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Il. INTRODUCTION

In 1956, at the American Society of Metals meeting on alloy phases, J. C.
Slater commented: “I don’t understand why you metallurgists are so busy in
working out experimentally the constitution of polynary metal systems. We
know the structure of the atoms, we have laws of quantum mechanics, and we
have calculating machines, which can solve the pertinent equations rather
quickly” (Slater, 1956). Today, almost 25 years later, our computing ability
has increased by two to three orders of magnitude, yet no complex alloy struc-
ture has been predicted by such a variational quantum-mechanical approach.
At the same time, the semiclassical notions of Pauling, Hume-Rothery,
Pearson, and others have continued to guide metallurgists, crystallographers,
and crystal chemists in rationalizing even very complex crystal structures.

Our experience in understanding the occurrence of a large variety of crys-
tal structures in nature has been traditionally expressed in two general frame-
works: variational quantum mechanics and a semiclassical approach. The

73

Structure and Bonding in Crystals, Vol, 1
Copyright © 1981 by Academic Press, Inc.

All rights of reproduction in any form reserved.
ISBN 0-12-525101-7



74 Alex Zunger

bulk of our experience in understanding the structural properties of molecules
and solids from the quantum-mechanical viewpoint is expressed in terms
of constructs originating from the calculus of variation: total energy minimi-
zation, optimum subspaces of basis functions, etc. In this approach, one
constructs a quantum mechanical energy functional representing the Born-
Oppenheimer surface of a compound; its variational minimum in configura-
tion space {R} is then sought, usually by first reducing the problem to a
single-particle Schrodinger equation. The elementary constructs defining
this energy functional—the interelectronic effective potential V. (r, r') and
the electron-core potential V,.(r, R)—can be treated at different levels of
sophistication (e.g., semiempirical tight-binding, Thomas-Fermi, Hartree—
Fock, density-functional, pseudopotential, etc.). Similarly, a number of
choices exist for the wavefunction representation (e.g., the Bloch and molec-
ular-orbital representations or the Wannier and valence-bond models, etc.).
This approach has become increasingly refined recently, producing consider-
able detailed information and insight into the electronic structure of mole-
cules (e.g., Schaefer, 1977a,b) and simple solids (e.g., Moruzzi et al., 1978).

The semiclassical approach to crystal and molecular structure, on the
other hand, involves the construction of phenomenological scales (“factors”)
on which various aspects of bonding and structural characteristics are mea-
sured. These include chemical, crystallographic, and metallurgical constructs,
such as the electronegativity, the geometry and size factors, the coordination
number factor, the average electron number factor, the orbital promotion
energy factor, etc. (e.g., Pearson, 1969). These factors are then represented by
various quantitative scales (bond order, elemental work function, ionic,
metallic, and covalent radii, electronegativity scales, etc.) that are used to
deductively systematize a variety of structural properties. Such intuitive and
often heuristic scales have had enormous success in rationalizing a large body
of chemical and structural phenomena, often in an ingenious way (Pauling,
1960; Hume-Rothery and Raynor, 1954 ; Pearson, 1972; Darken and Gurry,
1953; Miedema, 1976). More recently, these semiclassical scales have been
used in gquantitative models, such as the semiempirical valence force field
method (Pawley, 1968; Warshel, 1977) and Miedema’s heat of formation
model (Miedema, 1973, 1976; Miedema et al., 1975), where the remarkable
predictive power of these approaches has been demonstrated over large data
bases (literally hundreds of molecules and solids).

Even before the pioneering studies of Goldschmidt, Pauling, and others,
it was known thermodynamically that the structure-determining energy
AE of most ordered solids is small compared to the total cohesive energy
AE,. Measured heats of transformation and formation data (Hultgren et al.,
1973; Kubaschewski and Alcock, 1979), as well as quantum-mechanical



5 Pseudopotentials and Structural Properties of Crystals 75

calculations of stable and hypothetical structures, indicate that AE,/AE, can
be as small as 107°-107% This poses an acute difficulty for variational
quantum-mechanical models. The elementary constructs of the quantum-
mechanical approach V,.(r,r') and V. (r,R), are highly nonlinear functions of
the individual atomic orbitals that interact to form the crystalline wavefunc-
tions (due to both the operator nonlocality of V,, + V., and their self-con-
sistent dependence on the system’s wavefunctions). Consequently, the
structural energies AE, become analytically inseparable from the total en-
ergies AE;. One is then faced with the situation that the complex weak
interactions, responsible for stabilizing one crystal structure rather than
another, are often masked by errors and uncertainties in the calculation of the
strong Coulombic interactions in the total interaction potentials V. (r,r’) and
Vee(r, R). Even though AE, can be calculated quantum-mechanically with the
aid of large computers (for sufficiently simple systems), it is notable that the
extent and complexity of the information included in V,.(r,r’) and V..(r, R)
far exceeds that required to characterize a crystal structure. For example,
although the 12 transition metals Sc, Ti, V, Cr, Fe, Y, Zr, Nb, Mo, Hf, Ta, and
W have distinctly different quantum-mechanical effective potentials and are
characterized by systematically varying cohesive energies AE,, all of them
appear in the same body-centered cubic (bce) crystal form as elemental metals.
Hence, at present, the gquantum-mechanical approach seems to lack the
simple transferability of structural constructs from one system to the other, as
well as the physical transparency required to assess the origin of structural
regularities. The semiclassical approach, on the other hand, concentrates on
the construction of physically simple and transferable coordinates that may
systematize directly the trends underlying the structural energies AE,. The
major limitations of the semiclassical approach seem to lie in the occurrence
of internal linear dependencies among the various structural factors (e.g.,
orbital electronegativity and orbital promotion energy), as well as in the
appearance of a large number of crystalline structures placed within narrow
domains of the phenomenological structural parameters (e.g., Mooser—
Pearson plots for non-octet AB compounds or diagrams of the frequency of
occurrence of a given structure versus average electron per atom ratio). Even
so, the semiclassical approaches provide valuable insight into the problem
because they point to the underlying importance of establishing system-
invariant energy scales (e.g., electronegativity, promotion energy) as well as
length scales (e.g., covalent, metallic, and ionic radii).

For the 50-60 nontransition-metal binary octet compounds, the problem
of systematizing the five crystal structures (NaCl, CsCl, diamond, zinc blende,
and wurtzite) has been solved through the use of the optical dielectric electro-
negativity concept of Phillips and Van Vechten (1970; also Phillips, 1970).
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This concept diagrammatically displays periodic trends when transferable
elemental coordinates are used. Such diagrammatic Pauling-esque ap-
proaches are extended here to include intermetallic transition-metal com-
pounds (a total of 565 compounds).

In this paper, I show that the recently developed first-principles nonlocal
atomic pseudopotentials provide nonempirical elementary energy and length
scales. By using a dual and transferable coordinate system derived from these
scales, one is able to topologically separate the crystal structures of 565 binary
compounds (including simple and transition-metal atoms) with a surprising
accuracy. At the same time, these quantum-mechanically derived pseudo-
potentials allow one to conveniently define the elementary constructs
V..(r,r') and V. (r, R) and use them in detailed electronic structure calcula-
tions for molecules, solids, and surfaces. As such, this approach may provide
a step in bridging the gap between the quantum-mechanical and semiclassical
approaches to electronic and crystal structure.

The theoretical prediction of stable crystal structures is given diagrammati-
cally much as in Mooser—Pearson plots. We show that each element A in the
periodic table is characterized by three core radii r, 3, and 3, which measure
the effective size of the atomic cores as experienced by valence electrons with
angular momentum [ = 0, 1, and 2, respectively. These radii are derived in
Sec. III from the pseudopotential theory and tabulated in Table I for 70
elements. For each binary compound AB, we then construct the dual coor-
dinates R2® = [r> — r2| + |8 — r® and R}® = |(r} + r2) — (r} 4+ rP)|. On an
R2B ys. R2B plot, we then find that the different groups of crystal structures of
the 565 binary compounds occupy different regions. If one lumps together
some of the crystallographically related structures, the accuracy of this pre-
diction is better than 93%,. The radii given in Table I can be used to system-
atize and analyze a large number of structural properties of crystals.

The success of this approach in correctly predicting the structural regular-
ities of as many as 565 binary compounds using elemental coordinates that
pertain directly only to the s and p electrons (and only indirectly to the d
electrons through the screening potential produced by them) presents a
striking result: it suggests that the structural part AE, of the cohesive energy
may be dominated by the s—p electrons. This points to the possibility that,
while the relatively localized d electrons determine both central cell effects
(such as octahedral ligand field and Jahn—Teller stabilizations) and the
regularities in the structure-insensitive cohesive energy AE, of crystalline and
liquid alloys, the longer range s—p wavefunctions are responsible for stabiliz-
ing one complex space group arrangement rather than another. There is a
striking resemblance between this result and the semiclassical ideas indicating
a remarkable correlation between the stable crystal structure of transition-
metal systems and the number of s and p electrons, put forward by Engel in
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1939 (also 1967) and subsequently greatly refined by Brewer (1963, 1967, 1968 ;
Brewer and Wengent, 1973). In the Engel-Brewer approach, the d electrons
play an important but indirect role in determining the energy required for
exciting the ground atomic configuration to one that has available for
bonding a larger number of unpaired s and p electrons. The Engel-Brewer
approach has enabled the extension of the Hume-Rothery rules to transition
metal systems simply by counting only the contributions of s and p electrons,
and at the same time it has explained the stabilities of the bec, hep (hexagonal
close-packed), and fcc (face-centered cubic) structures of the 33 elemental
transition metals, the effects of alloying in multicomponent phase diagrams,
as well as pressure effects on crystal structure stabilities, phenomena yet to be
tackled by variational quantum-mechanical approaches. These conclusions
on the crucial structural roles played by the s and p coordinates should be
contrasted with the contemporary quantum-mechanical resonant tight-
binding approaches suggested first by Friedel (1969) for elemental transition
metals and recently extended to compounds by Pettifor (1979), Varma ( 1979),
and others. These approaches emphasize the exclusive role of d electrons in
determining cohesive properties. This approach explains the periodic trends
in AE, and the bee—fcc structural transitions of both elemental and alloyed
transition metal systems by considering changes in the one-electron d energy
levels, assumed to have a rectangular density of states.

The plan of this paper is as follows: in Sec. II, we introduce the pseudo-
potential concept and show how it can be used in general to define atomic
parameters that correlate with crystal structures. In Sec. III, we derive the
first-principles atomic pseudopotentials within the density-functional theory
of electronic structure. In Sec. IV, we then show how these atomic pseudo-
potentials can be used to define intrinsic core radii that correlate with a large
number of electronic and structural properties of crystals. These radii are used
to separate diagrammatically the stable crystal structure of 565 binary AB
compounds.

Il. PSEUDOPOTENTIALS AND STRUCTURAL SCALES

Although traditionally the inner core orbitals and the outer valence
orbitals are often treated on an equal footing in variational calculations of
the electronic structure of atoms, molecules, and solids, it was recognized
quite early that a large number of bonding characteristics are rather in-
sensitive to the details of the core states (Hellman, 1935a,b, 1936; Gombas,
1935, 1967; Fock et al., 1940). This relative insensitivity is a manifestation
of the fact that the interaction energies involved in chemical bond formation
(107'-10 eV), banding in solids (1-25 eV), or scattering events near the
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Fermi energy (1072-10" 3 eV) are often much smaller than the energies
associated with the polarization or overlap of core states. Hence, the core
orbitals with their nearly spherical symmetry and high binding energies
are nearly unresponsive to many of the scattering phenomena that determine
“valence-like” properties. Many methods treating the quantum structure
of bound electrons, nucleons, and general Fermions have consequently
omitted any reference to the core states, variationally treating only “valence”
states (Hiickel, CNDO, tight-binding, Hubbard models, optical potentials
in nuclear physics, effective potentials in Fermi-liquid theories, and field-
theory models of the Lamb shift, empirical valence potentials in atomic
physics, etc.). Clearly, however, if no constraints are placed, such a variational
treatment will result in an unphysical lowering of the energy of the valence
states into the empty core (“variational collapse”). Much of the empirical
parametrization characteristic of such methods is implicitly directed to avoid
such a pathology. It was first recognized however by Phillips and Kleinman
(1959) that the price for reducing the orbital space to valence states alone
can be represented by an additional nonlocal potential term (pseudopo-
tential) in the Hamiltonian.

Although the pseudopotential concept has offered great insight into the
nature of bonding states in polymers and solids (e.g., Phillips, 1973), its
calculation in practical electronic structure application has generally been
avoided (Cohen and Bergstresser, 1966 ; Brust, 1968 ; Cohen and Heine, 1970).
Instead, it has been replaced by a local form with disposable parameters
adjusted to fit selected sets of data (semiconductor band structures, Fermi
surface of metals, atomic term values, etc.). Since the valence electronic
energies near the Fermi level are determined (to within a constant) by rela-
tively low-momentum transfer electron-core scattering events (|g| = 2k,),
it has been possible in the past to successfully describe the one-electron
optical spectra and Fermi surface of many solids assuming core pseudo-
potentials that are truncated to include only small momentum components
(.e., smoothly varying in the core region in configuration space). The freedom
offered by the insensitivity of the electronic band structure dispersion
relation ¢;(k) to the variations of the pseudopotential in the core region has
been exploited to obtain empirical potentials converging rapidly in momen-
tum space and hence amenable to electron-gas perturbative theories
(Harrison, 1966) and plane-wave-based band structure calculations (Cohen
and Heine, 1970; Brust, 1968).

These soft-core empirical pseudopotentials have produced the best fits
to date for the observed semiconductor band structures (e.g., see Cohen and
Bergstresser, 1966), and their descendants, the soft-core self-consistent
pseudopotentials, have yielded the most detailed information on semicon-
ductor surface states (e.g., see Appelbaum and Hamann, 1976). The insen-
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sitivity of ¢;(k) to the high-momentum components of the pseudopotential
has prompted an enormous literature in which different forms for the
potential have been suggested (empty cores, square wells, Gaussian-shaped,
etc.). Since, however, these pseudopotentials were fitted predominantly to
energy levels in atoms and solids (and were not constrained to produce
physically correct wavefunctions) they often yielded systematic discrep-
ancies with experiment or all-electron calculations of the bonding charge
density in molecules and solids (Yang and Coppens, 1974; Harris and Jones,
1978; Hamann, 1979): while correctly predicting a build-up of covalent
charge on the bonds, such empirical pseudopotentials incorrectly suggested
a bond-perpendicular charge density, rather than a bond-elongated density
as envisioned by Coulson and Pauling and subsequently measured experi-
mentally and supported by more refined calculation (Zunger, 1980). Such
discrepancies result from the fact that higher momentum components (e.g.,
|lg| = 6kg in crystalline silicon), not included in energy-level-fitted soft-core
pseudopotentials, are of importance in determining the directional distri-
bution of the bonding charge density. It is such systematic omissions which
make the soft-core empirical potentials inappropriate for predicting stable
structures. The striking success of the empirical pseudopotential is that it
made it possible to reduce the informational content of the often complex
electronic spectra of semiconductors to a few (usually three to five) nearly
transferable elemental parameters (empirical pseudopotential form factors).
The assumed locality of the pseudopotential, as well as its truncation to
low-momentum components, however, has limited its chemical content to
reflect predominantly the low-energy electronic excitation spectrum rather
than explicit structural and chemical regularities.

Recently, Simons (1971a,b) and Simons and Bloch (1973) have observed
that there exists at least one class of structurally significant empirical pseudo-
potentials containing very high momentum components (i.e., |q| > 2kg, or
hard-core pseudopotentials). The general form of a screened pseudopotential
is:

Vere(r) = VElr) + Vi [n(r)] (1)

(We use a capital V(r) to denote solid-state potentials, while v(r) will denote
atomic or ionic potentials.) Here V'{)(r) is the bare pseudopotential acting
on the /th angular momentum wavefunction component, and V., [n(r)] is
the Coulomb, exchange, and correlation screening due to the pseudo charge
density n(r). The conventional core attraction Coulomb term —Z/r is re-
placed by an angular momentum-dependent and spatially varying effective
charge Z{(r) = rV{)(r), while V,.,[n] continues to represent interelectronic
(valence—valence) interactions. For the simple case of one-electron ions,
chosen by Simons and Bloch, the screening potential reduces to zero. The
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bare atomic pseudopotential v{\(r) was then assumed to take a simple

hard-core form:
B Z, ;
() = o) = = 2 ®)
r r
where Z, is the valence charge and the parameter B, is adjusted such that
the negative of the orbital energies ¢, obtained from the pseudopotential

equation
{—3V0 + Ugt)f(r)}lpn](r) = &n¥ml(r) (3)

match the observed ionization energies of one-electron ions such as Be ™!,
C*™3, O7*?, etc. These hard-core pseudopotentials are characterized by an
orbital-dependent crossing point r{ at which v%(r?) = 0. These orbital radii
then possess the same periodic trends underlying the observed single-
electron ionization energies through the periodic table. The remarkable
feature of these radii is that they form powerful structural indices, capable
of systematizing the various crystal phases of the octet ANB® ~ N nontransition-
metal compounds (St. John and Bloch, 1979). Such structural plots have
been extended by Machlin et al. (1977) very successfully to some 45 nonoctet
(nontransition-metal) compounds. More details on this approach are avail-
able in the cited literature.

The realization that these empirical orbital radii are characteristic of
the atomic cores, and as such are approximately transferable to atoms in
various bonding situations, has led to the construction of a number of new
phenomenological relations of the form G = f(r?), correlating physical
observables G in condensed phases with the orbital radii of the constituent
free atoms. Some examples of G are the elemental work functions, the melting
points of binary compounds, and the Miedema coordinates treated by
Chelikowsky and Phillips (1978). What has been realized is that the char-
acteristics of an isolated atomic core, reflected in the spectroscopically
determined I/-dependent turning points r{, contain the fundamental con-
structs describing structural regularities in polyatomic systems. This can
be contrasted with phenomenological electronegativity scales that are
based on observables pertaining to the polyatomic systems themselves, such
as the thermochemical Pauling scale, the dielectric Phillips—Van Vechten
scale, and the Walsh scale.

While one normally considers structural and bonding characteristics to
be predominantly determined by the atomic valence orbitals, these are not
amenable to an analysis that reveals structural regularities in a simple
manner. For instance, the different chemistries associated with carbon and
silicon compounds are not transparently reflected by contrasting the carbon
2s and 2p with the silicon 3s and 3p orbitals, simply because the qualitative
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difference in their nodal structure precludes the construction of a simple
quantitative scale. In the pseudopotential representation, the nodal valence
orbitals are transformed into nodeless valence pseudo wavefunctions such
that, for example, the relevant differences in the new carbon 2s and silicon
3s orbitals can be measured on a simple quantum mechanical scale. Such a
scale is provided by the orbital radii. The chemically pertinent information
of these nodeless valence orbitals is coded in the pseudopotential. By building
into the simple pseudopotentials of Eq. (2) the experimentally observed
regularities of the ionization energies in the periodic table, Simons, Bloch,
Chelikowsky, and Phillips (e.g., Phillips, 1977, 1978) have achieved an orbital
radii scale that deciphers this core code.

It is not surprising that, although the orbital radii have typical dimensions
of the core states, they do reflect structural regularities characteristic of the
outer valence orbitals. This should be contrasted with the classical definitions
of ionic, tetrahedral, covalent, or metallic radii: these definitions attempt to
reproduce observed bond distances as sums of single-site radii. This bond
additivity constraint forces these radii to have dimensions typical of valence
orbitals, and as such these radii depend on the chemical environment (ionicity,
coordination number, valency, spin state, etc.) rather strongly (e.g., Shannon
and Prewitt, 1969). Even so, these classical radii constitute a very important
reduction in the informational degrees of freedom required to specify chem-
ical bonds: using, typically, 5000 measured bond distances, one has deduced
about 250 ionic radii. The orbital radii approach takes, however, a different
viewpoint: it assumes that the valence properties that an atom will take in
bonded situations are coded in its effective core. Using the orbital radii as
the characteristic fingerprint of the atomic cores, one achieves a further
reduction of the structural information to a single set of transferable elemental
radii.

This empirical Simons—Bloch radii have, however, few obvious short-
comings. Since the general atomic pseudopotential v{(r) of Eq. (1) can be
reduced to a simple form with v,., = 0 only for single-electron-stripped ions,
the empirical Simons—Bloch orbital radii can only be invoked for atoms for
which stripped-ion spectroscopic data exists. This excludes most transition
elements, which form a wealth of interesting intermetallic structures. Yet,
even so, the extraction of a bonding scale from data on ions that lack any
valence-valence interactions (e.g, C** and O3, representing chemical
affinities of neutral C and O) may distort the underlying chemical regularities.
In addition, the restriction to single-electron species means that the post-
transition-series atoms (e.g., Cu, Ag, Au or Zn, Cd, Hg) are treated as having
only one and two valence electrons, respectively, much like the alkali and
alkaline earth elements, respectively. However, the increase in melting points
and heats of atomization and the decrease in nearest-neighbor distances in
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going from Group IIB to IB metals (e.g., Zn — Cu,Cd — Ag,and Hg — Au),
as compared with the opposite trend in going from Group IIA to TA metals
(Ca — K, Sr —» Rb, and Ba — Cs), completely eliminates any possibility of
Cu, Ag, and Au having effectively a single-bonding electron. Similar indica-
tions on the extensive s—d and p—d hybridization are given by the large
bulk of photoemission data on Cu and Ag halides (Goldman, 1977). In
keeping with the single-valence-electron restriction, one is also forced to
define the d-orbital coordinate of the post-transition elements from the lowest
unoccupied rather than occupied d orbital (i.e., 4d for Cu and Zn, 5d for Ag
and Cd). This may be reasonably faithful to the chemical tendencies of
post-transition elements with sufficiently deep occupied d orbitals and suffi-
ciently low unoccupied d orbitals (e.g., Br, Te, I), but it is questionable for
the elements with occupied semi core d shells in the vicinity of the upper
valence band (e.g., CdS and ZnS). These pathologies can be corrected by
empirically adjusting the valence charge Z, in Eq. (2) for these elements
(A. N. Bloch, unpublished results, 1980). Finally, the simple pseudopotential
of Eq. (2) is not suitable for electronic structure studies, as indicated by
Andreoni et al. (1978, 1979), because the wavefunctions of Eq. (3) are severely
distorted relative to true valence orbitals by the unphysically long-range
r~ 2 tail (similarly, the total energy of a solid described by this potential
is divergent!). This has been corrected by Andreoni et al. by replacing the
long-range B,/r? term in Eq. (2) with an A4, exp(—y,r/r?) term, with the
additional parameter y, fixed to fit the orbital maxima. This leads to a new
set of renormalized orbital radii differing considerably from the Simons—
Bloch set.

One is hence faced with the situation that the soft-core empirical pseudo-
potential (e.g, Cohen and Heine, 1970) can be used to successfully fit the
low-energy electronic band structure of solids, but it lacks the structurally
significant turning points [i.e., v.e(r) =0 only at r = co]; whereas the
empirical Simons—Bloch potentials do not yield a quantitatively satisfactory
description of the electronic structure but do yield the correct structural
regularities. The approach that we have taken to remedy this situation is to
construct a pseudopotential theory from first-principles. The first-principles
approach allows for the regularities of energy levels and wavefunctions to
be systematically built into the atomic pseudopotentials, without appealing
to any experimental data. Because no resort is made to simple, single-electron
models, transition elements can be treated as easily as other elements, without
neglecting the interactions between valence electrons or assuming that the
highest occupied d levels belong to a chemically passive core. Furthermore,
since the bare pseudopotential v\)(r) and the screening v, [ n(r)] are described
in terms of well-defined quantum-mechanical constructs (such as Coulomb,
exchange, and correlation interactions, Pauli forces, and orthogonality
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holes) both the failures and the successes of the theory could be appreciated.
This defines a link between the semiclassical length scale and the quantum-
mechanical approach to structure.

lll. FIRST-PRINCIPLES DENSITY-FUNCTIONAL
PSEUDOPOTENTIALS

A. Construction of Density-Functional Atomic Pseudopotentials

These section describes the construction of atomic pseudopotentials from
the density-functional formalism (Hohenberg and Kohn, 1964; Kohn and
Sham, 1965). These potentials were first derived by Topiol et al. (1977) and
Zunger and Ratner (1978) and subsequently refined by Zunger and Cohen
(1978b, 1979a,b). Technical details are given elsewhere (Zunger et al., 1979b:
Zunger and Ratner, 1978; Zunger and Cohen, 1978b, 1979b; Zunger, 1979).

We first start with the all-electron approach. Consider a many-electron
system with an electronic density matrix p(r, r') interacting with an external
potential V, (r). In the conventional all-electron (ae) approach, both the
core (¢) and valence (v) wavefunctions, /{(r) and y}(r), respectively, are treated
on the same footing. The effective single-particle potential appearing in the
Schrodinger equation is then written as a sum of the external potential and
the interelectronic response (screening):

Vi) = Veulr) + VgL p(r, r)] (4)

Here V[ p(r, 1')] is a functional of the total core plus valence charge density
p = p.+ p, and includes the interelectronic Coulomb V,[p] as well as
exchange V[ p] and correlation V[ p] terms. These screening terms take
different forms in the Hartree—Fock and density-functional formalisms used
here. The external potential V,, (r) may be identified in atoms with the
electron-nuclear attraction term —(Z, + Z,)/r (where Z_, and Z, denote
the number of core and valence electrons, respectively) or with the sum of
the analogous terms and the Ewald ion—ion repulsion in infinite systems.
The wavefunctions {{/§"(r)} of the all-electron Hamiltonian H** = —1 V2 4+

<t have a nodal structure resulting from the orthogonality constraint. These
form a basis for constructing the ground-state density matrix p(r, r'), which
is then used to calculate self-consistently the screening potential as well as
the ground-state total energy.

We now turn to the pseudopotential approach. In this representation, one
seeks an effective potential VB that will produce in a variational Schrodinger
equation the valence wavefunctions y;(r) and orbital energies /; as its lowest-
lying solutions. As, by construction, no core states occur, ¥ ;(r) does not have
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to be core-orthogonal and, hence, may be constructed as nodeless for each
of the lowest angular symmetries. One therefore replaces the all-electron
effective potential of Eq. (4) by the pseudopotential effective potential:

Veff V + V:cr[n(r ]
=[F, xt(r) + W] + Vi, [n(r)] (5)

where V!, is the valence-projected external potential [e.g., in an atom — Z/r
rather than —(Z, + Z.)/r], W;(r) is the yet-unspecified repulsive part of the
pseudopotential, and Vscr[n(r)] is the screening due to the valence pseudo
charge density n(r) = > ; xF(r)z;(r).

Instead of constructing Wi(r) directly for the molecules or solids of interest,
one attempts first to calculate this for simple model systems such as atoms.
Then, the total pseudopotential V,(r) for a general system will be approxi-
mated by superimposing the — pseudopotentials v{)(r) over all atoms
and angular momenta, i.e.,

Vo =3 vh(r — R,)P,
R,

where P, is the angular momentum projection operator, and R,, is the position
vector of atom n. To build into the atomic pseudopotentials an element of
transferability, one needs to construct v”’(r) such that its dependence on the
chemical environment is minimal. Formally this amounts to minimizing the
energy and quantum-state dependence of v{)(r). The mathematical implica-
tions of this have been previously discussed (Zunger et al., 1979). It will suffice
here to say that such a minimization of the pseudopotential’s energy and state
dependence can be achieved by maximizing the spatial range (starting from
r = oo and going inwards to a finite value r = R,) of identity between the true
valence orbital /},(r) and the pseudo orbital yx,(r) and, at the same time,
minimizing to the extent possible the amplitude and lowest derivatives of
.1 (r) in the core region (0 < r < R,). The formulation of transferable atomic
pseudopotentials, through the imposition of certain physically motivated
constrains on the pseudo wavefunctions, is central to the present approach.
No such explicit considerations have been undertaken in the development
of previous pseudopotentials.

To the extent that the construction of the pseudopotentials ¥'{)(r) can be
made simple, the study of valence-related properties of solids through the so-
lution of the pseudopotential single-particle problem is both computationally
and conceptually simpler than that study via the solution of the all-electron
problem. This relative simplicity is not only because the pseudopotential
approach treats fewer (“reactive”) electrons and permits nodeless and spa-
tially smooth wavefunctions, but it is also because, to within a good approxi-
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mation, the atomic pseudopotential can be constructed from nearly
system-invariant transferable quantities. Such transferable atomic pseudo-
potentials v{)(r) can then be used, through Eq. (5), to construct self-consistently
the effective potential for arbitrary molecules and solids and obtain their
electronic structure at a fraction of the complexity and computational effort
required in a comparable all-electron calculation.

Specializing Egs. (4) and (5) for atoms, the all-electron and pseudopotential

single-particle equations are:

Z.+Z, I0+1)
-_.Ll 2 _ [+ v
{ 2 Vi r + 2r?

+ vee[ po + o] + v,[ P + P4 ]
(6)

+Ucr[pc A pv]}wnl(r) = gnlwnl(r)

and

I(I+ 1)

2"2 + Uee[n] + Dx[n]

{—% Vi- ZT + o0(r) +
(7)
+ vcr[n]} an(r) == )“annl(r)

respectively, where v, v,, and v, denote the density-functional interelec-
tronic Coulomb, exchange, and correlation potentials and V, is the radial
Laplacien. In contrast to the empirical pseudopotential method (e.g., Cohen
and Heine, 1970), v{(r) in Eq. (7) is not determined by fitting the energies
/.1 tO experiment, leaving the wavefunction y,, to be implicitly and arbitrarily
fixed by such a process. Instead, we first construct physically desirable
pseudo wavefunctions y,, and then solve for the pseudopotential v{})(r) that
will produce these wavefunctions together with the theoretically correct
orbital energies 4, = ¢, from the single-particle equation, Eq. (7).

To construct such pseudo wavefunctions, we postulate a number of con-
straints. We will first require that the pseudo wavefunction y,,,(r) be given as
a linear combination of the “true” all-electron core and valence orbitals of

Eq. (6):
Xna(r) = 3 COLAPSA(r) (8)

’

n

Since the pseudo wavefunctions {y,,(r)} are now the lowest solutions to the
pseudo-Hamiltonian, they will be nodeless for each of the lowest angular
symmetries (e.g., while the all-electron 4s orbital of Cu has three nodes, the
pseudo 4s orbital will have zero nodes, the 5s one node, etc.). The coeffi-
cients {C{,.} will be, hence, chosen below to satisfy this condition. Note
that in a single-determinental representation, such a mixing of rows and
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columns leaves the energy invariant. We then require that the orbital ener-
gies A, of the pseudopotential problem equal the “true” valence orbital
energies ¢,,. The first constraint assures us that the pseudo wavefunctions
are contained in the same core-plus-valence orbital space defined by the
underlying density-functional theory; the second ensures that the spectral
properties derived from the pseudopotential single-particle equation match
those of the valence electrons in the all-electron problem.

Without specifying at this stage the choice of the unitary rotation coeffi-
cients {C{, .}, Egs. (6)—(8) can already be solved to obtain the atomic pseudo-
potential v“’(r) in terms of the latter and the known quantities defining the
all- electron atomic equation, Eq. (6):

Z Z
opr={u0-2h] -2 so fod oo+l

T4l pot pd=wl pd—ul i iud mok pel—mal pe] = val 2}
+{veel P )= Vel n]} + {v:[ 2] = 0[]} + {ve [ p ] — v [n]} ©

where the “Pauli potential” U,(r) is given by

Z Cﬂ,)n'[an] - En’l]wn’l(r)

Uy(r) =~ Z CO (1) (10)
and the core, valence, and pseudo charge densities are given as
Z |'10nl(r '
py(r) =3 [m())? (11)
nl

n(r) = 3. [tm()]?
nl

One notices that in the pseudopotential representation each angular com-
ponent of the system’s wavefunction is experiencing a different external
potential v”’(r), whereas in the regular, all-electron representation, v..(r)
was local [Eq (4)]. This is a direct consequence of eliminating the subspace
of core orbitals from explicit consideration, replacing thereby the dynamical
effects of the core electrons by a static potential. Such a pseudopotential
transformation allows us to conveniently decompose the chemically coded
characteristics of the core into orbital contributions.

The atomic pseudopotential in Eq. (9) has a simple physical interpreta-
tion. The “Pauli potential” U,(r) is the only term in v{)(r) that depends on
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the wavefunction it operates on (i.e, “nonlocal”), whereas all other terms in
Eq. (9) are common to all angular momenta (i.e., “local”). Note that for
atomic valence orbitals that lack a matching /[-component in the core (e.g.,
carbon 2p or silicon 3d, lacking [ =1 and | = 2 core states, respectively),
the all-electron valence orbital y},(r) is nodeless—no mixing of other or-
bitals in Eq. (8) is needed for elimination of nodes. Hence, ¥, = ¥, and,
from Eq. (10), U,(r) = O for such states. In these cases, the pseudopotential is
local and purely attractive due to the dominance of the all-electron term,
—(Z. + Z,)/r. In all other cases, U,(r) is positive and strongly repulsive, but
confined to the atomic core region [for distances from the origin at which
all core orbitals /¢,(r) are small relative to the valence orbital y},(r), the
energy difference in the numerator causes U,(r) to be zero]. U,(r) replaces
the core-valence orthogonality constraint and is a realization in coordinate
space of Pauli’s exclusion principle. Its precise form depends on the choice
of the mixing coefficients {C!’,.} and is discussed below. We see that the
pseudopotential nonlocality, often neglected in the empirical pseudopotential
approach (Cohen and Heine, 1970; but compare Chelikowsky and Cohen,
1976; Pandey and Phillips, 1974) emerges naturally in this formulation from
the quantum shell structure of the atom. Similarly, Phillips’s pseudopoten-
tial kinetic energy cancellation theorem (e.g., Cohen and Heine, 1961) is
simply represented as a cancellation (or over-cancellation) between the non-
classical repulsive Pauli potential and the core-valence Coulomb attraction
—Z,/r.

The second term in Eq. (9) represents the total screened potential set up
by the core charge density p (r). It approaches —Z_/r at small distances
and decays to zero exponentially at the core radius (with a characteristic
core screening length) due to rapid screening of the core point charge by
the core electrons. The third and fourth terms in Eq. (9) represent the non-
linearity of the exchange and correlation potentials, respectively, with respect
to the interference of p, and p,. They measure the core-valence interactions
in the system and are proportional to the penetrability of the core by the
valence electrons.

The fifth term in Eq. (9) is the Coulomb orthogonality hole potential.
It has its origin in the charge fluctuation A(r) = p,(r) — n(r) that results
from the removal of the nodes in the pseudo wavefunctions [i.e., the transfor-
mation in Eq. (8)]. The electrostatic Poisson potential set up by A(r) is
then given by the fifth term in Eq. (9). Finally, the last two terms in Eq. (9)
represent, respectively, the exchange and correlation potentials set up
by this orthogonality hole charge density A(r).

The form of the first-principles pseudopotential in Egs. (9)—(10) makes it
easy to establish contact with the successfully simplified early empirical
pseudopotentials. Hence, for example, in the Abarenkov-Heine (1965) model
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potential it was implicitly assumed that a pseudopotential cancellation be-
tween a repulsive Pauli force and an attractive Coulomb potential —Z /r
exists, but instead of calculating the spatial details of the cancellation its net
result was assumed to take the form of a constant vgg(r) = A, for r smaller
than some radius R, (i.e., inside the core), with vgg(r) = —Z,/rfor r > R,.
Abarenkov and Heine’s empirical constants 4, may be identified in the pres-
ent formulation with the volume integral of [U,(r) — Z,/r] from the origin
to R, [neglecting all but the first term in Eq. (9)]. Similarly, Ashcroft (1966)
has suggested an empirical “empty core” pseudopotential, postulating that
the net result of the cancellation between U,(r) and — Z,/r inside the core
region is zero. Indeed, for a sufficiently large core radius (i.e., of the order of
Pauling’s ionic radius), such a simple model represents well v\)(r) in Eq. (9).

Up to this point, we have not yet specified the form of the transformation
coefficients in Eq. (8) determining the precise relationship between the
pseudo and “true” wavefunctions. Clearly, one would like to constrain the
pseudo wavefunction in Eq. (8) to be normalized. In addition, the relaxation
of the orthogonality constraint may be exploited to construct y,,(r) as node-
less for each of the lowest angular states, permitting thereby a convenient
expansion of the pseudo wavefunctions in spatially simple and smooth basis
functions. Even so, y,,(r) is underdetermined: there are an infinite number
of choices of {CY,} leading to normalized and nodeless y,,(r). This is a
manifestation of the well-known pseudopotential nonuniqueness. The reso-
lution of this nonuniqueness is precisely the point at which one applies
one’s physical intuition (and physical prejudices). Note, however, that in the
present approach, any of the infinite and legitimate choices of {CY,.} permits
a rigorous digression from the pseudo wavefunction to the true valence
wavefunction: the choice of a linear form for y;(r) in Eq. (8) allows for vgs’(r)
to be computed from an arbitrary set {C{,.} and for the resulting pseudo-
potential to be used to greatly simplify the calculation of the electronic
structure of arbitrary molecules or solids. Upon completion, one can simply
recover the true wavefunction through a core orthogonalization:

core

|
Vi) = ) = PIRCALIHGY (12)

given the known core states y{(r). This property is not shared by other
pseudopotentials (e.g., Kerker, 1980; Chelikowsky and Cohen, 1976). The
choice of {C{).} has, however, a direct bearing on the transferability of the
atomic pseudopotentials from one system to another as well as on the degree
to which the true valence wavefunctions can be reproduced without resort to
core orthogonalization. Our choice of wavefunction transformation coeffi-
cients (Zunger, 1979) is based simply on maximizing the similarity between
the true and pseudo orbitals [ within the form of Eq. (8)] with a minimum core
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amplitude, subject to the constraints that y,,(r) be normalized and nodeless.
This simple choice produces highly energy-independent, and thus trans-
ferable, pseudopotentials, and at the same time the imposed wavefunction
similarity leads to pseudo wavefunctions that retain the full chemical infor-
mation contained in the valence region of the “true” wavefunctions. Details
of the numerical procedure used to obtain {C{, .} are given elsewhere (Zunger
and Ratner, 1978; Zunger, 1979). The underlying principle for obtaining
maximal wavefunction similarity can however be demonstrated with a simple
example. Consider a first-row atom having a single 1s core state. The pseudo-
orbitals according to Eq. (8) have the form:

725(’) 15 2s cs( . (22)25'//25 ) (13)
L2p(r) = Yr3p(r)
Normalization leads to:

[C(los),?_s]2 + [C(Z(:;),ZS:IZ = 1 (]4)

Imagine now starting from C{),, = 0 and C(Z‘?zs =1 and gradually in-
creasing C'),; from zero, keeping C%),, = (1 — Ci,,,)* With more core
character included, the node in /3 (r) shifts towards the origin. The first
point at which the node coincides with the origin, giving a legitimately
nodeless y,.(r), occurs at

Xzs(o) — O = C(IC?ZS 15(0) gh C25 2s 55(0) (15)

Given the values of the all-electron orbitals /{, and %, at the origin, Egs.
(14)—(15) determine, therefore, the expansion coefficients and hence the atom-
ic pseudopotential in Eq. (9). One can imagine, however, a process in which
one continues to mix core character over and beyond what is necessary just
to eliminate the node in y,(r). This continues to produce legitimate y,(r)
orbitals in the sense that they are nodeless. However, due to the admixture
of excess Y/, the similarity of y,, to the true %, decreases. Hence, the maxi-
mum similarity criterion becomes identical in this case with the condition
that y,,(r = 0) = 0, or a minimal core content in y,,(r). The vanishing value
of y..(r) at the origin causes the repulsive Pauli potential U,(r) in Eq. (10) to
VZ(r)
x(r)
a positive and strongly repulsive U,(r) with the negative core attraction term
—Z,/rin Eq. (9) leads necessarily to a hard-core- type pseudopotential with
a characteristic crossing point v(”(r )= 0 at r = r}. The occurrence of hard-
core pseudopotentials with their atrena’ant orbital radii 1) is therefore a con-
sequence of the chemically motivated constraint that the pseudo wavefunctions
of the form in Eq. (8) have the maximum possible similarity to the true valence

have a singularity at the origin since v} ~ U\(r) ~ . Combining such
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wavefunction in the chemically important tail region. This short-range repulsive
nature of U,(r) builds into the first-principles pseudopotentials the high
momentum components absent in the empirical pseudopotentials (Cohet
and Heine, 1970) that are fit to experimental energies alone.

In the more general case of an atom belonging to an arbitrary row in the
periodic table, obtaining maximal wavefunction similarity is formulated as ¢
constrained minimization of the core projection of the pseudo wavefunction:
(e.g., Zunger, 1979). The general small-r expansion of the pseudo orbita
becomes

Hm g, (r) = Agr"™' + A" 4 At 2 (16

r—0

The choice of > 2 leads to a minimum core amplitude pseudo wavefunction
with its attendant maximum similarity to the true valence wavefunction
Inserting Eq. (16) into Egs. (10) and (9) leads, for any n = 2, to:

: B, Z,

mugg(r):r—;—TjL--- 17
Hence, the Simons—Bloch (1973) empirical pseudopotential [ Eq. (2)] is re-
covered as the small-r limit of the first-principles pseudopotential. Clearly.
however, at finite r-values, the present potential [ Eq. (9)] differs substantially
from the Simons—Bloch form. The choice # = 0 leads to a soft-core pseudo-
potential [lim,_, v\ 2(r) = constant]. The associated pseudo wavefunction i
now finite at the origin, leading necessarily to a reduced similarity between
the true and pseudo wavefunctions in the chemically relevant valence region.
Our choice of the wavefunction transformation in Eq. (8) produces, therefore,
unique pseudopotentials by going to the extreme limit of wavefunction
similarity that is possible within the underlying density-functional orbital
space.

Other possibilities for choosing pseudo wavefunctions exist and are dis-
cussed elsewhere (Zunger and Cohen, 1979b; Zunger, 1979; Redondo et al.,
1977). These procedures involve various ways of constructing pseudo wave-
functions from components lying outside the density-functional orbital space
[unlike Eq. (8)] and do not maintain physically transparent analytical forms
such as in Egs. (9)—(10). Hence, to distinguish them from the present density-
functional pseudopotentials, we refer to these as trans-density-functional
(TDF) pseudopotentials. Although such procedures lead sometimes to a
somewhat better numerical accuracy in the wavefunctions, we restrict our-
selves in what follows to the conceptually simpler density-functional pseudo-
potentials.

The approach described above for constructing orbital-dependent pseudo
potentials can easily be extended to spin- and orbital-dependent potentials
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Fig. 1. Comparison of the 4s all-electron [, (r). Y4, (r)] and pseudo [y4s;(r). 24s,(1)]
wavefunctions of the Cr atom for spin up(?) and down(!).

(Zunger, 1980a). This generalization is simple, and we will not describe the
details here, but rather give an illustrative example. Figure 1 compares the
spin-up and spin-down pseudo wavefunction y4,(r) and y, (r), which are
eigenstates of the pseudo-Hamiltonian for the Cr atom, with the all-electron
density-functional orbitals Y, (r) and 4, (). The two sets of orbitals match
very closely from r = 0 up to a point r & 2 a.u., which lies inwards to the
outer maximum of the true valence wavefunction. Hence, most bonding
effects should be reasonably reproduced by the pseudo wavefunctions.

Figure 2 depicts various components of the [ = 0 atomic pseudopotential
in Eq. (9) for Sb. The curve labeled (1) is the Pauli term U,(r), the curve labeled
(2) shows the — Z, /r term, and curve (3) represents all other terms in Eq. (9).
Finally, curve (4) shows the total pseudopotential. Figure 3 shows the atomic
pseudopotential for the second-row atoms, and Fig. 4 shows similar results
for the transition elements. First-principles atomic pseudopotentials were
generated for 70 atoms with 2 < Z < 57 and 72 < Z < 86 (i.e., the first five
rows).
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A notable feature of these “hard-core™ potentials is the occurrence of a
crossing point v\)(r?) =0 at r = r{. From Egs. (9)-(10), it is seen that,
physically, this point is where the repulsive Pauli potential is balanced by
the Coulomb attraction — Z/r, renormalized by the screened core potential,
exchange-correlation nonlinearity, and the Coulomb and exchange-corre-
lation orthogonality hole potentials.
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It seems somewhat puzzling at first sight that pseudopotentials of free:
electron-like metals such as Na, Al, and K may have large momentum
components or even a hard core, because the nearly-free-electron (NFE
model seems to have worked so well for these materials. However, the
successes of the NFE model may have been overstated, in view of the fact
that wavefunction-related properties of the free-electron metals, such as the
shape of the optical conductivity (Bennett and Vosko, 1972), the metallic
ground-state charge density and form-factors (Walter et al., 1973; compare.
however, with Bertoni et al., 1973; Hafner, 1978), as well as the properties ol
impurities in metals (Hodges, 1977), are poorly reproduced by local and weak
pseudopotentials. Moreover, the occurrence of rather complex crystal struc-
tures involving “simple” free-electron atoms (semimetals such as the B32
structure of LiAl, Laves phase materials such as K,Cs, the existence of the
compound Na,K but not NaK or NaK,, etc.) as well as the existence ol
stable multiple valencies of these systems (e.g., AlF vs. AlF;, etc.) cannot be
understood in terms of local NFE pseudopotentials. Hence, although such
weak and NFE pseudopotentials had to be assumed for many elements
(including Groups IIIA-VIA atoms) for the very popular low-order pertur-
bation theories to be valid, the underlying assumption—that the complex
chemistry of the related compounds could be understood in terms of weak
and isotropic perturbations of a homogeneous electron gas—seems naive.
However, the great analytical beauty of the perturbation theory approaches
(Harrison, 1966) need not be sacrificed when hard-core pseudopotentials
are used. Instead, a new definition is necessary for the unperturbed system as
a suitably nonhomogeneous form, including most of the chemically relevant
potential fluctuations in zero order (Simons—Bloch pseudopotentials? square
wells?).

Using the calculated atomic pseudopotentials of Egs. (9)-(11), we now
define the crossing points using the ground-state screened atomic pseudo-

potentials v{(r):

11+ 1)

52 + v n] + v[n] + v, [n] (18)

1 1
vid(r) = oS)r) +

as:

1
Ugf)f(m =0

Here vl(r) is the total effective potential experienced in a ground-state
pseudo atom by electrons with angular momentum [. These form the struc-
tural indices {r,}, which we use in connection with predicting the stable
crystal structure of compounds. Table I gives the {r;} values of the 70 elements
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TABLE I

Classical Crossing Points of the Self-Consistently Screened Nonlocal Atomic
Pseudopotentials (Including the Centrifugal term) (a.u.)"

Atom i1 Yoy rq Atom I o I
Li 0.985 0.625 - Rb 1.67 243 0.71
Be 0.64 0.44 e Sr 1.42 1.79 0.633
B 0.48 0.315 — Y 1.32 1.62 0.58
C 0.39 0.25 — Zr 1.265 1.56 0.54
N 0.33 0.21 — Nb 1.23 1:53 0.51
O 0.285 0.18 — Mo 1.22 1.50 0.49
F 0.25 0.155 — Tc 1.16 1.49 0.455
Ne 0.22 0.14 Ru 1.145 1.46 0.45

' Rh 1.11 1.41 042
Na 1.10 1.55 Pd 1.08 1.37 0.40
Mg 0.90 1.13 — Ag 1.045 1.33 0.385
Al 0.77 0.905 — Cd 0.985 1.23 0.37
Si 0.68 0.74 - In 0.94 1.11 0.36
P 0.60 0.64 — Sn 0.88 1.00 0.345
S 0.54 0.56 — Sb 0.83 0.935 0.335
Cl 0.50 0.51 — Te 0.79 0.88 0.325
Ar 0.46 0.46 — 1 0.755 0.83 0.315

Xe 0.75 0.81 0.305

K 1.54 2:15 0.37
Ca 1.32 1.68 0.34 Cs 1.71 2.60
Sc 1.22 1.53 0.31 Ba 1.515 1.887 0.94
Ti 1.15 1.43 0.28 La 1.375 1.705 0.874
A% 1.09 1.34 0.26 Hf 1.30 1.61 0.63
Cr 1.07 1.37 0.25 Ta 1.25 1.54 0.605
Mn 0.99 1.23 0.23 w 1.22 1.515 0.59
Fe 0.95 1.16 0.22 Re 1.19 1.49 0.565
Co 092 1.10 0.21 Os 1.17 1.48 0.543
Ni 0.96 1.22 0.195 Ir 1.16 1.468 0.526
Cu 0.88 1.16 "0.185 Pt 1.24 1.46 0.51
Zn 0.82 1.06 0.175 Au 1.21 1.45 0.488
Ga 0.76 0.935 0.17 Hg 1.07 1.34 0.475
Ge 0.72 0.84 0.16 Tl 1.015 1.22 0.463
As 0.67 0.745 0.155 Pb 0.96 [.13 0.45
Se 0.615 0.67 0.15 Bi 092 1.077 0.438
Br 0.58 0.62 0.143 Po 0.88 1.02 0.425
Kr 0.56 0.60 0.138 At 0.85 098 0.475

Rn 0.84 0.94 0.405

“ The core shell is defined in each case as the rare-gas configuration of the
preceding row. The Kohn and Sham exchange is used.
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for which the density-functional pseudopotential equations have been solved.
We have not included the heavier elements since the present pseudopotential
theory is nonrelativistic. In what follows, we will hence not discuss the struc-
tural stability of lanthanide and actinide compounds.

The structure of Eq. (18) reflects our discussion in the Introduction con-
cerning the quantum-mechanical and semiclassical viewpoints of electronic
structure: v{}(r) is the realization of the quantum-mechanical electron-core
potential V, (r,R), whereas the last three terms in Eq. (18) represent the
interelectronic potential V, (r,r’). The semiclassical factors are then repre-
sented by the {r} scale implicit in the screened effective potential.

In developing the density-functional pseudopotentials, we have tacitly
assumed a specific partitioning of the atomic orbitals into core and valence.
In the present theory, core orbitals are those appearing as closed-shell states
in the rare gas atom of the preceding row in the periodic table. Note, however,
that although we may understand the low-energy electronic excitation spectra
of a compound such as ZnSe by assuming that the Zn 3d orbitals belong to
in a passive core state, such an assumption may be invalid in intermetallic
compounds, where the Zn 3d orbitals can be in near resonance with the d
orbitals of another element (e.g., CuZn). Given the fact that any such delin-
eation into core and valence is merely based on an arbitrary assumption on
the passivity of certain selected orbitals to chemical perturbations of interest,
one may ask whether structurally meaningful orbital radii can be extracted
from a pseudopotential scheme.

In fact, the choice of the orbital radii from the screened pseudopotential
[ Eq. (18)], rather than from the bare pseudopotential vi)r) in Eq. (9) (e.g.,
Simons and Bloch, 1973; Andreoni et al., 1979), is based precisely on an
attempt to avoid such a nonuniqueness. Although the bare pseudopotential
of Eq. (9) has the form

vilr) = U\(n) + f(Z¢, Z,, pc. pus 1) (19)
the screened pseudopotential can be written as
V() = Uir) + 9(Z. pc + p) (20)

Note that whereas U,(r) [ Eq. (10)] depends only on orbitals with angular
momentum /, the Valence pseudo charge density n(r) [Eq. (11)] depends on
all orbitals that are assigned as valence states. Consequently, if the Zn 3d
orbitals are assumed to belong to the core, the bare pseudopotential v‘”(:

for s and p electrons is different than if the d electrons were assigned to the
valence. In contrast, it follows from Eq. (20) that the screened pseudopotential
viii(r) for I =0, 1 is invariant under such a change in the assignment of
the d electrons. Our definition of the structurdl indices 1, is therefore inde-

pendent of the assignment of orbitals ,,(r) from other angular shells as
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core or valence. Also note that the definition of orbital radii from the screened
pseudopotentials of Eq. (18) permits a direct inclusion of electronic exchange
and correlation effects in the structural coordinates r, (see Schubert, 1977),
whereas the semiclassical electron concentration factor (Hume-Rothery and
Raynor, 1954) is represented simply by Z,.

B. Simple Universal Form of the Density-Functional
Pseudopotential

The idea of atomic radii is not new in pseudopotential theory (see Sec. 11).
The basic thrust of the pseudopotential concept is to transform the chemical
picture of the existence of an orbital subspace of nearly chemically inert core
states into a delineation either in configuration space or in momentum space
of a core region of the potential (with its attendant cancellation effects be-
tween orthogonality repulsion and Coulomb attraction) and a valence region
(with its weaker effective potential). What is new in our present approach is
that whereas in the empirical pseudopotential methods the radii were im-
posed extraneously, either explicitly (Abarenkov and Heine, 1965; Ashcroft,
1966: Shaw, 1968; Simons and Bloch, 1973; Natapofi, 1975, 1976, 1978)
or implicitly (Cohen and Bergstresser, 1966), the present theory provides
them as a natural fingerprint of the internal quantum structure of the isolated
atom. Hence, although the empirical pseudopotential methods assumes the
existence of opposing forces in the core region leading to the occurrence ofa
delineating radius, in these approaches the forces are not calculated. The
radii are in turn transferred from various sources (Pauling ionic radii, the
position of the last node in the valence s orbital, fitting energy eigenvalues to
atomic term values, optical reflectivity of semiconductors, or the Fermi
surface of metals, etc.), such that although a desired fit to selected experi-
mental observables is achieved, the underlying electronic and structural
regularities may be obscured by fitting to different data or by postulating
certain arbitrary analytic forms for vgg(:').

Given that the analytic form of the pseudopotential in the present approach
is not assumed but rather emerges as a consequence of requiring a maximum
similarity between the all-electron and pseudo wavefunctions in the chemi-
cally important tail region, it however is possible to deduce a posteriori a
universal analytic form. The density-functional atomic pseudopotentials have
been calculated numerically from Egs. (9)—(11), given the all-electron density-
functional wavefunctions and orbital energies (Zunger and Cohen, 1978b).
In the present study, we use the orbital radii {r,} determined from Eq. (18)
(Table I) and these numerical pseudopotentials. However, because the limit-
ing behavior of all terms entering the pseudopotentials in Egs. (9)—(10) 1s
known, one can obtain an approximate explicit analytical form for these
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pseudopotentials through fitting to the numerical results. Such a fit can be
done in two different ways: either emphasizing a high numerical accuracy
for the fit (and hence using rather complicated fitting functions) or by using a
physically transparent fitting function, sacrificing to some extent the numer-
ical accuracy but obtaining the correct regularities of the pseudopotentials.
This has been attempted by Lam et al. (1980) using the simple form:

C_‘;le—czn‘_g‘fe*Csr_g_v (21)

D) ~
Ups(F) & y r

The coeflicients {C,;, C,,, and C;} are tabulated by Lam et al. Although
more complicated forms than Eq. (21) have also been used (Lam et al., 1980),
Eq. (21) reveals a very important characteristic of the density-functional
pseudopotentials: to within a reasonable approximation, the constants C,;,
C,,, and C; are linear functions of the atomic number, i.e.,

Cuxa+bZ; Cu=q+dZ; Cixe+ fZ (22)

This constitutes a significant reduction in the number of degrees of freedom
required to specify the potential and reveals the regularities of the periodic
table through the coordinates (Z., Z,). This can be contrasted with the empir-
ical pseudopotential approach in which such regularities are often obscured
by fitting certain atomic pseudopotentials to optical data (Cohen and Berg-
stresser, 1966), whereas others are fit to metallic Fermi-surface data and the
resistivity of metals (Ashcroft, 1966, 1968; Ashcroft and Langreth, 1967) or
to atomic term values (Szasz and McGinn, 1967 ; Simons, 1971a,b; Abarenkov
and Heine, 1965).

The existence of a simple linear scaling relationship in Egs. (21)-(22)
establishes a mapping of Mendeleyev’s classical dual coordinates Z, and Z,
characterizing the digital structure of the periodic table, into a more refined
quantum-mechanical coordinate system, r(Z., Z,), r,(Z.,Z,), and r4(Z., Z ).
Given the fact that Mendeleyev’s dual coordinates (Z_, Z,) are already sug-
gestive of broad structural trends (e.g., the AB compounds with Z? = 3 and
Z® = 5 tend to form zinc blende structures for large Z*® values, while com-
pounds with Z» =1 and Z® = 7 tend to form rock-salt structures, etc.),
it is only reasonable to expect that with their present resolution into aniso-
tropic orbital components, far more sensitive structural coordinates can be

achieved.

C. Application to Electronic Structure Calculations

As discussed in Sec. I1, properly constructed pseudopotentials can be used
for self-consistent electronic structure calculations for molecules and solids
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in a way that is much simpler than the all-electron approach—or for using the
periodic chemical regularities coded in the pseudopotentials to abstract struc-
turally significant semiclassical-like scales. In this section, we briefly summa-
rize the first application; in the following section (IV), we discuss the
structural significance of the pseudopotentials.

In using pseudopotentials for electronic structure calculations, one con-
structs the solid-state pseudopotential V{)(r) as a superposition of the trans-
ferable atomic pseudopotentials v\)(r). The screening V. [n(r)] is then
calculated from the self-consistent response of the valence electrons in the
solid to this external potential. Before describing applications to electronic
structure, we wish to caution the reader in relation to two fundamental
limitations of first-principles pseudopotentials. First, although any pseudo-
potential simplifies the description of many-electron systems by projecting
out the often chemically passive core wavefunctions, its application is inher-
ently limited to physical quantities that are largely unaffected by such core
states. Hence, quantities such as the Fermi contact interactions, core spin
polarization, Mdssbauer core shifts, or core photoelectron spectra are entirely
outside the realm of application of pseudopotential theories. Second, any
first-principles pseudopotential theory, attempting to replace a given all-
electron representation of the electronic structure, can give results that are no
more refined than the physical assumptions underlying the all-electron theory
it replaces. Hence, while empirical pseudopotentials attempt to directly mimic
certain experimental observables through a parametrized fit, Hartree—Fock
pseudopotentials (e.g., Kahn et al., 1976) or the present density-functional
pseudopotentials can produce results that are at best as accurate as is the
respective all-electron theory. On the other hand, not only can the first-
principles pseudopotentials be progressively refined as our understanding of
many-electron correlation effects improves (e.g., Zunger et al.,, 1980, also
unpublished results; Zunger, 1980a), but, even more importantly, in the
present approach both the successes and the failures of the theory in ex-
plaining experiment can be analyzed and understood in terms of well-defined
quantum-mechanical constructs.

As an initial step in using atomic pseudopotentials, one has to establish
exactly how transferable they are from one system to another. One way of
testing this is to use the atomically derived pseudopotential to calculate a
self-consistent pseudopotential band structure of a solid and compare the
results with an all-electron band structure calculation in which no pseudo-
potentials are used. Such a comparison is given in Table II (D. R. Hamann,
unpublished results, 1979), which shows data for crystalline silicon obtained
with the TDF pseudopotential (Zunger and Cohen, 1979b; Zunger, 1979). It
is seen that the pseudopotential calculation, considering only four valence
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TABLE 11

Comparison of the Band Structure of Crystalline Silicon as Obtained from an All-Electron
(Core + Valence) Calculation and a Valence-Only Pseudopotential Calculation (e V)"

Level All-electron Pseudopotential Level All-electron Pseudopotential
. —12.02 —11.88 X1 0.55 0.62

g 0.00 0.00 X4 10.32 10.26
Iise 2.49 2.53 Lo, —9.64 —9.55

| 3.18 3.07 Ly —7.06 —6.97

I . 7.46 7.53 Lo —1.16 —1.14
Ise 7.86 7.85 L,. 1.40 1.39

X —7.84 —7.76 3.37 3.40

Xai —-2.82 -2.78

“ Using the TDF pseudopotential of Zunger (1979) and Zunger and Cohen (1979b). Results
are obtained by a self-consistent linear-augmented-plane-wave method (D. R. Hamann, unpub-
lished results, 1979) using the Wigner exchange and correlation potential.

electrons per Si atom, and the all-electron calculations, which include the
full 14 electrons per Si atom, match within an average deviation of 0.06 eV
over an energy range of valence and conduction bands of 20 eV. Another way
of testing the pseudopotential energy dependence involves using an atomic
pseudopotential derived from the ground electronic configuration in atomic
self-consistent calculations for excited configurations. By means of exciting
the atom (or ionizing a few electrons), a very wide range of wavefunction
localization and orbital energies can be probed. This can be used to test
whether the pseudopotential results continue to mimic the all-electron results
away from the ground-state electronic configuration used to construct the
pseudopotential. Extensive work (Zunger and Cohen, 1978b; Zunger, 1979)
on many atoms indicates that the typical errors involved in orbital energies,
total energy differences (i.e., excitation energies), and wavefunction moments
are within 1072-10"% eV, 107310~ % eV, and 0.1%,-2%,, respectively, over a
range of about 20 eV of excitation energies. This satisfies our initial constraint
that atomic pseudopotentials be constructed in a way that is approximately
independent of their chemical environment.

The first-principles atomic pseudopotentials have been applied to self-
consistent electronic structure calculations of polyatomic systems such as
diatomic molecules— O, and Si, (Kerker et al., 1979; Schliiter et al., 1979);
tetrahedrally bonded semiconductors—silicon (D. R. Hamann, unpublished
results, 1979 ; Zunger and Cohen, 1979b), Ge (Zunger and Cohen, 1979b), and
GaAs (Zunger, 1980b); as well as elemental transition-metal solids—Mo and
W (Zunger et al., 1979a; Zunger and Cohen, 1979a). In addition, these



5 Pseudopotentials and Structural Properties of Crystals 101

TABLE 111

Calculated and Observed Equilibrium Lattice Constant a,, (A), Total
Valence Energy E, (Rydberg), or Cohesive Energy AE, (eV), and Bulk
Modulus B (dynfcm?) for Crystalline Silicon, bece Tungsten, and

Molybdenum*
Aeq E, or AE, B (10'? dyn/cm?)
Si Observed 543 —7919° 0.99
Calculated 5.44 —7.959% 0.94
Mo Observed 3.147 6.82°¢ 323
Calculated 3.13 6.68° 345
W Observed 3.165 8.90¢° 2:73
Calculated 3.17 7.90° 3.05

“ Calculated results are obtained using the first-principles atomic
pseudopotentials and a self-consistent mixed-basis approach (Zunger,
1980c; Zunger and Cohen, 1979a).

b Total valence energy (Ryd).

¢ Cohesive energy (eV).

pseudopotentials were used in the first nonlocal calculations dealing with a
semiconductor surface—GaAs (110) (Zunger, 1980b), transition-metal im-
purities in crystalline silicon (U. Lindefelt and A. Zunger, unpublished, 1981),
and the Ge-GaAs semiconductor interface (A. Zunger, unpublished results,
1980). The scope of this article does not warrant the description of detailed
results, and the interested reader is referred to the original papers. Here, we
will give two examples illustrating the level of agreement between these
calculations and experiment.

Table IIT shows the predicted and observed equilibrium lattice constant
deq. bulk modulus B, and cohesive energy AE, (or total valence energy) for
Mo, W, and Siin their observed stable crystal structure. These are obtained by
solving the Schrédinger equation self-consistently with the effective potential
of Eq. (5) and calculating the variational ground-state total energy using a
mixed basis set of Gaussian orbitals and plane waves. The second example is
given in Fig. 5, where the calculated pseudopotential charge density of bulk
Si (Zunger, 1980c¢) is compared with the experimental bonding charge density
(Yang and Coppens, 1974). Keeping in mind that no empirical input other
than the crystal structure and the atomic number is used in all of these calcu-
lations, the level of agreement with experiment is striking. What has been
demonstrated here is that the first-principles pseudopotential method is
capable of producing transferable atomic potentials that in quantitative
electronic structure calculations yield a chemical type of accuracy.
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Fig. 5. Experimental [p,,,,(r), Yang and Coppens (1974)] and calculated valence charge
density of silicon in the (110) plane, in units of electron per cell. The calculation is based on the
first-principles pseudopotential using a self-consistent mixed-basis method. Full dots indicate
atomic positions.

IV. TRENDS IN ORBITAL RADII

A. Chemical Regularities

We have argued that the classical turning points r, of the screened density-
functional atomic pseudopotentials form a useful elemental distance scale for
solids. One may then ask if indeed such atomic quantities retain their signifi-
cance in the solid state. To answer this, we have performed a self-consistent
band-structure calculation for bcc tungsten using our atomic pseudopoten-
tials. This is done by assuming that the crystalline pseudopotential V{)(r) is a
superposition of the atomic pseudopotentials v0)(r); but the screening VY[ 1]
is calculated from the self-consistent Bloch wavefunctions of the solid (Zunger
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Fig. 6. The self-consistent screening potential [interelectronic Coulomb V,,,(r), exchange
V,(r), and correlation V, ., (r)] and pseudopotential V'~ ®(r) for bce tungsten in different direc-
tions in the crystal.

and Cohen, 1979a), rather than from atomic orbitals. The resulting band-
structure, Fermi-surface, and optical spectra are in very good agreement with
previously published experimental data. One can now use the self-consistent
crystalline charge density n(r), calculate the Coulomb, exchange, and corre-
lation screening in the solid, and extract from that the screened solid-state
pseudopotentials V{{}(r) [Eq. (1)] their classical turning points. Obviously,
such a solid-state screened potential has a different form in the different
crystalline directions [h, k, 1], resulting in spatially anisotropic orbital radii
r[h, k, []. Figure 6 shows the solid-state tungsten pseudopotential (dashed
lines) as well as the three components of the screening (evaluated with respect
to the Fermi energy) in the solid. Although the screened pseudopotentials
show a pronounced directional character, the solid-state radii, lying in the core
region of the atoms, show only a small anisotropy:ro[111] = 1.279 + 0.002a.u.,
ro[001] = 1.214 + 0.002 a.u., and ro[110] = 1.256 4 0.002 a.u., compared
with the isotropic atomic value r, = 1.225 a.u. and the average crystalline
value of 1.25 a.u. The near invariance of these radii with respect to the chemi-
cal environment should be contrasted with the pronounced dependence of
the classical crystallographic radii (e.g., Shannon and Prewitt, 1969) on
chemical factors.

Inspection of the atomic pseudopotentials depicted in Figs. 3 and 4 imme-
diately reveals clear regularities. This may be appreciated from Fig. 7, which
shows the radius /™" at which the [ = 0 pseudopotential has its minimum,
plotted against the depth of the minimum W,. The column structure of the
periodic table is immediately apparent. At the upper left corner of the figure,
we see elements such as Cs and Rb, characterized by a very shallow and
extended pseudopotential; these elements are indeed the least electronega-
tive in the first five rows of the periodic table. In the lower right corner, we find
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Fig. 7. The correlation between the radius rj'™ at which the s pseudopotential has it
minimum and the depth of the minimum — W™, for the nontransition elements.

elements such as F and O, which are characterized by very deep and localizec
pseudopotentials; these are indeed the most electronegative elements
Clearly, as the electronegativity is a measure of the power of an atom to gair
extra electrons from its environment and at the same time keep its own elec-
trons, such a propensity is reflected in the potential-well structure of v3)(r)
In contrast with the thermochemical or dielectric electronegativity scales.
however, the present orbital radii define an anisotropic (or l-dependent
electronegativity scale.

We see in Fig. 7 that the first-row elements are somewhat separated from
the other elements—the former having deeper potentials than might have
been expected from extrapolating the data for other rows. This phenomenon,
resulting from a weak pseudopotential kinetic energy cancellation for the
first-row elements, is also clearly reflected in the thermochemistry of the
corresponding compounds. As we move from the right to the left of the peri-
odic table, one sees in Fig. 7 that the elements belonging to a given column
can be characterized solely by their potential radii, the potential depth being
nearly constant. This seems to be the basis for the success of the “empty core™
pseudopotentials (Ashcroft, 1966) postulated for simple metals, in which
v,(r) 1s assumed to be zero within a sphere of radius R,.. Only the variation
of R,, within a column in the periodic table is used to characterize a large
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Fig. 8. Correlation between Ashcroft’s empty-core pseudopotential radius and the p orbital
radius of the present density-functional screened pscudopotential (Table I).

variety of transport and structural data for the corresponding metals (e.g.,
Ashcroft, 1966, 1968; Ashcroft and Langreth, 1967; Stroud and Ashcroft,
1971). In fact, one finds that these empirical empty core radii used to fit resis-
tivity data may be identified, within a linear scale factor, with our r, screened
pseudopotential coordinate (Fig. 8). Whereas the alkali elements are charac-
terized predominantly by a single coordinate (Fig. 7), in line with their free-
electron properties associated with a shallow pseudopotential, the elements
to their left are characterized by a dual coordinate system. The regularities
in these dual coordinates also reflect well-known chemical trends: for
example, the tendency towards metalization in the C, Si, Ge, Sn, and Pb
series is represented by the increased delocalization and reduced depth in
their pseudopotentials, etc.

To illustrate the significance of the angular momentum dependence of the
atomic pseudopotentials, Fig. 9 shows the elements ordered by their (™0, W)
coordinates. The elements are clearly grouped according to their rows in the
periodic table. At small || and large ri*" (i.e., shallow and delocalized, or
weak, potentials), we find the classical free-electron-like metals; at large Wll
and small ™" (deep and localized, or strong, potentials) we find the atoms
that form covalent structures and the transition elements. Each row in the
periodic table is represented here by at least two lines—one connecting the
full circles passing through the I = 0 coordinates and one connecting open
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Fig. 9. The correlation between the radius r{*"" at which the pseudopotential va(r)[Eq. (9))]

has its minimum and the depth of the minimum — W, arranged according to rows in the
periodic table. The first and last elements of each row are denoted by their chemical symbol.

circles passing through the [ = 1 coordinates. The full triangles denote the
[ = 2 coordinates. The | = 1 components of the first-row atoms as well as the
[ =2 components of the second and third rows are purely attractive (cf.
Fig. 4¢), and all have a minimum of negative infinity at the origin. For clarity
of display, we have connected the l = 0 and | = 1 coordinate of each atom by
a straight line. Clearly, the length and slope of these lines measure the s—p
nonlocality of the potential. Few interesting observations can be made. The
s—p nonlocality decreases as one moves down the columns in the periodic
table, as the ratio of the number of core states of [ = 0 and [ = 1 symmetry
approaches unity, and U,(r) becomes approximately /-independent. The
adequacy of the early local pseudopotential models to describe the low energy
electronic excitations of compounds such as GaAs, AlAs, InSb, etc, 18
reflected in the present theory by the proximity of the / = 0 and | = 1 coordi-
nates of the corresponding atoms. One further notes that while within a given
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row the slope of the line connecting the (™", Wp) and (r{'", W, ) coordinates
is negative at the right side of each row (i.e., the p potentials are more localized
and deeper than the s potentials), these slopes move gradually towards less-
negative values and become positive eventually at the left side of the lower
rows (i.e., the p potentials become more extended and shallower than the s
potentials). This is directly related to the increased delocalization of the outer
valence p orbitals as one moves towards the left side of the rows. One notes
that the [ = 2 coordinates are quite separated from the / = 0 and 1 coordi-
nates, and vary almost linearly within each row. These localized d potentials
are responsible for the relatively narrow and separated d bands in the
transition-metal solids. Their variations along the rows parallels the changes
in the d-band width in the respective elemental metals, and similarly, their
proximity to the I = 0 coordinates governs the degree of s—d hybridization.

Having discussed some of the periodic trends exhibited by the atomic
pseudopotentials, we now turn to their significance in the establishment of
elementary distance and energy scales, which are quantum-mechanical
extensions of similar semiclassical scales discussed in the Introduction.

Figures 10 and 11 display the multiplet-average experimental ionization
energy E, of the atoms (Moore, 1971), plotted against the reciprocal orbital
radius r;!. For each group of elements, we show two lines: E, vs. ro ' and
E, vs. ry ' The striking result is that the theoretical r, 1 is seen to form an
accurate measure of the experimental orbital energies and hence can be used
as an elementary orbital-dependent energy scale, much like Mulliken’s elec-
tronegativity. Indeed, since 1| ! is a measure of the scattering power of a
screened pseudopotential core towards electrons with angular momentum
I, it naturally forms an electronegativity scale. There is an interesting relation
between this picture and Slater’s concept of orbital electronegativity within
the density-functional formalism (Slater, 1974). In his approach, the spin-
orbital electronegativity X is defined as the orbital energy ¢; of the density-
functional Hamiltonian, which in turn equals the derivative of the total
energy E with respect to the ith orbital occupation number: X; = & = JE/dn;.
In the limit where E is a quadratic function of n;, this orbital electronegativity
reduces to Mulliken’s form. This definition is based on the notion that a
chemical reaction takes place when electrons will flow from the highest
occupied orbitals of a reactant to the lowest unoccupied orbitals with which
a finite overlap occurs. Since the present ;' coordinate scales approximately
with the orbital energy &, the former coordinate is a realization of Slater’s
electronegativity in a pseudopotential representation.

The orbital radii r, also form an interesting distance scale (A. N. Bloch,
unpublished results, 1980). Consider an all-electron valence atomic wave-
function such as the 4s and 35s orbitals of V and Nb, respectively, depicted
in Fig. 12. These wavefunctions have their outer maxima at the points
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Fig. 12. Radial s-type all-electron wavefunctions for V and Nb: r,,, denotes the position

of the outer orbital maxima, r, is the screened pseudopotential radius, and d, is the average
node position. Note that r, is pinned inwards of the last node and outwards of d;.
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Fig. 15. Relation between Pauling’s tetrahedral radius and the s-orbital radius of the
screened pseudopotential (Table I).

denoted by r,,,, and have a number of nodes inwards to r,,, - An algebraic
average taken for all node positions in each wavefunction shows that these
average positions (denoted by d,) are pinned at a certain distance from the
orbital radius r,. Figure 13 shows the average node position d, of the outer
all-electron s-type valence orbital plotted against ry, and Fig. 14 shows
similar results for d-orbitals (only the first and last element of each row are
denoted by the chemical symbol). We find that the oribital radius r; scales
linearly with the average node position, where the row-dependent scale
factor increases monotonically with the position of the period in the table
of elements (e.g., the scale equals 1.0, 1.5, 2.0, 2.3, and 2.7 for periods 1-5,
respectively). It is seen that the orbital radii r, form, therefore, an intrinsic
length scale in that they carry over from the “true” wavefunctions the informa-
tion on the average node position. Hence, the dual coordinates {r, rt}
satisfy the semiclassical ideas underlying many successful structural factors
(e.g., Pearson, 1972; Hume-Rothery and Raynor, 1954; Pauling, 1960) in
forming elementary energy and length scales.

An additional intriguing feature of these orbital radii is their simple
correlation with Pauling’s tetrahedral radii (Pauling, 1960). As seen in Fig.
15, the tetrahedral radii can be identified with the r, coordinate to within a
row-dependent scale factor.
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potential radius R, = r, + r,. Note that this R, scale separates the univalent radii into a grou
of predominantly s-bonding elements (full circles) and s—p bonding elements (full triangles).

While the individual r, and r, radii measure the effective extent of th
quantum cores of s and p symmetry, the sum R} = r? + r4 provides a mea
sure of the total size of the effective core of atom A. Figure 16 depicts R? versu
Pauling’s univalent radii for the first three periods of the table of element:
A similar correlation exists with Gordy’s covalent radius (Gordy, 1946
R2 closely follows the regularities of the univalent radii, including thei
discontinuity at the end of the transition elements. Examination of Fig. 1
reveals that the present R, coordinate provides a natural separation o
Pauling’s univalent radii into those that pertain to atoms sustaining s—
covalently bonded compounds and those in which the s-electrons largel
dominate the structural properties. It is remarkable that the orbital radi
derived from a pseudopotential formulation of atomic physics provide such :
close reproduction of the length scale derived experimentally from solid-stat:
physics (e.g., the empty-core radii in Fig. 8, and Pauling’s tetrahedral anc
univalent radii in Figs. 15 and 16, respectively).

We have concentrated in this section on revealing the most significan
correlations between the orbital radii and some transferable (rather thar
compound-dependent) semiclassical coordinates. We will not describe
correlations with compound-dependent physical properties (e.g., melting
points, deviations from ideal ¢/a ratio in Wurtzite structures, elastic constants
etc.) not only because this may be too excessive, but also because we believe
that many more such interesting correlations are likely to be discovered ir
the future. Such correlations between atomic {r,} values and physical prop-
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erties GU, G, etc., may not only serve to systematize those properties but
could also point to the underlying dependencies between the seemingly unre-
lated physical observables Gig, G, etc.

B. Screening Length and Orbital Radii

One can view the quantity r; ' as being an orbital-dependent screening
constant pertinent to the scattering of valence electrons from an effective
core. For the nontransition elements, one finds, as expected, that r; ! falls
off monotonically with decreasing valence charge Z,, reflecting a more
effective screening. However, for the 3d, 4d, and 5d transition series (Fig. 17),
one finds two distinct behaviors: although ri ! is a simple, monotonic func-
tion, both r.* and r, ! show a break at the point where the d shell is filled.
This is intimately related to a similar trend in the orbital shielding constants
Z¥ calculated by Clementi and Roetti (1974) as a rigorous extension of
Slater’s screening rules. As seen in Fig. 18, the reciprocal screening lengths
(Z¥)~ ! for the 3d transition series show a characteristic break around Cu-Zn,
much like the corresponding reciprocal radii r; '. In constrast, (Z¥)~? for
the nontransition elements follow a linear trend.

This dual behavior of r[ ! separates the predominantly d-screening
domain of the transition elements from the s—p screening domain of the
posttransition elements. Note that 17! and Z§ show uniquely this dual
behavior, whereas most chemical and physical quantities are simple mono-
tonic functions of the atomic position in these rows. It is interesting to note
that such effects are clearly manifested by s and p coordinates rather than
by the d coordinate. This has a central role in the structural significance of
the s—p coordinates even for compounds containing transition elements.

C. Comparison with Other Orbital Radii

Figure 19 compares the empirical stripped-ion radii of Simons and Bloch
(SB) with the present theoretical values of the density-functional orbital radii
for the 41 nontransition elements calculated by SB. The latter set has recently
been corrected for the posttransition elements (A. N. Bloch, unpublished
results, 1980) relative to the set used by Chelikowsky and Phillips (1978)
and Machlin et al. (1977). Figure 19 includes the corrected values (e.g., the
| = 0 crossing-point radii for Cu, Ag, and Au are 0.38, 0.44, and 0.41 a.u.,
instead of 0.21, 0.22, and 0.13 a.u., respectively). These large corrections
change quantitatively some of the results of these previous authors in
analyzing the non-octet crystal structures and regularities of melting
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temperatures, as well as the decomposition of Miedema’s heat of formatior
model into elemental orbital radii.

Figures 20 compares the recent orbital radii developed by Andreoni
Baldereschi, Biemont, and Phillips (ABBP; see Andreoni et al., 1978, 1979
with the present orbital radii, for the 27 nontransition elements calculatec
by ABBP. The ABBP radii are obtained from a two-parameter fit of bott
the Hartree—Fock stripped-ion orbital energies as well as the peak position
of the orbital wavefunctions. The values for the eight 3d transition elements
given by ABBP are notincluded in Fig. 20 since, as indicated by these authors,
and as we confirm, they are not as reliable.

It can be seen that although the empirical SB radii correlate overall with
the present radii, the scatter is fairly large. In particular, the SB scheme
predicts r, «< r, for the first-row elements, whereas the present and the
ABBP scheme, which attempt to reproduce both energies and wavefunctions,
show r, > r,. The ABBP radii correlate well with our radii (Andreoni et il
1979) for the 27 nontransition elements. Other plots (e.g., correlation of
rl — 3| or [r® + 4| between the various schemes) lead to similar conclusions.
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V. SEPARATION OF CRYSTAL STRUCTURAL OF 565
BINARY AB COMPOUNDS

The orbital radii {r;} derived here can be applied to predict the stable

> crystal structure of compounds in the same was as discussed by St. John

and Bloch (1974), Machlin et al. (1977), and Zunger and Cohen (1978a).

Having, however, the orbital radii of all atoms belonging to the first five

¢ rows in the periodic table, this theory can be applied to a far larger data
base of crystals (565) than has been attempted previously (50-80).

Our first step was to compile a list of binary AB compounds whose atoms
belong to the first five rows of the periodic table. We were interested in the
most stable crystal form of each compound and in a structure that appears
in the phase diagram at (or close to) a 50%,-507; composition. We started
the compilation by reviewing standard tables: Pearson’s “Handbook of
Lattice Spacings and Structures of Metals and Alloys™ (1967); Hultgren
et al., “Selected Values of Thermodynamic Properties of Binary Alloys”
(1973); Wykoff, “Crystal Structure” (1963); Schubert, “Kristallstrukturen
Zweikomponentiger Phasen” (1964); Landolt- Bornstein, Structure Data
of Elements and Intermetallic Phases” (1971); Hansen, “Constitution of
Binary Alloys” (1958); Rudman et al., “Phase Stability in Metals and Alloys”
(1966); Pearson, “The Crystal Chemistry and Physics of Metal and Alloys™
(1972); and Parthé, “Crystal Chemistry of Tetrahedral Structures” (1964);
as well as a number of basic papers, such as Rieger and Parthé (1966), Schob
and Parthé (1964), and Schubert and Eslinger (1957), which give useful
tables for particular structures. Whenever we have identified in this literature
either a conflict in assigning a crystal structure or expressions of doubt as to
the identification of the structure, other structures at somewhat different
pressures or temperatures, substantial deviation from 1:1 stoichiometry,
etc., we have made use of a computer-assisted literature search to find the
original papers for the compounds in question. In this way, we have surveyed
some 180 references. We have identified from standard sources as well as
from an extended computer search a total of about 565 binary AB com-
pounds that are near-stoichiometric, ordered, and formed from atoms
belonging to the first five rows of the periodic table. Their distribution among
the various crystal structures is given in Table IV.

This data base of 565 binary compounds exhibits an enormous range of
physical, structural, and chemical properties. Using the terminology of the
semiclassical structural factors, one notes the large range of conductivity
properties spanned by these compounds (insulators, semiconductors, semi-
metals, metals, superconductors), the electronegativity difference (covalent
vs. large ionicity), coordination numbers (12 to 2), relative ionic sizes of the



TABLE IV

AB Crystal Structures Used in the Structural Plots®

Strukturberichte

or Pearson Number of
symbols Space group Unit cell Prototype compounds
Octet
Bl Fm3m cubic NacCl 65
B2 Pm3m cubic CsCl 3
B3 F43m cubic ZnS 29
B4 P6ymc hexagonal Zn0O 11
A4 Fd3m cubic diamond 4
Total 112
Non-octet
Bl Fm3m cubic NaCl 33+ 8
B2 Pm3m cubic CsCl 122 4+ 2
Bg, P6y/mmc hexagonal NiAs 62+ 3
B10 Pad/nmm tetragonal PbO 042
Bi1l Pa/nmm tetragonal CuTi i
Bl16 Pnma orthorombic GeS 0+7
BI19 Pmma orthorombic CuCd 11
B20 P2,3 cubic FeSi 17
B27 Pnma orthorombic FeB 16
B31 Pnma orthorombic MnP 30
B32 Fd3m cubic NaTl 7
B33 Cmem orthorombic CrB 41
B35 P6/mmm hexagonal CoSn 3
B37 14/mem tetragonal SeTl 0+3
B, P6m2 hexagonal MoP 4
cP64 P43n cubic KGe 6
hP24 P65 /mmc hexagonal LiO 3
L1, Pd/mmm tetragonal CuAu 27
mC24 c2/m monoclinic AsGe 0+ 4
mC32 C2/e monoclinic NaSi 1
mP16 P2,/c monoclinic AsLi 4
mP32 P2,/n monoclinic NS 0+5
oCl6 Cmem orthorombic NaHg 1
oClé6 Cmca orthorombic KO 1
oC48 Cmc2, orthorombic SiP 0+1
ol8 Immm orthorombic RbO 4
oP16 P22424 orthorombic NaP 6
tI8 14/mmm tetragonal HgCl 0+3
tI32 14, /a tetragonal LiGe 1
tI32 14/mem tetragonal TITe 0+1
tl64 14, /acd tetragonal NaPb 7
Total 453

¢ When two entries appear for the number of compounds, the first indicates the
number of suboctet compounds and the second denotes the number of non-transition-

element suberoctet compounds.
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A and B atom, bonding type (covalent, ionic, metallic, etc.), range of heats of
formation (~ 1-150 kcal/mole), electron per atom ratios (=~ 1.5 to 8-9), etc.
Given this distribution of the 112 octet compounds and 453 non-octet
compounds into 5 and 31 different crystal structures, respectively exhibiting
a diverse range of properties, we now ask how well can the atomically derived
orbital radii scheme explain such a distribution.

We construct from the s and p atomic orbital radii the dual coordinates

for an AB compound as:

RAB = |2 + ) — (rB + 1] ,
RAB — ‘|£Ap_ rA‘)_+_ |r(}3p_ 2| )1 (23)
n p s p s
Here, R2® is a measure of the different between the total effective core radii
of atoms A and B (i.e., size mismatch); whereas RAB measures the sum of
the orbital nonlocality of the s and p electrons on each site. Using the defi-
nition [Eq. (23)] and the values of the orbital radii given in Table I, we
construct RAB vs. RB maps for the binary compounds. Such maps are shown
for 112 octet compounds in Fig. 21 and for 356 of the non-octet compounds
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Fig. 22. A structural separation plot for the 356 binary non-octet compounds, obtaine

with the density-functional orbital radii, with R2® = |(r2 + 14) — (rg + r2)|, RAB = |r2 — r4| -
B_ B
’rp —rg.

in Fig. 22. (For example, for NiAs, we have from Table I: v = 0.96 a.u., )’ =
122 a.u, rd = 0.67 a.u., and r2* = 0.745 a.u.; hence, RN = (1.22 + 0.96) -
(0.745 + 0.67) = 0.765 a.u. and R}™ = (1.22 — 0.96) + (0.745 — 0.67) =
0.335 a.u. This appears in the B8; domain in Fig. 22.)

We identify each structure by a different symbol and search for the smalles
number of straight lines, enclosing minimal areas, best separating the differen
structures. In some cases, there exists a unique solution to this topologica
problem; in other cases (e.g., B33 and cP64 and t164 structures), there ar
a number of permissible solutions. However, in these cases it seems to mak
little difference which line is chosen. While we could have lowered the numbe
of “misplaced” compounds by using more complex lines, we feel that the
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more stringent criterion of using straight lines provides us with a better
chance of assessing the true success of the method.

The remarkable result of these plots is that with the same linear combination
of atomic orbital radii, most of the structures to which the 468 compounds
appearing in these plots belong can be separated. The relative locations of
the structural domains seems chemically reasonable. Hence, the B27-B33
(coordination number CN = 7) is intermediate between the Bl structure
(CN = 6)and the B2 L1, structures (CN = 8). The mostly metallic non-octet
compounds appear separate from the nonmetallic regime to the right (cP64,
t164, mC32, mP16, 0C16), etc. Within single structural groups one similarly
finds a chemically reasonable ordering of compounds,—e.g., polymorphic
compounds (such as SiC) appear near border lines, Zinc blende-rock salt
pairs that intertransform at low pressure appear along their separating line,
etc. Note that even the wurtzite—zinc blende structures, which only differ
starting from the third nearest-neighbors, are well separated. However, there
are a number of crystallographically closely related structures that overlap:
I am unable to separate the non-octet crystal type (B2) from the CuAu
(L1, structure), the NiAs-type (B8;) from the MnP-type (B31), and the CrB
type (B33) from the FeB type (B27), etc. For charity of display, I show some
of the extra overlapping structures separately in Fig. 23, using, however,
precisely the same separating lines as used for all other non-octet compounds
(Fig. 22).

[t is not surprising that some of these structural pairs overlap. For instance,
the B27 and B33 structures have a common structural unit consisting of a
row of trigonal prisms of atom A stacked side by side and centered by a
zigzag chain of B atoms (Hohnke and Parthé, 1965). The structural similarity
between CsCl (B2) and CuAu (L1,) has been discussed by Hume-Rothery
and Raynor (1954); the relation between the NiAs (BS,), MnP (B31), and
the FeSi (B20) structures by Schubert and Eslinger (1957); and that between
the CsCl (B2), AuCd (B19), and CuTi (B11) by Pearson (1972). In fact, exam-
ination of the thermochemical data (Hultgren et al., 1973; Kubaschewski
and Alcock, 1979, and references therein) indicates that if a certain compound
exists in two of these related structures at somewhat different temperature,
the difference in their standard heats of formation is often as small as 0.3 kcal/
mole! (For example, AgCd in the B19 structure has AH = 0.094 £ 0.004 eV,
whereas the B2 structure has a heat formation of 0.080 + 0.004 e¢V.) Also,
some of these presently unseparated structures indeed appear as mixtures
when prepared from the melt [e.g., as noted by Honke and Parthé (1965),
both the B27 and B33 structures are frequently found in the same arc-melted
buttons of these compounds .

Since the publication of a preliminary report of this work (Zunger, 1980d),
which included 495 compounds, I have been made aware of the crystal
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structures of 54 more octet and suboctet compounds as well as 16 new
superoctet compounds (i.e, a total of 565 compounds). I find that the
lines separating the structural domains of the octet and suboctet compounds
need not be changed relative to their previous assignment to incorporate
the 54 new compounds. All the superoctet compounds (a total of 34) could
be separated clearly as well (Fig. 24 and discussion below). This illustrates
the predictive ability of the present approach.

If one is to consider the pairs of related crystal structures mentioned above
as belonging to single generalized structural groups, the total number of
misplaced compounds (5 octet and 32 non-octet) forms only 7% of the total
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Fig. 24. A structural separation plot for the 34 superoctel compounds A¥B"°~™ with
valence electron concentrations VEC =9 (Fig. 24a) and 10 (Fig. 24b). The structural groups
are defined in Table IV. The symbol R (Fig. 24) denotes a romboledral structure. In the Bl
domain of Fig. 24b we have also included the compounds with VEC =9, 11.

data base of binary compounds. In this respect the present theory i1s more
than 90%, successful.

The compounds that are “misplaced” in the present theory (i.e., their
{RAB, RA®) coordinates place them in a different structural domain than
that reported in the literature surveyed) are listed in Table V together with
their {R2®, R2®} coordinates. In cases where a compound appears in over-
lapping domains or close to a border line, we indicate all the pertinent
structures. Given their {RAE, RAB} coordinates, the reader can conveniently
identify them on structural plots.

The list of misplaced compounds shows a number of interesting features.
At least two compounds, CuF and FeC, reported to have the B3 and Bl
structures, respectively, probably do not exist at all (for CuF see Barber
et al., 1961 ; for FeC, F. Jellenek, private communication, 1980). Their “mis-
placement” in the present theory is hence a graftying feature.

Similarly, while OsSi (No. 11) is sometimes reported to have the B2 struc-
ture (e.g., Landolt-Bornestein, 1971) and appears in our plots in the B20
domain (No. 11 in Table 5), it is known to actually have the B20 structure
and appears in B2 only with impurities. In addition, the compound PtB
(No. 18 in Table V) which has been reported to have the NiAs (B8,) structure
and is placed in our plots in an entirely unrelated structural domain, has
been found to have an anti-NiAs structure. NiY (No. 30) was reported in
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TABLE V

Compounds Which are Misplaced in the Present Theory
(out of a Total of 565)

Structural
domain(s) in
Expected which it is R2® R®
Compound structure found (a.u.) (a.u.)
Octet
1. CuF B3 © BI 1.635 0.375
2. MgS Bl B3 0.93 0.25
3. BeO B4 B1-B3 0.615 0.305
4, MgTe B4 B1-B3 0.36 0.32
5. MgSe Bl B1-B3-B4 0.745 0.285
Non-Octet
1. CoAl B2 B8,-B31-B20 0.345 0.315
2. FeAl B2 B8, -B31-B20 0.435 0.345
3. NiAl B2 B8,-B31-B20 0.505 0.395
4. CoGa B2 B8,~B31-B20 0.325 0.355
5. FeGa B2 B&,-B31-B20 0415 0.385
6. NiGa B2 B8,—-B31-B20 0.485 0.435
7. Niln B2 B8,-B31-B20 0.13 0.43
8. Mnln B2 B&,-B31-B20 0.17 0.41
9. CoPt L1, B8,-B31-B20 0.68 0.40
10. TiAl L1, Bg&,-B31-B20 0905 0.415
11. OsSi B2 B8,-B31-B20 1.23 0.37
12. CoBe B2 B&,-B31-B20 094 0.38
13. PdBe B2 B33-B27 1347 0.49
14. NaPb ti64 B2-L1,-B32  0.56 0.52
15. AuBe B20 B1-B33-B27  1.58 0.44
16. FeC Bl B1-B8,-B31 1.47 0.35
17. TiB BI B1-B33-B27 1.785 0.445
18. PtB B8, B1-B33-B27 1.905 0.385
19. IrPb B8, B8,-B31-B2  0.538 0.478
20. AgCa B33 BI-LI1, 0.625 0.645
21. HfPt B33 B2-L1, 0.21 0.53
22, NiHf B33 B2-L1, 0.73 0.57
23. NilLa B33 B2-L1, 0.90 0.59
24, NiZr B33 B2-L1, 0.645 0.555
25. PtlLa B33 B2-L1, 0.38 0.55
26. RhLa B33 B2-L1, 0.56 0.63
27. ZrPt B33 B2-L1, 0.125 0.515
28. PdLa B33 B2-Li, 0.63 0.62
29, Aula B27-B33 B2-1L1, 0.42 0.57
30. NiY B27 B2-L1, 0.76 0.56
31. PtY B27 B2-L1, 0.24 0.52
32. LaCu B27 B2-L1, 1.04 0.61

Alex Zun;
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1960 (e.g., Elliot, 1965, p. 678) to have the orthorhombic B27 structure, in
conflict with the prediction of the present scheme, while in 1964 (e.g., Shunk,
1969, p. 561) it was concluded that it is actually monoclinic with a P2,/a
space group. It seems that no clear identification for this structure is yet
available. While HfPt (No. 21) is identified in most sources as having a B33
orthorhombic structure, a deformed B2 modification has also been reported
(e.g., Shunk, 1969, p. 419). Similarly, AuBe (No. 15) has been reported in
1947 to have the B20 structure (e.g., Elliot, 1965, p. 83) while in 1962 (e.g.
Shunk, 1969, p. 64) it has been identified as tetragonal. AuLa (No. 29) has
been reported to transform from its high temperature B33 form to a low-
temperature B27 form (both orthorhombic) at about 660°C, while in 1963
(Shunk, 1969, p. 73) it was indicated to have the cubic B2 form. It is hence
clear that for some of the “misplaced” compounds, it is not yet obvious
whether their misplacement is real. For the other compounds appearing in
Table V their misplacement in the present phase diagrams is real and brings
up a number of interesting observations.

The octet compounds MgS and MgSe have a NaCl (B1) structure but
appear in our plot in the ZnS (B3) domain, near the Bl border. Experimentally
(e.g., Navrotsky and Phillips, 1975) it is found that the (normalized) free
energy of the B3-BI phase transition for these compounds is nearly zero.

A large number of the other misplaced compounds have unusual proper-
ties. Two such groups of compounds show systematic unusual properties:
the six Al and Ga compounds with the magnetic 3d transition elements
(CoAl, FeAl. NiAl, CoGa, FeGa, and NiGa) and the group of ten CrB and
three FeB structures (AgCa, HfPt, NiHf, NiLa, NiZr, PtLa, ZrPt, PdLa,
and AuLa, and NiY, PtY, and LaCu, respectively).

The first group has the CsCl (B2) structure but appears in the present
theory in the domain of the NiAs-MnP-FeSi structures. Their electric and
magnetic properties have been studied intensively in the last few years (e.g.,
Brodsky and Brittain, 1969; Herget et al., 1970; Wertheim and Wernick,
1967; Huffman 1971 ; Bose et al., 1979; Miiller et al., 1979 ; Kiewit and Brittain,
1970; Caskey et al., 1972; Sellmyer et al., 1971). It appears that these com-
pounds are stabilized by the presence of defects, and they have a large, stable
range of composition (45-55%).

Susceptibility measurements as a function of magnetic field show ferro-
magnetic impurities and antistructure defects in such materials. More
importantly, a slight nonstoichiometry often leads to the formation of local
magnetic moments. These results indicate (e.g., Sellmyer et al., 1971) that
such slightly off stoichometric materials are in effect spin glasses at low
temperatures. Their magnetic behavior is intermediate between that of the
independent magnetic impurity problem (Kondo effect) and that charac-
teristic of antiferromagnetic or ferromagnetic systems having long-range
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order due to strong magnetic interactions. It is interesting to note that thi
subgroup of compounds exhibiting stable intrinsic defects leading to mag
netic moments, are displaced in the structural plots from the largely non
magnetic B2 domain to the B8, region in which even the stoichiometri
alloys have permanent local moments. There are indications that thi
subgroup of compounds have certain structural anomalies: Many author
report that the B2 aluminides could not be obtained as a single phase, anc
in diffraction the B2 pattern could not be separated from other diffractior
lines not belonging to this structure (Schob and Parthé, 1964). It was sug
gested (Schob and Parthé, 1964) that many of these compounds are only
metastable in the B2 structure. In a recent diffraction study (Gerold, 1978
it was discovered that strong distortions occur around Co sublattice site:
in CoGa due to intrinsic vacancies. Similarly, a recent calculation (Bras et al.
1977) of the ordering energy in FeGa, using a Bragg-Williams model, yieldec
very small interaction parameters of 0.049 eV and 0.03 eV (e, ~2-1kT
for first and second neighbors, respectively. It is intriguing that the present
orbital radii scheme has the ability of identifying such unusual phenomena
in a few of the 122 tabulated B2 nonoctet compounds.

Our scheme suggests that similar irregularities may occur in Niln and
TiAl and perhaps even in CoBe, but to a much smaller extent, since these
compounds are only marginally misplaced in the present theory. Indeed,
the absorption spectra of Niln in the 0.7-5.5 eV range (Best et al., 1971)
indicate almost no change with composition in its Drude regime as well as
above it, suggesting constant number of electrons per cell due to the defect
structure. This suggests that many of the unusual magnetic and structural
properties found in the FeAl, FeGa, CoAl, CoGa, NiAl, NiGa group may
may also be found in Niln.

The second large group of misplaced compounds (numbers 20-32 in
Table V) form a distinct structural group. Schob and Parthé (1964), Rieger
and Parthe (1966), and Hohnke and Parthé (1965) have indicated that all
CrB (B33) and FeB (B27) compounds can be separated into two groups:
group I, in which a transition-metal atom combines with an s—p element
(B, S1, Ge, Al, Ga, Sn, or Pb), and group II, in which a transition element
from the third or fourth group combines either with another transition ele-
ment from group VIII or from the Cu group. It was found that the individual
trigonal prisms in both the FeB and the CrB structures have different relative
dimensions in groups I and II. In particular, group I of the CrB structure
shows a “normal” a/c ratio greater than one, but group IT compounds show
a compressed prism with a/c < 1. Only three compounds belonging to group
I (HfAl, ZrAl, and YAI) have a/c < 1. We find that all of the CrB and FeB
compounds that belong to group 11 are misplaced by our theory into the bor-
dering CsCl domain, whereas the three group I compounds that have ale <1
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(much like group Il compounds) are correctly placed. Hence, the present
approach is sufficiently sensitive to separate the true physical irregularity
even when simple structural factors such as the a/c ratio lead to the wrong
conclusion. From the results of the present approach, it would seem that
group II compounds of the FeB and CrB structures should properly be
identified as a separate group. As a result, if the errors made by the present
theory for the latter group of compounds as well as the errors in the 1-8
(Table V) local-moment materials are regarded as systematic irregularities,
the remaining “true” errors amount to only 2%, of the total data base.

The remaining misplaced compounds may also have unusual properties;
NaPb (No. 14) has an unusual structure resembling a molecular crystal with
64 atoms per cell and interacting Pb, tetrahedra (Marsh and Shoemaker,
1953; Hewaidy et al., 1964); IrPb (No. 19), according to Miedema'’s (1976)
model, has a positive heat of formation of about 1 kcal/mole.

Similarly AgCa (No. 20) has been recently discovered (Amand and Giessen,
1978 to be one of the only known glass-forming materials that do not con-
tain a transition element. It has also been noted (Chelikowsky and Phillips,
1978 that the ratio of anion—anion to cation-anion distances in AgCa is
almost an order of magnitude smaller than in all other nontransition metal
B33 compounds and that unlike the latter group of compounds it has catalytic
properties in redox reactions.

The relative orientation of the structural domains in Figs. 21-23 suggest
that no single coordinate will suffice to produce a complete topological
separation between all structures. Since, however, the area of the RA® vs.
RA® plane seems to be more or less bound (e.g., 3 a.u.? in Fig. 22) when
extra compounds are added, it is likely that the two-dimensionality of this
finite R2B-R2® space will eventually preclude the delineation of further struc-
tures. One may hence expect that for some critical number of structures and
compounds, a third coordinate may be needed. Such a generalized multi-
dimensional resolution of structural groups may also resolve some of the
remaining discrepancies in the present theory. Our present approach however
is aimed at demonstrating the extent of structure delineation possible with
the minimum number of two coordinates using the simplest possible sepa-
rating lines.

One simple example for an additional coordinate is the classical (e.g.
Pearson, 1969) valence electron concentration VEC, measuring for the binary
AB system the total number of valence electrons Z + A7 [cf. Eq. (9)] in
the compound. In the semiclassical approaches to structure it is known that
whereas the VEC value alone does not separate different crystal structures,
compounds with the same valence electron number often belong to the same
broad structural groups. One can use this additional coordinate together
with our orbital radii to obtain a better structural resolution of the marginally
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resolved structures, and at the same time provide a clear structural delin-
eation of all superoctet (i.e., Z% + Z® > 8) compounds. As with the suboctet
compounds, no previous approach has succeeded in systematizing these
complex crystal structures.

We find that while the definition of the structural coordinates R:2® and
R2® [Eq. (23)] used for the octet (Fig. 21) and mostly suboctet (Figs. 22, 23)
compounds yields an overall separation also of the superoctet compounds,
a more sensitive delineation is obtained with the slightly modified coordinates
R, = |r} — r3| and R, = (R2®)~! suggested by Littlewood (1980). Here, R,
1s a measure of the p-orbital electronegativity difference between atoms A and
B, while R, measures the s—p nonlocality on the two sites. The reason that
Ir? — 5| forms a better structural coordinate for superoctet compounds is
that these systems involve relatively heavy atoms (e.g., Pb, Sn, Bi, T1, Hg) for
which the s electrons are paired and strongly bound relative to the p electrons.
Hence, these semicore s orbitals become chemically inactive and only the
contribution of the p electons needs to be included in the electronegativity
parameter R .

Figures 24a and 24b show structural plots for the superoctet compounds
with 9 and 10 valence electrons respectively. Since there are only a few Bl
superoctet compounds, we have included those with VEC = 9 (SnAs),
VEC = 10 (PbS, PbSe, PbTe, and PbPo) and VEC = 11 (BiSe, BiTe) on
the same plot in Fig. 24b. Figure 24 includes 18 compounds which have
appeared in the previous nonoctet plots (Figs. 22 and 23): B37 (InTe, TISe,
TIS), mC24 (GaTe, GeAs, GeP, SiAs), B16 (GeS, SnS, GeSe, SnSe, InS),
pseudo-B8; (GaS, GaSe, GeTe, SnTe, InSe), and the orthorombically dis-
torted Bl compound TIF. It is seen that the seven different structures of the
VEC =9 compounds as well as the six different VEC = 10 structures are
very clearly resolved, the only exception out of these 34 compounds being
the B37 compound TIS which is marginally displaced into the neighboring
hP8-hR2 domain (Fig. 24a).

It 1s interesting to note that the present scheme also predicts unusual
electronic properties of compounds belonging to the same structural group.
For instance, the B2 compounds CsAu and RbAu that appear in Fig. 22
as isolated from the other 147 B2 + L1, compounds have semiconducting
properties (e.g., Spicer, 1962), while all other suboctet compounds belonging
to these structures seem to be metals. A recent calculation of the electronic
band structure of CsAu (Hasegawa and Watabe, 1977) has indicated that
if relativistic corrections are neglected, CsAu appears to be a metal, which
disagrees with experiment, whereas the inclusion of relativistic effects lowers
the Au s valence band to form a semiconductor. It is remarkable indeed that
such complicated electronic structure factors are required in quantum-
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mechanical band-structure calculations to reveal the unusual semiconducting
behavior suggested here simply by the atomic orbital radii.

If the predictive power of the present orbital radii scheme in relation to
unusual electronic properties is not accidental, it would be interesting to
speculate on its consequences. One would guess, for instance, that all sub-
octet nontransition element compounds having R2P larger than roughly
0.7 a.u. are nonmetals! This includes not only the known nonmetallic com-
pounds belonging to the LiAs group (KSb, NaGe, NaSb, but not LiAs) and
the KGe group (CsGe, CsSi, KGe, RbGe, and RbSi, whereas KSi is a border-
line case), but also the tI64 (NaPb) group (CsPb, CsSn, KPb, KSn, RbPb,
and RbSn, but not NaPb), the B2 compounds LiAu and LiHg, the L1,
compound NaBi, the 0oC16 compound NaHg, and the mC32 compound
NaSi. In the sequence of alkali-gold compounds LiAu, NaAu, KAu, RbAu,
and CsAu, one would similarly predict that the transition between metallic
and insulating behavior occurs between NaAu and KAu.

It is important to emphasize that the ability to separate structures shown
by the present orbital radii (Figs. 21-24) is far from being trivial or accidental.
This can be demonstrated by constructing structural plots using different
coordinates. We have used Miedema’s (1973, 1976, Miedema et al., 1975)
coordinates R, = |¢% — ¢ and R, = |[n}} %% are the
effective elemental work function and cell boundary dens1ty to the power of
1. Those coordinates were extremely successful in predicting the signs (and
often the magnitudes) of the heats of formation of more than 500 compounds.
We have also used a Mooser-Pearson (1959) plot, where R, is the elemental
electronegativity difference, and R, is the average principal quantum number.
Finally, we constructed a plot using Shaw’s parameters, where R, is the
elemental electronegativity difference and R, = 3(Z, + Zp)/[3(na + ns)]°,
where Z, and n, are the atomic number and the principal quantum number
of the outer valence orbital, respectively.

In a Miedema plot, one notices a rough separation of the B1 and B8, struc-
tures (CsAu and RbAu appear, as in our case, at high Ag*, An*?), whereas
most other structures are nearly indistinguishable. This illustrates the great
difficulty in carrying the success of a theory that predicts global binding ener-
gies AE, into the prediction of structural energies AE, (cf. Sec. I).

The Mooser-Pearson plot for these compounds appears visually as if only
104 compounds (i.e., isolated points) are plotted. In fact, it includes 360
compounds belonging to 14 different structures. This strong overlap of dif-
ferent structures on the same (R, R,) coordinate reflects the insensitivity of
the scale to separating such structures. A somewhat better separation is
evident using Shaw’s parameters, but the overlap of different structures is
still extremely large.
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Itis likely that one could construct first-principles atomic pseudopotentials
using somewhat different procedures than have been used here (Sec. 111,A)
for defining the pseudo wavefunctions. While this would result in a different
set of orbital radii, they will most likely scale linearly with the present set of
radii. Consequently, one may expect that the systematization of the crystal
structures, based on such radii, will be essentially unchanged.

The relationship between the structural stability of a polyatomic system
and the degree of repulsiveness of the effective atomic cores of the constituent
atoms has been discussed in 1948 by Pitzer in a remarkable paper preceeding
all pseudopotential theories. While one might have thought then naively
that the electron-core attraction term — Z, /r would lead to a strong penetra-
tion by valence electrons of the core regions of neighboring atoms, Pitzer
has realized that the core electrons set up a repulsive potential with a charac-
teristic radius inside which such a penetration is discouraged. Hence, the
triple bond energy of N==N is much higher than that of P=P (and the bond
length in N=N is significantly shorter than in P=P) because the repulsive
core size of nitrogen is so much smaller than that of phosphorous. Similarly,
the occurance of multiple chemical bonds with first row elements as compared
with the rare occurance of such bonds (with a small bond energy) with heavier
atoms has been naturally explained in terms of the large repulsive core size
of the latter elements. In addition, Pitzer noted that whereas Pauling (e.g.,
1960) has suggested that single bond energies (e.g., N—N) should be roughly
3 of the tetrahedral bond energy (e.g., C—C), in fact the ratio of the two is
closer to 3. This discrepancy was simply explained (Pitzer, 1948) by the fact
that the change from the bond angle of 90° characteristic of p-type single
bonds to a tetrahedral angle of 109.5° minimized in the latter case their
overlap with the repulsive core.

In the present orbital radii approach, these ideas are realized in a simple
manner. To first order, the change in energy per atom introduced by incor-
porating an atom in a polyatomic system is proportional to:

SE ~ Y k, f Ap(r)[U\(r) + A(r)] dr (24)
1

where Ap, is the /th component of the charge redistribution, U,(r) is the Pauli
repulsive potential [Eq. (10)], A(r) the l-independent part of the atomic
pseudopotential [Eq. (9)] and k, are constants. The first Ap,(r)U,(r) term in
Eq. (24) leads to a repulsive and angular-momentum dependent contribution
(for electron-attracting species) while the second term is isotropically at-
tractive (for similar atoms). Neglecting, for this simple argument, the non-
linear dependence of the charge density redistribution Ap,(r) on U,(r), one
notes that Pitzer’s ideas on the destabilizing role of large-core atoms—as
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well as the relative stability of structures that minimize such repulsions
through conformational changes in bond angles—are directly manifested
in Eq. (24). One could further note that charge redistribution effects occuring
predominantly outside the pseudopotential core [where U,(r) = 0] do not
contribute to such strongly directional repulsive terms. It would seem rea-
sonable that the dominance of the centrifugal barrier at small distances form
the origin will cause the charge redistribution effects in the high angular
momentum components of the density to be confined to regions outside
U, (i.e., ¥ = r,). This simple picture clearly indicates the important structural
role played by the r, and r, coordinates, as compared to higher angular-
momentum orbital coordinates.

VI. SUMMARY

It has been demonstrated that the pseudopotential theory in its present
nonempirical density-functional form is capable of providing transferable
atomic pseudopotentials v3)(r) that can be used both for performing reliable
quantum-mechanical electronic structure calculations and for defining semi-
classical-like elementary length and energy scales. The resulting radii cor-
relate with a large number of classical constructs that have been traditionally
used to systematize structural and chemical properties of many systems.

At the same time, the orbital radii derived here are capable of predicting
the stable crystal structure of the 112 octet compounds (Fig. 21), 419 suboctet
compounds (Figs. 22-23) and the 34 superoctet compounds (in Fig. 24) with
a remarkable success, exceeding 95%,. The compounds for which the present
theory does not predict the correct crystal structure are analyzed and found
to be largely characterized as defect structures with many unusual electronic,
magnetic and structural properties. Although I am unable at this time to
provide a direct causal quantum-mechanical model explaining this remark-
able success, I am hopeful that the use of these concepts in solving practical
crystallographic, metallurgical, and chemical problems may be useful and
will also eventually provide the insight needed for a microscopic theory

elucidating the success of the orbital radii.
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