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Using single-particle pseudopotential and many-particle configuration interaction methods, we compare
various physical quantities of �In,Ga�As/GaAS quantum dot molecules �QDM’s� made of dissimilar dots
�heteropolar QDM’s� with QDM’s made of identical dots �homopolar QDM’s�. The calculations show that the
electronic structures of hetero-QDM’s and homo-QDM’s differ significantly at large interdot distance. In
particular, �i� unlike those of homo-QDM’s, the single-particle molecular orbitals of hetero-QDM’s convert to
dot-localized orbitals at large interdot distance. �ii� Consequently, in a hetero-QMD the bonding-antibonding
splitting of molecular orbitals at large interdot distance is significantly larger than the electron hopping energy
whereas for a homo-QDM, the bonding-antibonding splitting is very similar to the hopping energy. �iii� The
asymmetry of the QDM increases significantly the double occupation for the two-electron ground states and
therefore lowers the degree of entanglement of the two electrons.
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I. INTRODUCTION

Vertically coupled quantum dots1,2 obtained via epitaxial
growth provide a potential scheme for scalable nanostruc-
tures for quantum computing. In this scheme, two coupled
quantum dots are used as a basic logic gate, via the entangle-
ment of one exciton3 or two electronic spins.4 This proposal
for gate operations requires knowledge of the detailed physi-
cal properties of the “quantum gate” made of two quantum
dots. Significant progress has been recently made5,6 using
quantum dot molecules �QDM’s� made of very large
��500–1000 Å� electrostatically confined dots. The limit of
large quantum confinement, however, requires working with
�200�30 Å2� self-assembled QDM’s. So far, most experi-
ments on self-assembled QDM’s are optical3 and most theo-
ries are based on continuum models, such as effective mass
approximations.3 These simple models ignore or drastically
simplify important real material properties such as strain,
atomistic symmetries, crystal structural effects, band cou-
pling, etc. Recent studies7 show that simplification of such
important effects may lead to qualitative changes in funda-
mental physics of the QDM’s.

Previously, we have studied homopolar QDM’s made of
two identical quantum dots, using the single-particle pseudo-
potential method and many-particle configuration interaction
method.8,9 We have studied electron localization, the double
occupation rate, and two-electron entanglement using a new
formula for measuring the degree of entanglement formula
for two indistinguishable fermions. We found that even geo-
metrically identical dots in the QDM’s lead to electronic
asymmetry due to the strain effects. However, experimen-
tally it is hard to control the shape, size, and compositions of
individual dots within the QDM’s, so, in practice, the QDM’s
are never made of identical dots. Actually, the top dots are
tend to be larger than the bottom dots due to the strain

effects.1,2 Indeed, the measured difference in exciton energy
due to dot-size difference is about 4 meV �Ref. 10� for two
vertically coupled dots that are 20 nm apart. Sometimes, the
two dots are intentionally grown differently so that they can
be addressed separately.11 To provide a quantitative compari-
son to experiments, considering the effects of asymmetry of
quantum dots within the molecule, we studied QDM’s made
of �In,Ga�As/GaAS quantum dots of different sizes �hetero-
polar QDM’s�.

In this paper, we study systematically the electronic prop-
erties of hetero-QDM’s, including their single-particle mo-
lecular orbitals, many-particle states, double occupation, and
entanglement of two electrons, and compare them to those of
homo-QDM’s. We found that while at short interdot dis-
tance, the electronic properties of hetero-QDM’s and homo-
QDM’s are similar, they differ significantly at large interdot
distance. This difference may have substantial impact on the
implementation of quantum gates.

II. METHODS

Figure 1 shows the geometry of a hetero-QDM, consisting
a pair of 3-nm-tall InAs dots in the shape of truncated cones,
grown on two-dimensional InAs wetting layers, embedded in
a GaAs matrix. The interdot separation d is defined as the
distance between the wetting layers of the top and bottom
dots. We choose the base diameter of the top dots �labeled as
�� to be 20 nm and that of the bottom dots �labeled as �� to
be 19 nm, mimicking the fact that experimentally the top
dots are slightly larger than the bottom dots.1,2,10 The com-
position of the dots varies from In0.5Ga0.5As at their bases to
pure InAs at their top, as determined in Ref. 3. We denote the
dot molecules made of dissimilar dots � and � as M��. We
also constructed the homo-QDM, consisting a pair of quan-
tum dots �, which have the average sizes and the same alloy
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compositions of dots � and � in the heteropolar dot mol-
ecule. We denote the homo-QDM as M��.

The single-particle energy levels and wave functions of
M�� and M�� are obtained by solving the Schrödinger equa-
tions in a pseudopotential scheme,

�−
1

2
�2 + Vps�r���i�r� = �i�i�r� , �1�

where the total electron-ion potential Vps�r� is a superposi-
tion of local, screened atomic pseudopotentials v��r� and a
nonlocal spin-orbit potential Vso—i.e., Vps�r�=�n,�v��r
−Rn,��+Vso. The atomic position �Rn,�� is obtained from
minimizing the total bond-bending and bond-stretching en-
ergy using the valence force field �VFF� model.12,13 The ato-
mistic pseudopotentials v� ��=In, Ga, As� are fitted to the
physically important quantities of bulk InAs and GaAs, in-
cluding band energies, band offsets, effective masses, defor-
mation potentials, alloy bowing parameters, etc.14 Because
for electrons the spin-orbit coupling is extremely small in the
InAs/GaAs quantum dots, we ignored this effect. In general,
including the spin-orbit coupling effect will introduce a mix-
ture of different total spin states. Equation �1� is solved in the
basis of ��m,�J,	�k�� of Bloch orbitals of band index m and
wave vector k of material 	 �=InAs, GaAs�, strained uni-
formly to strain �J following Ref. 15.

The Hamiltonian of interacting electrons can be written as

H = �
i


���̂i

† �̂i
 +

1

2�
ijkl

�

,
�

�k,l
i,j�̂i


† �̂ j
�
† �̂k
��̂l
, �2�

where �̂i
�r�=ci
�i
�r� is the field operator, whereas ci
 is a
fermion operator. �i=
u ,
g ,�u ,�g are the single-particle
eigenfunctions of the ith molecular orbital, and 
, 
�=1,2
are spin indices. The �kl

ij are the Coulomb integrals between
molecular orbitals �i, � j, �k, and �l,

�kl
ij =	 	 drdr�

�i
*�r�� j

*�r���k�r���l�r�
��r − r��
r − r�


. �3�

The Jij =� ji
ij and Kij =�ij

ij are diagonal Coulomb and exchange
integrals, respectively. The remaining terms are called off-
diagonal or scattering terms. All Coulomb integrals are cal-
culated numerically from atomistic wave functions.16 We use
a phenomenological, position-dependent dielectric function
��r−r�� to screen the electron-electron interaction.16 The
many-particle problem of Eq. �2� is solved via the CI
method, by expanding the N-electron wave function in a set
of Slater determinants, 

e1,e2,. . .,eN

�=ce1

† ce2

†
¯ceN

† 

0�, where
cei

† creates an electron in the state ei. The �th many-particle
wave function is then the linear combinations of the deter-
minants,


��� = �
e1,e2,. . .,eN

A��e1,e2, . . . ,eN�

e1,e2,. . .,eN
� . �4�

For the two-electron problems, our calculations include all
possible Slater determinants of six confined molecular orbit-
als.

III. BASIC ELECTRONIC STRUCTURES AT THE
SINGLE-PARTICLE LEVEL

A. Double-dot molecular orbitals

We first show the electronic structure of isolated dots �
and �. The single-dot electron s and p levels of dots � and �
are shown in the right panel of Fig. 2. We see that the s-p
energy spacing of dot � is ��p��−��s��=52 meV and that of
dot � is ��p��−��s��=59 meV, compared to 54 meV of dot
� �not shown�. The energy level of s� is slightly ��6 meV�
higher than s�, because dot � is smaller than dot � and
therefore has larger confinement. The p levels of all dots
have a small energy splitting due to the underlying atomistic
symmetry—e.g., ���p��=6 meV and ���p��=1 meV. We
further calculated the fundamental exciton energy of dot �,
EX���=1153 meV, and that of dot �, EX���=1159 meV. The
energy difference in exciton of dots � and � is about 6 meV,
in agreement with experiment.10 The fundamental exciton

FIG. 1. The geometry used in this work for quantum dot mol-
ecules made of dissimilar dots. We denote the �isolated� top dot �
and the �isolated� bottom dot �. Each dot has the shape of a trun-
cated cone. The interdot distance is measured from wetting layer to
wetting layer.

FIG. 2. Left panel: the single-particle energy levels of molecular
orbitals vs interdot distance. Right panel: the electron single-
particle energy levels of the isolated dots � and �.
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energy of the “averaged” dot � is EX���=1156 meV.
When two dots � and � couple, the bonding and anti-

bonding “molecular orbitals” ensue from the single-dot or-
bitals. The energy levels of molecular orbitals are shown in
the left panel of Fig. 2. We show the single-particle levels of
molecular orbitals8,9 
g and 
u originating from s orbitals
and �u and �g originating from p orbitals. The bonding and
antibonding splittings �
=��
u�−��
g� and ��=���g�
−���u� increase with the decrease of interdot distance, be-
cause the coupling between the top and bottom dots gets
stronger. This picture is similar to what we obtained for
homo-QDM’s. However, there is an important difference be-
tween the homo-QDM’s M�� and hetero-QDM’s M��: in the
former case, the bonding and antibonding splittings �
 and
�� decay to almost zero at large interdot distance, while in
the later case, �
 and �� tend to constants ��
�7 meV,
���10 meV here�, because the molecular orbitals gradually
convert at large interdot distance to single-dot energy
levels—e.g., the 
g levels convert to top-dot s orbitals and 
u
convert to bottom-dot s orbitals; therefore, the energy split-
ting between the first and second molecular states at large
distances is approximately the energy difference between the
s orbitals of the top and bottom dots—i.e., �
���s��
−��s���0 for M��.

Figure 2 shows that at interdot distance d=10 nm, the
molecular orbital levels are about 25 meV higher than the
isolated dot levels, although the direct electronic coupling
between two dots is much smaller than this quantity. This
energy shift results from the long-range strain effects expe-
rienced by one dot due to the presence of the second dots.
This effect is missed in effective-mass-approximation-
�EMA-� type model calculations,17 which ignore strain ef-
fects.

B. Single-dot-localized orbitals

The above discussions pertain to the basis of double-dot
molecular orbitals. An alternative way to study QDM’s is to
use a dot-localized basis. We have demonstrated8,9 that dot-
localized orbitals can be a useful tool to analyze the QDM
physics, including electron double occupation and two-
electron entanglement.

Dot-localized orbitals �� can be obtained from a unitary
rotation of molecular orbitals—i.e.,

�� = �
i=1

N

U�,i�i, �5�

where �i is the ith molecular orbital and U is a unitary
matrix—i.e., U†U= I. We choose the unitary matrices U that
maximize the total orbital self-Coulomb energy.9,18 The pro-
cedure of finding U is described in Appendix B of Ref. 9. As
we will show below these dot-localized orbitals �� have the
advantage of being only weakly dependent on the interdot
coupling. This invariance may provide simplified pictures for
a qualitative understanding of the QDM physics.

1. Single-particle energies of dot-localized orbitals

The single-particle levels of dot-localized orbitals and the
hopping �or tunneling� term between two dots can be ob-
tained from

e� = ���
Ĥ0
��� = �
i

U�,i
* U�,i�i, �6�

t�1�2
= ���1


Ĥ0
��2
� = �

i

U�1,i
* U�2,i�i, �7�

where �i is the single-particle energy of the ith molecular

orbital and Ĥ0=�i
���̂i

† �̂i
 is the single-particle Hamil-

tonian. Figure 3 depicts the single-particle levels eT and eB of
the dot-localized orbitals of both top and bottom dots for
interdot distances d in the range from 4 nm to 10 nm. �Here,
we denote the top dot T and the bottom dot B, to distinguish
them from isolated dots �, �, and �.� eT and eB of M�� are
shown as the black solid lines, and those of M�� are shown
as the red solid lines. At large d, the energy difference eB
−eT�6 meV for M�� is close to the value of the difference
��s��−��s�� between s orbitals of isolated dots � and �. This
energy difference gets smaller when the two dots move
closer, because the energy levels of the top dot rise faster
than those of the bottom dots due to the strain asymmetry.
For the homo-QDM’s M��, eT and eB are almost degenerate.
The small difference ��1 meV� between them is due to
strain and alloy effects. We also plot in Fig. 3 the energies of
the molecular orbitals 
u and 
g as dashed lines for M��. As
we see, for d�9 nm, the dot-localized state eB of M�� is
almost identical to the molecular orbital 
u, while eT merges
with 
g, indicating that at large d, molecular orbitals convert
to dot-centered orbitals for M��.

The quantity 2t measures the coupling strength between
the top and bottom dots, and directly determines the two-
electron properties such as singlet-triplet splitting in the
QDM. We calculate this hopping energy between the s orbit-
als of top and bottom dots at different interdot distances for
both M�� and M�� in Fig. 4. �We ignore the orbital index s to

FIG. 3. �Color online� Left panel: the energy levels of dot-
localized orbitals for QDM’s M�� �black solid lines� and M�� �red
solid lines�. eT and eB denote the s orbitals of the top and bottom
dots, respectively. The molecular orbitals energy levels 
g and 
u

�dashed lines� are shown for dot molecules M��. Right panel: s
levels of isolated dots �, �, and �.
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simplify the notation.� We find that 2t�M��� and 2t�M��� are
almost identical at all interdot distances. However, the hop-
ping energies calculated here are much larger than we ob-
tained for the pure InAs/GaAs QDM,9 because the alloy
QDM’s have much smaller energy barrier between two dots
than pure QDM’s. In general, the quantity 2t does not equal
the bonding-antibonding splitting �
=
�2+4t2, where �
=��eT�−��eB�, being the energy difference of s orbitals of the
top and bottom dots. For homo-QDM’s, where � /2t�1, we
have 2t��
 as seen in Fig. 4. However, for hetero-QDM’s,
�
 may be significantly different from 2t, especially at large
interdot distances, where � /2t�1, also illustrated in Fig. 4.
Experimentally,19 one usually measures the bonding-
antibonding splitting rather than the hopping 2t. Therefore,
to get the hopping energy between two dots, one needs to
know the energy difference � of two dots.

2. Coulomb integrals of dot-localized orbitals

The Coulomb integrals in the dot-localized basis can be
obtained from Coulomb integrals of molecular orbitals as
follows:

�̃�3,�4

�1,�2 = �
i,j,k,l

U�1,i
* U�2,j

* U�3,kU�4,l�k,l
i,j , �8�

where �k,l
i,j are the Coulomb integrals in the molecular basis.

The direct Coulomb integrals JTT, JBB, and JTB for M�� are
shown in Fig. 5. The Coulomb integrals JTT�J��

=21.4 meV and JBB�J��=22.3 meV are almost constants at
all interdot distances, suggesting that the dot-localized orbit-
als are approximately unchanged for different interdot dis-
tances d. J���J��, as dot � is smaller than dot �. The in-
terdot Coulomb interaction JTB decays slowly as 1/d. The
exchange energies �not shown� between the top and bottom
electrons is orders of magnitude smaller than the hopping
energy and therefore can be ignored in practice. For the
homo-QDM M��, we found that on-site Coulomb energies
JTT�JBB, are both very close to the average values of JTT
and JBB of M��. The interdot Coulomb energies JTB of M��

and M�� are also extremely close.

IV. TWO ELECTRONS IN THE DOT MOLECULE

A. Many-body energy states

The two-electron-in-a-QDM problem is of special inter-
est, as it is the prototype of a quantum gate using QDM’s.4

We calculate the two-electron energy levels by the configu-
ration interaction method using Slater determinants con-
structed from confined molecular orbitals 
g, 
u and �u, �g,
which give 66 configurations in total. The two-electron en-
ergies � and 3�u for hetero-QDM’s M�� are plotted in Fig.
6�a�. To compare with homo-QDM’s, we show the two-

FIG. 4. �Color online� The interdot hopping energy 2t �solid
lines� of hetero-QDM M�� and homo-QDM M��. We also show the
bonding-antibonding splitting �
 of M�� and M��.

FIG. 5. The Coulomb energies of dot-localized orbitals of
hetero-QDM M��. JTT and JBB are the s orbital self-Coulomb ener-
gies of top and bottom dots, respectively, whereas JTB are the Cou-
lomb energies between s orbitals of the top and bottom dots.

FIG. 6. �Color online� Two-electron states for �a� hetero-QDM
M�� and �b� homo-QDM M��, including the singlet 1�g

�a�, 1�u, and
1�g

�b� states and the threefold-degenerated triplet states 3�u as well
as two threefold-degenerated triplet states 3�u.
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electron states of M�� in Fig. 6�b�. The energy levels of M��
are similar to those of M��, in the following way: �i� The
order of the CI levels is unchanged; particularly, the ground
states are still the singlet states 1�g

�a� at all interdot distances;
�ii� the trend of each CI level versus interdot distance d is
similar to what we obtained for M��. There are also some
differences between the hetero-QDM’s M�� and homo-
QDM’s M��, especially at larger interdot distances. For ex-
ample, in the homopolar QDM’s, the 1�u state is almost
degenerate with 1�g

�b� at large interdot distance, while in
M��, 1�g

�b� is about 13 meV higher than 1�u at d=10 nm. At
large d, 1�u and 1�g

�b� correspond to the states that two elec-
trons localize on the same dots.8,9 The energy difference be-
tween 1�g

�b� and 1�u is due to the size difference of dots �
and �.

The singlet 1�g
�a� and triplet states 3� can be used as two-

qubit states in quantum computing. In a proposed quantum
SWAP gate,4 the gate operation time ��1/JS-T, where JS-T is
the singlet-triplet energy splitting. The singlet-triplet splitting
of M�� is shown in Fig. 7 on a semilogarithmic plot. We see
that it decays approximately exponentially with the interdot
distance. We also show in Fig. 7 the singlet-triplet splitting
of the homo-QDM M��. We found that the JS-T of homo-
QDM M�� is slightly smaller than the JS-T of hetero-QDM
M��, though the hopping energies of M�� and M�� are al-
most identical. In the hetero-QDM case, the singlet wave
function has more weight on the lower-energy dot and there-
fore lowers the singlet energy and increases the singlet-triplet
splitting.

B. Double occupation of one of the dots in a QDM

Double occupation means that two electrons occupy the
same dot in a QDM. If the double-occupation rate is high,

the quantum gate operation may fail. The double-occupation
rate also reflects the localization properties of electrons in the
QDM. If the double-occupation rate is zero, each dot has one
electron, whereas a double-occupation rate of 1 means that
two electrons are always localized on a single dot. When the
double-occupation rate is 0.5, two electrons are delocalized
between two dots. The double occupation can be conve-
niently analyzed in the dot-localized basis by transforming
the CI equations to the dot-localized basis.8 In the simplest
case, we consider only the s orbital for each dot, which gives
six configurations as follows: 
eT

↑ ,eB
↑�, 
eT

↓ ,eB
↓�, 
eT

↑ ,eB
↓�,


eT
↓ ,eB

↑�, 
eB
↑ ,eB

↓�, and 
eT
↑ ,eT

↓�. The Hamiltonian in this basis
set is9

H =�
eT + eB + JTB − KTB 0 0 0 0 0

0 eT + eB + JTB − KTB 0 0 0 0

0 0 eT + eB + JTB − KTB t t

0 0 − KTB eT + eB + JTB − t − t

0 0 t − t 2eB + JBB 0

0 0 t − t 0 2eT + JTT

� , �9�

where t= tTB. We ignored in Eq. �9� the off-diagonal Cou-
lomb integrals, which are much smaller than the hopping t.

The calculation of the matrix elements of Eq. �9� is de-
scribed in Sec. III B. The two electrons can be either both on
the top dots or both on the bottom dots, or one on the top and

the other on the bottom dot. We denote by �
�l,p

 ,�l�,p�


� �� the
configuration where one electron is on the lth orbital of the p
dot with spin 
 and the other electron is on the �l��th orbital
of the p� dot with spin 
�. Then the double-occupation rate
Qpp

��� in the many-particle state � is the probability of two

electrons occupying the dot, p= �T or B� at the same time—
i.e.,

Qpp
��� = �

l
,l�
�

P��
�l,p

 ,�l�,p


� �� , �10�

where P��C� is the weight of the configuration C in the many-
body wave functions of state �. The total probability of two
electrons being on the same dot is then Qtot

���=QTT
���+QBB

��� for
the �th state.

We plot Qtot, QTT, and QBB of state 1�g
�a� for M�� in Fig.

8�a� and for M�� in Fig. 8�b�. We also performed calculations

FIG. 7. The singlet-triplet splitting JS-T vs interdot distance for
hetero-QDM M�� �solid line� and homo-QDM M�� �dashed line�.
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on a “symmetrized” model QDM M���� by setting eT�=eB�
= �eT+eB� /2 and JTT� =JBB� = �JTT+JBB� /2 of M�� in Eq. �9�.
M���� represents an ideal homo-QDM, without the asymme-
try caused by strain, size, and alloy composition effects.
When compare the double occupation of the hetero- and
homo-QDM’s, we see that �i� for both types of QDM’s,
Qtot�0.5 at d�4.5 nm, meaning that two electrons are de-
localized on two dots. For both QDM’s, Qtot decays mono-
tonically with the interdot distance, and at d�10 nm, Qtot
�0, meaning that the two electrons are about each localized
on one of the two dots.

On the other hand, the double occupation of individual
dots QTT and QBB differs substantially for homo-QDM’s and
hetero-QDM’s: �ii� For the homo-QDM M����, QBB=QTT
and decay monotonically with the interdot distances. QBB
and QTT of M�� have similar features, although QBB is
slightly different from QTT due to strain and alloy effects.
This feature is also seen in the homo-QDM made of pure
InAs/GaAs dots.8,9 In the hetero-QDM’s M��, QTT behaves
very differently from QBB because the effective single-
particle energy eT�eB. Whereas QBB decays monotonically
with the interdot distance, QTT has a maximum at d�7 nm.
The reason is that at d�4.5 nm, the hopping energy 2t is
much larger than eB−eT; therefore, the electrons can over-
come the energy barrier between the top and bottom dots and
distribute evenly between two dots, leading to QTT�QBB. At
larger d, 2t�eB−eT, and the electrons would prefer to local-
ize on the top dots, leading to QTT�QBB. Therefore, even
when the total double-occupation rate drops down, QTT still
increases and reaches the maximum at d=7 nm. For d
�7 nm, QTT decays as Qtot decays.

�iii� The homo-QDM’s M���� and M�� have almost the
same total double occupation, both smaller than that of the
hetero-QDM M��. The asymmetry between two dots in-
creases the total double occupation. In an extreme case,
where eT�eB, the two electrons could always localize on the
top dots, leading to Qtot=QTT=1.

V. ENTANGLEMENT

A. Degree of entanglement for two electrons

The degree of entanglement �DOE� is one of the most
important quantities for successful quantum gate operations.
For distinguishable particles such as an electron and a hole,
the DOE can be calculated from the von Neumann entropy
formulation.20–23 However, the von Neumann entropy formu-
lation cannot be used directly to calculate the DOE for indis-
tinguishable particles.24–30 Schliemann et al. proposed a
quantum correlation function for two electrons which has
similar properties as the DOE.24 However, the generalization
of this quantum correlation function to a system that has
more than two single-particle levels is complicated. We pro-
posed a DOE measure9 for indistinguishable fermions using
Slater decompositions24,31 as

S = − �
u

zi
2 log2 zi

2, �11�

where zi are Slater decomposition coefficients and �izi
2=1.

As shown in Ref. 9, the DOE measure, Eq. �11�, reduces to
the usual von Neumann entropy for distinguishable particles
when the two electrons are far from each other. In Refs. 25
and 26, a similar DOE measure was defined, which, how-
ever, due to a different normalization condition for zi being
used, does not reduce to the usual von Neumann entropy
even when the two electrons can be distinguished by their
sites.

The DOE of � states calculated from Eq. �11� for the
hetero-QDM M��, the homo-QDM M��, and the model
homo-QDM M���� are shown in Figs. 9�a�–9�c�, respec-
tively. All of the three QDM’s have the following features:
�i� S�1�g

�a�� is close to zero �unentangled� at d�4.5 nm and
close to unity �fully entangled� at d�10 nm. �ii� S�0

3�� is
almost unity �fully entangled� at all interdot distances. How-
ever, S�1�g

�a�� of the homo-QDM M�� �which is very close to
the S�1�g

�a�� of M����� is larger than S�1�g
�a�� of the hetero-

QDM M��, showing that the asymmetry in a QDM lowers
the two-electron entanglement of the ground-state singlet.

In contrast to S�1�g
�a�� and S�0

3��, S�1�g
�b�� and S�1�u� are

very sensitive to the asymmetry of the QDM’s. In general, if
the two dots have identical electronic structures �e.g., in the
simple Hubbard model�, S�1�g

�b��=S�1�g
�a�� and S�1�u�=1,9

as illustrated in Fig. 9�c� for M����. For M��, which is some-
how asymmetric due to strain and alloy effects, S�1�g

�b�� is
close to S�1�g

�a�� at small d and drops down at large d,
whereas for M��, S�1�g

�b�� is different from S�1�g
�a�� at all

interdot distances. The slight asymmetry in M�� also causes
S�1�u� to drop down at large d, similar to S�1�u� of M��.

FIG. 8. The double-occupation rate of the ground-state singlet
1�g

�a� vs interdot distance for �a� hetero-QDM M�� and �b� homo-
QDM M��.
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B. Degree of entanglement vs double occupation

Experimentally, it is very hard to measure the DOE of two
electrons in the QDM directly, while it is relatively easy to
measure the possibility of double occupation. Therefore it
would be useful to explore the relation between the DOE and
the double-occupation rate. The triplet states 3� have negli-
gible double-occupation rate due to the Pauli exclusion prin-
ciple. Here, we discuss the relation between the DOE and
double-occupation rate for the ground-state singlet 1�g

�a�. We
consider the simplest case, where only the s orbital in each
dot is considered. The ground-state singlet 1�g

�a� wave func-
tion can be generally written as

��1�g
�a�� = c1
eT

↑,eB
↓� + c2
eB

↑ ,eT
↓� + c3
eT

↑,eT
↓� + c4
eB

↑ ,eB
↓�

�12�

and 
c1
2+ 
c2
2+ 
c3
2+ 
c4
2=1. Alternatively, we have

��1�g
�a�� = �

i,j
�ij
i� � 
j� , �13�

where

� =�
0 − c3 0 − c1

c3 0 c2 0

0 − c2 0 − c4

c1 0 c4 0
� �14�

and 
i� , 
j�= 
eT
↑� , 
eT

↓� , 
eB
↑� , 
eB

↓�. We can use Eq. �11� to calcu-
late the DOE, where z1

2= 1
2 �1−
1−4�c1c2−c3c4�2� and z2

2

= 1
2 �1+
1−4�c1c2−c3c4�2� are the eigenvalues of �†�. For a

QDM with reflection symmetry, we have c1=c2 and c3=c4,
and therefore z1

2= 1
2 �1−
1− �1−4c3

2�2� and z2
2= 1

2 �1
+
1− �1−4c3

2�2�. Using the definition of double-occupation
rate, Qtot=c3

2+c4
2, we have

z1
2 = 1

2 �1 − 
1 − �1 − 2Qtot�2� ,

z2
2 = 1

2 �1 + 
1 − �1 − 2Qtot�2� . �15�

The DOE of 1�g
�a� is calculated by substituting z1

2 and z2
2 into

Eq. �11�. We plot the DOE versus double-occupation rate of
the above ideal model in Fig. 10 as a black solid line. We
also present in the same figure the DOE of M��, M��, and
M���� versus the double-occupation rate. We found that the
double-occupation dependence of the DOE for the homo-
QDM M���� has perfect agreement with the analytical result,
which is also true for M�� even though it has small asymme-
try in the molecule due to the strain and alloy effects. We
also checked the homo-QDM made of pure InAs/GaAs
dots8,9 and found the same double-occupation dependence of
the DOE for the 1�g

�a� state, indicating this is a robust feature
for homo-QDM’s. However, the double-occupation depen-
dence of the DOE for M�� deviates from the ideal case be-
cause dots � and � are different.

VI. SUMMARY

We have studied the electronic structures of quantum dot
molecules made of �In,Ga�As/GaAs dots of different sizes

FIG. 9. �Color online� The degree of entanglement of two-
electron states 1�g

�a�, 1�u, 1�g
�b�, and 3�u, in �a� the hetero-QDM

M��, �b� the homo-QDM M��, and �c� the model-“symmetrized”
homo-QDM M����.

FIG. 10. �Color online� Comparison of the degree of entangle-
ment vs double-occupation rate for hetero- and homo-QDM’s. The
black solid line represents the analytical results of the homo-QDM,
and the red dashed line represents the numerical results for the
homo-QDM’s M���� and M�� whereas the blue line represents the
results for hetero-QDM’s M��.
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�hetero-QDM’s� and compared them to that of quantum dot
molecules made of identical dots �homo-QDM’s�. We found
that while the hetero-QDM’s and homo-QDM’s have rela-
tively similar electronic structures at short interdot distance,
they differ significantly at large interdot distance. �i� Unlike
those of homo-QDM’s, the single-particle molecular orbitals
of hetero-QDM’s convert to dot-localized orbitals at large
interdot distance. �ii� Consequently, the bonding-antibonding
splitting of molecular orbitals is significantly larger than the
electron hopping energy in a hetero-QMD at large interdot
distance, whereas for homo-QDM’s, the bonding-
antibonding splitting is very similar to the hopping energy.
�iii� The asymmetry of the QDM will significantly increase
the double occupation for the two-electron ground states and

therefore lower the degree of entanglement of the two elec-
trons.
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