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We calculate electron and hole addition energies of PbSe quantum dots using a pseudopotential
configuration-interaction approach. We find that �i� the addition energies are nearly constant for the first eight
carriers occupying the S-like shell. �ii� The charging sequence of the first eight carriers is non-Aufbau, but
filling of the P-like single-particle states takes place only after the S-like states are filled. �iii� The charging
spectrum shows bunching-up of all lines as the dielectric constant �out of the material surrounding the dot
increases. At the same time, the addition energies are significantly reduced. �iv� The calculated optical gap
shows a rather weak dependence on �out, reflecting a cancellation between electron-hole interaction energies
and surface polarization self-energies.
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I. INTRODUCTION

PbSe quantum dots have been the subject of intense re-
search in recent years, primarily because of efficient carrier
multiplication rates1,2 and relatively slow intraband relax-
ation rates.3–5 In this paper, we focus on another unique
property of PbSe quantum dots: the high multiplicity of the
band-edge states, and its consequence on dot charging. In
bulk PbSe,6 both the valence-band maximum �VBM� and the
conduction-band minimum �CBM� are located at the L point
of the fcc Brillouin zone, and hence are fourfold degenerate
�eightfold degenerate including Kramer’s degeneracy�, on
account of the fourfold degeneracy of the L valleys. Corre-
spondingly, in PbSe quantum dots, the first, S-like electron
and hole confined states are eightfold degenerate. This de-
generacy is split �by 4−7 meV in a dot of radius R
=30.6 Å, and by 16−35 meV in a dot of R=15.3 Å� by in-
tervalley couplings induced by the lack of translational
symmetry.7 The manifold of S-like electron states is sepa-
rated from the next group of P-like states by a few hundred
meV, whereas for the holes the S-P separation is a few tens
of meV, as obtained by recent pseudopotential calculations7,8

and by scanning tunneling measurements.9 Because of the
near-degeneracy of the band-edge S-like states, up to eight
electrons or eight holes can be injected into these low-lying
states. In this work, we study theoretically such charging
effects.

Depending on the relative rates of carrier injection into
the dot and carrier escape from the dot, one might be either
in “accumulation mode”10 �the Nth injected carrier encoun-
ters N−1 pre-existing carriers� or in “tunneling mode”10 �the
dot has but one carrier at a time�. In accumulation mode, the
charging energy ��N� is the energy required to add a carrier
to the dot that is already loaded with N−1 carriers11:

��N� = E�N� − E�N − 1� , �1�

where E�N� is the ground-state total energy of the N-carrier
dot. The addition energy ��N ,N−1� is the difference be-
tween the charging energy of the Nth carrier and that of the
N−1 carrier:

��N,N − 1� = ��N� − ��N − 1�

= E�N� − 2E�N − 1� + E�N − 2� . �2�

Measurements of charging energies and addition energies
by resonant tunneling spectroscopy were previously reported
for colloidal nanocrystals such as InAs,12 CdSe,10 and
ZnO.13–15 Analysis of such measurements affords determina-
tion of the single-particle energy levels and the Coulomb
repulsion energies between carriers.

In this work, we calculate electron and hole addition en-
ergies in PbSe quantum dots �Pb260Se249 and Pb2046Se2117�,
using a pseudopotential configuration-interaction approach.
We find that �i� the addition energies are nearly constant for
the first eight carriers occupying the S-like shell, �ii� the
charging sequence of the first eight carriers is non-Aufbau,
but filling of the P-like single-particle states takes place after
the S-like states are completely filled, �iii� the charging spec-
trum shows bunching-up of all lines as the dielectric constant
�out of the medium increases. At the same time, the addition
energies are significantly reduced. �iv� The calculated optical
gap shows a rather weak dependence on �out, reflecting a
cancellation between the electron-hole interaction energies
and the surface polarization self-energies.

II. BASIC PHYSICAL CONTRIBUTIONS TO THE
ADDITION ENERGIES

A. N-particle total energy and its three contributions

The many-body total energy E�N� of a dot containing N
carriers can be calculated directly using the configuration
interaction �CI� method16 �see below�, but it is instructive to
separate it into its components, namely the first-order
perturbation-theory energy EPT�N� and the correlation energy
Ecorr�N�. In turn, EPT�N� can be decomposed into a dot-
intrinsic part EPT

int�N� and a surface-polarization part EPT
pol�N�,

so that

E�N� = EPT
int�N� + EPT

pol�N� + Ecorr�N� . �3�

The three contributions to the total energy are discussed in
the following.

The term EPT
int�N� is given by
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EPT
int�N� = �

i

N

�i
0 +

1

2�
i,j

N

�Ui,j;i,j
int − Ui,j;j,i

int � , �4�

where �i
0 are the single-particle energies, Ui,j;i,j

int �Ui,j;j,i
int � are

the Coulomb direct �exchange� integrals, the subscripts
i , j ,k , l denote the collective index of orbital and spin states,
and the sum runs over the occupied states. The general form
of the Coulomb and exchange integrals Ui,j;k,l

int is

Ui,j;k,l
int = �

�
� �i

��r,���k�r,��� j,l
int�r�dr , �5�

where ��i�r ,��� are the single-particle wave functions
�which depend on the spatial variable r and the spin variable
��, and � j,l

int�r� is the solution of the Poisson equation

��r��2� j,l
int�r� = − 4�e2�

�

� j
��r,���l�r,�� . �6�

Here ��r� is the macroscopic, position-dependent dielectric
constant.

The surface-polarization energy EPT
pol�N�, due to the dielec-

tric constant mismatch between the quantum dot and its sur-
rounding material, is

EPT
pol�N� = �

i

N

�i
pol +

1

2�
i,j

N

�Ui,j;i,j
pol − Ui,j;j,i

pol � , �7�

where �i
pol is the surface-polarization self-energy of a carrier

in the single-particle state i, and Ui,j;i,j
pol �Ui,j;j,i

pol � are the Cou-
lomb direct �exchange� integrals arising from the interaction
of one carrier with the image charge of other carriers across
the dielectric discontinuity at the dot surface. The surface
polarization self-energy is given in first-order perturbation
theory by

�i
pol = �

�
� 	�i�r,��	2��r�dr , �8�

where ��r� is the surface polarization potential

��r� =
1

2
lim
r�→r

�Wdot�r,r�� − Wbulk�r,r��� . �9�

Here Wdot�r ,r�� is the screened Coulomb potential of the
quantum dot at point r due to a point charge located at r�,
and Wbulk�r ,r�� is the same quantity in the corresponding
bulk system.17 Recently, Wang18 showed that, under certain
approximations, the quasiparticle GW equation for quantum
dots can be simplified to an effective Schrödinger equation
containing ��r� as an external potential. Thus the quasipar-
ticle energies can be written as �i

qp=�i
0+�i

pol. The surface
polarization integrals Ui,j;k,l

pol of Eq. �7� are given by

Ui,j;k,l
pol = �

�
� �i

��r,���k�r,��� j,l
pol�r�dr , �10�

where � j,l
pol�r� is the solution of the generalized Poisson

equation,

� · ��r� � �� j,l
int�r� + � j,l

pol�r�� = − 4�e2�
�

� j
��r,���l�r,�� .

�11�

Finally, the correlation energy Ecorr is defined in the CI
approach as the residual effect that is obtained as a conse-
quence of configuration mixing beyond the first-order ap-
proximation. Given the set of single-particle energies �i

0, the
surface polarization self-energies ��i

pol�, and the set of Cou-
lomb integrals Ji,j;k,l=Ui,j;k,l

int +Ui,j;k,l
pol , the many-body CI

Hamiltonian is given in second-quantization form by

H = �
i

��i
0 + �i

pol�ĉi
†ĉi +

1

2�
ijkl

Ji,j;k,lĉi
†ĉj

†ĉlĉk. �12�

The diagonalization of the CI Hamiltonian �12� yields the
many-particle energies and wave functions.

B. Charging energies and addition energies

Following the decomposition of the total energy into three
contributions �Eq. �3��, we can write the charging energies
��N� as

��N� = �PT
int�N� + �PT

pol�N� + �corr�N� , �13�

where

�PT
int�N� = �N

0 + �
i=1

N−1

�Ui,N;i,N
int − Ui,N;N,i

int � , �14�

�PT
pol�N� = �N

pol + �
i=1

N−1

�Ui,N;i,N
pol − Ui,N;N,i

pol � , �15�

and �corr�N� is the effect of configuration mixing.
Similarly, the contributions to the addition energies

��N ,N−1� are

��N,N − 1� = �PT
int�N,N − 1� + �PT

pol�N,N − 1� + �corr�N,N − 1� ,

�16�

where

�PT
int�N,N − 1� = ��N

0 − �N−1
0 � + �

i=1

N−1

�Ui,N;i,N
int − Ui,N;N,i

int �

− �
i=1

N−2

�Ui,N−1;i,N−1
int − Ui,N−1;N−1,i

int � , �17�

�PT
pol�N,N − 1� = ��N

pol − �N−1
pol � + �

i=1

N−1

�Ui,N;i,N
pol − Ui,N;N,i

pol �

− �
i=1

N−2

�Ui,N−1;i,N−1
pol − Ui,N−1;N−1,i

pol � , �18�

and �corr�N ,N−1� is the additional effect arising from the
configuration mixing as mentioned above.
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C. Quasiparticle band gap

The quasiparticle gap �gap
qp is the minimum energy neces-

sary to remove an electron from the valence band of one dot
and place it into the conduction band of another dot at infi-
nite distance from the first dot. Thus the electron and the hole
do not interact. In first-order perturbation theory, the quasi-
particle gap is given by

�gap
qp = ��e1

0 − �h1
0 � + ��e1

pol + �h1
pol� . �19�

The optical gap �gap
opt is

�gap
opt = �gap

qp − Jh1,e1;h1,e1

= ��e1
0 − �h1

0 � + ��e1
pol + �h1

pol� − Jh1,e1;h1,e1, �20�

and includes direct electron-hole Coulomb attraction.

III. METHOD OF CALCULATIONS

The calculation of E�N� requires solving the many-body
CI Hamiltonian of Eq. �12�. The single-particle energies and
wave functions are obtained by solving the effective
Schrödinger equation


−
1

2
�2 + V�r� + VSO��i�r,�� = �i

0�i�r,�� , �21�

where the wave functions �i�r ,�� are expanded in a plane-
wave basis set, and VSO is the nonlocal spin-orbit operator.
The local potential V�r� is represented as a superposition of
screened atomic pseudopotentials for atom species 	 at sites
Rn,	,

V�r� = �
n,	

v	�r − Rn,	� . �22�

The atomic pseudopotentials v	 are fitted to bulk transition
energies, effective masses, and deformation potentials.7

The calculation of the surface polarization self-energies
�i

pol �Eqs. �8� and �9�� requires solving the generalized Pois-
son equation for a point-charge density distribution:11,18

� · ��r� � Wdot�r,r�� = − 4�e2
�r − r�� , �23�

��r��2Wbulk�r,r�� = − 4�e2
�r − r�� . �24�

The macroscopic dielectric function ��r� is calculated as
1/��r�=1/�out+ �1/�in−1/�out�m�r�, where �in and �out are
the dielectric constants inside and outside the quantum dot,
respectively. The mask function m�r� decays sinusoidally
from 1 to 0 in a �2-Å-thick transition region around the dot
surface. Recent first-principles calculations19,20 have shown
that ��r� converges rapidly to the value of the bulk dielectric
constant as the interior of the dot is approached. Further-
more, since the motion of the electrons is much faster than
that of the ions, the ionic contribution to �in is small, and will
be neglected here. We will also neglect the small change in
�in upon electron and/or hole charging, since the added car-
riers represent only a small fraction of the total number of
electrons in the quantum dot. Therefore for �in we use the
high-frequency dielectric constant of bulk PbSe ��in=22.9�.

The value of �out is varied to simulate different dielectric
environments. The 
 functions in Eqs. �23� and �24� are ap-
proximated by a Gaussian of width 0.8 Å centered at position
r�. The Poisson Eqs. �23� and �24� are solved numerically by
discretizing the gradient operator on a real-space uniform
grid.11 The boundary conditions are obtained by expanding
the electrostatic potential in a multipole series, and the re-
sulting linear system is solved using a conjugate-gradients
algorithm.11 Similarly, the Coulomb integrals �Ji,j;k,l� of Eq.
�12� are calculated by solving the generalized Poisson equa-
tion of Eq. �11�.

The ground-state energy of the N-carrier dot is obtained
by diagonalizing the many-body Hamiltonian of Eq. �12� in
the configuration space constructed from the first eight hole
or electron states:

E�N� = 
�N	H	�N� , �25�

where �N is the ground-state many-body wave function of
the N-particle system.

IV. RESULTS

A. Surface polarization self-energy

The surface polarization potential ��r� of Eq. �9� was
calculated at 30 real-space grid points for the 15.3-Å-radius
dot and 60 points for the 30.6-Å-radius dot along the �110�
axis of the fcc supercell, and the results were interpolated
throughout the whole supercell. As an example, Fig. 1 shows
the calculated values of ��r� for the R=30.6-Å dot with
different dielectric function profiles �corresponding to �in
=22.9 and �out=1, 2.1, and 20� along the �110� axis. The
sharp change of ��r� near the dot boundary is due to the
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FIG. 1. �Color online� The surface polarization potential ��r� of
a 30.6-Å-radius PbSe quantum dot is shown as a function of the
radial distance r from the center of the dot, for three different values
of the macroscopic dielectric constant of the surrounding medium
��out=1 ,2.1,20�. The inset shows the corresponding dielectric func-
tion profile ��r�. Circles denote the calculated values, to which the
solid curves are fitted.
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dielectric function transition from �in to �out. A similar be-
havior of ��r� is also observed for the 15.3-Å dot, but the
value of ��r� inside the dot is larger than that for the
30.6-Å-radius dot, because of the closer proximity of the dot
surface.

Table I summarizes our calculated surface polarization
self-energies �i

pol for several band-edge electron �ei� and hole
�hi� single-particle states, and for a few different dielectric
function profiles. The effect of �out on �i

pol is strong, as ex-
emplified by the e1 state of the R=15.3-Å dot whose surface
polarization energy decreases from �374 meV for �out=1 to
�5 meV for �out=20. For a given �out, the value of �i

pol

depends rather weakly upon the single-particle state. How-
ever, some single-particle states, such as e4 and h4, have
considerably larger �i

pol �by as much as 87 meV for �out=1�
than the other states. In general, states that have a relatively
large weight just outside the dot boundary have smaller �i

pol

than states that are more localized inside the dot, because
��r� becomes negative outside the dot boundary �Fig. 1�.
This �i

pol difference among single-particle states is suffi-
ciently large to determine a change in the ordering of the
levels in the single-particle energy ladder.

B. Charge distribution of the injected carriers

It is interesting to consider the spatial distribution of the
loaded carriers. In a classical electrostatic model where the
carriers are described by point charges that are free to move
inside a dielectric sphere,21 Coulomb repulsion leads to lo-
calization of the injected carriers near the surface of the
quantum dot. In our quantum-mechanical calculations, car-
rier localization is determined by the spatial localization of
the single-particle wave functions and by the mixing of dif-
ferent configurations via configuration interaction. Because
of the relatively large splitting between S and P levels and
the large dielectric constant of PbSe �which effectively
screens carrier-carrier interactions�, configuration mixing be-
yond the S-like manifold is small. In the absence of surface
states near the band edges, the first eight injected carriers
will occupy S-like, quantum-confined states, and their charge
distribution will be largely localized in the dot interior. How-
ever, the inorganic ligand shell surrounding the PbSe quan-
tum dots can hardly passivate all surface anions and cations,
resulting in localized surface states. In that case, part of the
injected carriers will reside at the surface of the quantum
dots.

C. Charging spectrum and addition energies

Figures 2 and 3 show the charging spectrum and the ad-
dition energies ��N ,N−1� obtained by diagonalizing the CI
many-body Hamiltonian for �out=1 ,2.1,20. Figures 2�a� and
3�a� show the charging spectra of the R=15.3-Å and R
=30.6-Å dots, respectively. The position of the peaks corre-
sponds to the calculated charging energies, while the inten-
sity of the peaks is normalized to unity. We see that as the
dot size increases, the span of the charging energies corre-
sponding to loading eight electrons or eight holes decreases
considerably. Furthermore, as the dielectric constant �out of
the environment increases, the charging spectrum shows
bunching of the peaks, because the separation between the
charging peaks becomes smaller as �out increases. In Figs.
2�a� and 3�a� �=0 is the chemical potential of the electron
reservoir. Thus for ��0 electrons are attracted to the quan-
tum dot, while for �
0 electrons are repelled. We see from
the charging spectra of Figs. 2�a� and 3�a� that only a limited
number of electrons �corresponding to the peaks with ��0�
can be loaded into the quantum dot. The number of electrons
that can be injected into the dot becomes smaller as the di-
electric constant of the environment decreases. For example,
in the case of the R=15.3-Å dot, up to six electrons can be
loaded into the dot if �out=2.1, but only three electrons if
�out=1 �Fig. 2�a��.

Figures 2�b� and 3�b� show that the addition energies de-
pend only weakly on the number N of carriers within the S
shell. This behavior of ��N ,N−1� can be recovered by re-
formulating Eq. �16� under the following approximations: �i�
The single-particle energy levels ��i

0+�i
pol� are the same for

the first few single-particle states, �ii� the correlation energy
�corr is negligible compared to the other terms, and �iii� the
total Coulomb repulsion �Ji,j;i,j �J� between carriers is al-
most constant �i.e., independent of i and j�, and is much
larger than the exchange interaction Ji,j;j,i. With the approxi-
mation �ii�, Eq. �16� reduces to

��N,N − 1� = ��N
0 − �N−1

0 � + ��N
pol − �N−1

pol �

+ �
i

N−1

�Ji,N;i,N − Ji,N;N,i�

− �
i

N−2

�Ji,N−1;i,N−1 − Ji,N−1;N−1,i� . �26�

TABLE I. Surface polarization self-energy �i
pol �in meV� of a carrier occupying the ith single-particle

electron �ei� or hole �hi� level for three different values of the macroscopic dielectric constant of the
surrounding medium, �out.

Radius �Å� �out e1 e2 e3 e4 h1 h2 h3 h4

15.3 Å 1 374.3 375.5 340.4 423.7 371.1 370.8 369.4 456.9

2.1 198.7 199.2 182.2 216.4 193.4 193.3 193.1 233.6

20 5.3 5.3 5.0 5.1 4.9 4.9 4.9 5.5

30.6 Å 1 209.6 226.4 220.9 222.3 213.4 229.6 229.6 231.3

2.1 104.7 111.2 108.4 109.0 105.3 110.9 110.9 111.6

20 2.8 2.8 2.8 2.8 2.7 2.7 2.7 2.7

AN, FRANCESCHETTI, AND ZUNGER PHYSICAL REVIEW B 76, 045401 �2007�

045401-4



The successive application of approximations �i� and �iii�
leads to

��N,N − 1� = J , �27�

which describes the trend in the numerical results. Thus the
value of ��N ,N−1� can be interpreted as an indirect measure
of the Coulomb repulsion between carriers, independent of N
under the aforementioned approximations. When the small

spacings between the quasiparticle energy levels are taken
into account, however, ��N ,N−1� is more pronounced for
odd values of N, because each orbital level can be occupied
by two carriers. The nearly constant value of ��N ,N−1� as a
function of N is characteristic of quantum dots where the
near-edge states are highly degenerate. For example, in Si
quantum dots, where the S-like conduction-band edge states
originate from the six X valleys of bulk Si, up to 12 electrons
can be loaded into the nearly degenerate S-like conduction
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FIG. 2. Electron and hole charging energies �a� and addition
energies �b� of a R=15.3-Å PbSe quantum dot, calculated for three
values of the macroscopic dielectric constant of the surrounding
medium ��out=1 ,2.1,20�. For clarity purposes, in �b� the hole ad-
dition energies are indicated with a negative value.
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FIG. 3. Electron and hole charging energies �a� and addition
energies �b� of a R=30.6-Å PbSe quantum dot, calculated for three
values of the macroscopic dielectric constant of the surrounding
medium ��out=1 ,2.1,20�. For clarity purposes, in �b� the hole ad-
dition energies are indicated with a negative value.
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states, and therefore ��N ,N−1� is nearly constant up to N
=12 �Ref. 11�.

D. Minimum-energy electronic configuration for different
charge states

To determine the ground-state configuration of a system
of N electrons �or N holes� in a quantum dot, we compute the
ground-state total energy E�N� using the basis set of configu-
rations constructed from the first eight hole states and the
first eight electron states. We then examine the ground-state
CI wave functions ��1� , . . . ,��8�, and investigate in what
order the carriers occupy the single-particle energy levels �i

0

or the quasiparticle energy levels �i
qp=�i

0+�i
pol. This will de-

termine whether or not the CI ground state for N carriers
corresponds to occupying �i

0 �or �i
qp� in increasing order

�Aufbau principle�. Figure 4 shows the charging sequence of
N electrons occupying the single-particle levels �i

0 and the
quasiparticle levels �i

qp for the R=30.6-Å dot. Note that the
inclusion of �i

pol changes the sequence of the quasiparticle
energy levels compared to the sequence of the single-particle
levels. For example, the energy of the level e2 becomes
higher than that of e3 or e4 after the polarization self energies
are included �Fig. 4�a��. Whether the occupation sequence is
determined with reference to the single-particle levels or the
quasiparticle levels, there are many instances where the Auf-
bau principle is violated, due to the near-degeneracy of the
first eight hole states and the first eight electron states. Vio-

lations of the Aufbau occupation sequence have also been
observed for other dot sizes and for different values of the
dielectric constant �out.

We find that the added carriers never fill the higher-energy
manifold of P-like states before the eight S-like states are
completely filled. This is due to the relatively large S-P split-
ting ��SP=72 meV for hole levels and �SP=127 meV for
electron levels for the R=30.6-Å dot�. Wehrenberg and
Guyot-Sionnest22 recently reported injection of electron and
holes into PbSe nanocrystals, and measured the ensuing
changes in the interband and intraband optical-absorption
spectra. They found that the first two interband absorption
peaks were both bleached when electrons were loaded into
the quantum dots. Since the first eight injected electrons oc-
cupy S-like levels �see also Fig. 4�h��, the authors concluded
that the first two interband absorption peaks must both in-
volve transitions into the S-like electron states.22 Previous
atomistic pseudopotential calculations7 have shown instead
that the first two interband absorption peaks originate from
the allowed Sh-Se and Ph-Pe transitions, respectively, and
that the second absorption peak does not involve S-like elec-
tron states. The apparent contradiction between experiment22

and theory7 can be resolved by noting that not all of the
injected carriers necessarily reside in dot-interior, quantum-
confined states. Indeed, it is likely that some of the injected
carriers occupy localized states near the surface of the quan-
tum dot. These surface charges induce a Stark shift of all
absorption peaks, as well as a reduction in the intensity of
the allowed transitions, consistent with the experimental re-
sults of Ref. 22. This will be discussed in a forthcoming
publication.23

E. Quasiparticle gap

Figure 5 shows the calculated quasiparticle gap �gap
qp �Eq.

�19��, the optical gap �gap
opt �Eq. �20��, and the single-particle

gap �e1
0 −�h1

0 . Not surprisingly, �gap
qp 
�gap

opt . We see from Fig. 5
that the quasiparticle gap �gap

qp depends rather strongly on the
dielectric constant �out of the medium, because of the terms
�i

pol appearing in Eq. �19�. However, the optical gap has but
a weak dependence on �out, because of the near-cancellation
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matically the single-particle energy levels ��i

0�, while the right-hand
side shows the quasiparticle energy levels ��i

qp=�i
0+�i

pol�.
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particle energy gap �gap
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of �e1
pol+�h1

pol against Jh1,e1;h1,e1 in Eq. �20�. As a result, �gap
opt is

close to the single-particle gap �e1
0 −�h1

0 , and shows a rather
weak dependence on �out. This cancellation is not particular
to PbSe dots, and a similarly weak dependence of �gap

opt on �out
was previously reported for InAs, InP, and Si quantum
dots.11

V. SUMMARY

In summary, we have calculated the electron and hole
addition energies of PbSe quantum dots using a pseudopo-
tential configuration-interaction approach. We have decom-
posed the addition energies into physically distinct contribu-
tions. This has revealed peculiar features of the charging
spectrum of PbSe quantum dots: �i� The addition energies are
nearly constant for the first eight carriers occupying
quantum-confined S-like states. �ii� While the charging se-

quence of the first eight carriers is non-Aufbau, filling of the
P-like single-particle states takes place only after the S-like
states are completely filled. We also found general features
of the charging spectrum that are not specific to PbSe dots.
�iii� The charging spectrum shows bunching-up of all lines as
the dielectric constant �out of the material surrounding the dot
increases. �iv� The calculated optical gap shows a rather
weak dependence on �out, reflecting a cancellation between
electron-hole Coulomb interaction energies and surface po-
larization self-energies.
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