supercell; �b� final structure of the
GSGO search: diamond is obtained as the lowest-energy crystal
structure; �c� lonsdaleite which represents the first “excited” struc-
ture found by GSGO.

FIG. 3. �Color online� �a� History of the GSGO search per-
formed on bulk SiC, with eight atoms per supercell; �b� final struc-
ture of the GSGO search: zinc blende is obtained as the lowest-
energy crystal structure.
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energy structures have been replaced at each generation. The
GSGO search correctly retrieved the zinc-blende structure as
the lowest-energy one in less than 20 generations, i.e., about
70 ab initio structural relaxations.

D. AuPd

In metallic alloys, the difficult task is to identify the stable
lattice decoration as there is usually a small energy differ-
ence between different atomic configurations.22,23 For this
reason, metal alloys were traditionally treated by cluster ex-
pansion methods21–24 that, while restricting the consideration
to one lattice type at the time �i.e., type-II problems�, retain a
high numerical accuracy ��5 meV/at.� over a large range of
different configurations. As an example of application of the
algorithm for the GSGO to this type of systems, we chose
the AuPd alloy. This alloy has been recently studied by a
cluster expansion �CE� approach,45 which has led to the dis-
covery of several unanticipated ground-state structures. In
particular, this CE predicted fcc-based ground states at com-
position Au8Pd4, whereas a recent data-mining study46 had
predicted a non-fcc ground state �the C37 structure�. Bara-
bash et al.45 studied the structures predicted by the two ap-
proaches and found �using similarly refined convergence cri-

teria� that the one found by CE has lower energy than that
suggested through data mining. To see whether the current
generation of the algorithm for the GSGO can resolve such
subtle differences, we performed a study of Au8Pd4. Figure
5�a� displays the history plot of the GSGO search, and Fig.
5�b� shows the lowest-energy structure that was identified
after 8 GA steps: the fcc lattice was correctly identified start-
ing from random lattice vectors. However, the structure
found has an energy of 2 meV/at. higher than the energy of
the structure predicted by CE with different atomic decora-
tions. This reflects the difficulty in resolving the closely
spaced energies of the � 12

4
�=495 configurations of Au8Pd4.

VI. CONCLUSIONS

We have described an approach to the GSGO problem of
crystal structure prediction. The approach to the GSGO prob-
lem searches the space of the lattice geometry and atomic
configuration of a solid looking for its ground-state structure.
This search procedure is based on an evolutionary algorithm
within which an “individual” represents a crystal structure.
Unlike usual evolutionary algorithms, the present approach
to the GSGO problem avoids a bit-string encoding of the
crystal structure. Instead, the mating and mutation operations
are performed handling directly the crystal structures in real

FIG. 4. �Color online� �a� History of the GSGO search per-
formed on bulk GaAs, considering eight atoms per supercell; �b�
zinc-blende structure as obtained by GSGO.

FIG. 5. �Color online� �a� History of the GSGO search per-
formed on bulk Au8Pd4: in this plot the �blue� dashed line repre-
sents the energy of the ground-state structure for this composition
which was found through cluster expansion. �b� Ground-state struc-
ture of Au8Pd4 found by GSGO.
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space. To define a mating operation between structures that
have different cell shapes, all cell shapes are brought to a
common basis using a similarity transformation. Once a
structure is generated by the evolutionary operators, it is re-
fined via a total-energy relaxation which brings it to the near-
est total-energy local minimum. The approach to the GSGO
problem described in this paper shares several steps with
other optimization procedures presented in the recent litera-
ture, but it also shows different traits with respect to them.
Indeed, in assigning the cell vectors to a child structure, we
proceed by a linear combination of the cell vectors of the
parents. This favors inheritance by the offspring of the infor-
mation on the cell shapes of the parent structures. Also, par-
ticular attention has been paid to the screening of the off-
spring so as to avoid crystal structures with unphysical cell
shapes and refinement of too close atom pairs. To treat mul-
tispecies systems, we scan the lattice-site occupations for
surveying the set of possible decorations of the crystal, with
the aim of finding the most stable one. We applied the algo-
rithm for the GSGO to selected semiconductor systems and
to the AuPd metallic alloy. In the case of all the semiconduc-
tor systems considered, the GSGO search retrieved the ex-
perimental crystal structure and atomic configuration. In the
case of the AuPd alloy, we performed the global search for
composition Au8Pd4 and obtained a structure that has an fcc
lattice type, in agreement with earlier high-resolution cluster
expansion study. The atomic configuration, however, differs
from that predicted by cluster expansion. While we are en-
couraged that the current generation of approach to GSGO
can resolve the correct lattice and comes close to resolving
configurations, it is, at present, not able to mimic for metal
alloys the resolution of cluster expansion.
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APPENDIX: PARAMETERS OF THE AB INITIO
CALCULATIONS

We report in this appendix the parameters of the VASP

calculations for all the systems considered in Sec. V. The
electron-nucleus interaction was treated using ultrasoft
pseudopotentials. For Si, GaAS, and SiC, we used the gen-
eralized gradient approximation47 to the exchange and corre-
lation functional, whereas for AuPd, we employed the local-
density approximation.48

Si. The basis-set cutoff energy was set equal to 13.84 Ry
for the plane-wave expansion of the wave functions. The
�4,4,4� and �6,6,6� Monkhorst-Pack k-point meshes �exclud-
ing the � point� were used, respectively, for the structural
relaxation and the calculation of the total energy of the re-
laxed structure. The structural relaxation was stopped when
the residual forces on the atoms were lower than
0.025 eV/Å.

GaAs. The pseudopotential used for Ga placed the 3d
states in the core. A basis-set cutoff energy of 13.26 Ry was
used for the plane-wave expansion of the wave functions. A
�3,3,3� Monkhorst-Pack k-point mesh �which included the �
point� was used for the structural relaxation. The structural
relaxation was stopped when the change in the total energy
was less than 2 meV/cell. After the structural relaxation, the
total energy of the equilibrium structure was calculated using
a �4,4,4� Monkhorst-Pack k-point mesh �not � centered�.

SiC. The basis-set cutoff energy was set equal to 26.34 Ry
for the plane-wave expansion of the wave functions. The
�4,4,4� and �6,6,6� Monkhorst-Pack k-point meshes �exclud-
ing the � point� were used, respectively, for the structural
relaxation and the calculation of the total energy of the re-
laxed structures. The structural relaxation was stopped when
the residual forces on the atoms were lower than
0.025 eV/Å.

AuPd. The plane-wave expansion of the wave functions
was extended up to a kinetic energy of 18.28 Ry. We used
�3,3,3� and �6,6,6� Monkhorst-Pack k-point meshes �not in-
cluding the � point� to perform the structural relaxation and
the calculation of the total energy of the relaxed structure,
respectively.
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